Distributed Decision Making
The first edition was published 1999 with the title: Hierarchies in Distributed Decision Making.

DOI 10.1007/978-3-540-24724-1

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

http://www.springer.de
© Springer-Verlag Berlin Heidelberg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
Softcover reprint of the hardcover 2nd edition 2003

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Hardcover-Design: Erich Kirchner, Heidelberg
Preface

In recent years, distributed decision making has become of increasing importance and awareness in quantitative decision analysis. Particularly in application areas, like supply chain management, service operations, or managerial accounting, distributed decision making has brought about a paradigmatic shift. Consequently, for this second edition of *Hierarchies in Distributed Decision Making* the title has a little been changed. It now describes more precisely what this second edition is aiming at.

Thus, the first edition has been considerably extended by additional chapters on supply chain management, on service operations, and on multi-agent systems. The existing chapters, however, have been enriched as well. The relation to micro economics and to stochastic multi-level programming is made more explicit and in the introduction to principal agent theory self-selection and the problem of truthful communication have been added. In hierarchical production planning, the problem on aggregation-disaggregation is discussed more extensively, and the chapter on managerial accounting has gained by numerous improvements and extensions.

The structure of the text, though, has not been changed. Still Part I gives a fairly elementary introduction to distributed decision making, Part II is devoted to general application areas in the management sciences with an emphasis on hierarchical planning features, and Part III is focusing on negotiations and multi-agent systems. As to application areas, the text is concentrating on problems in organizational theory, in working time and manpower planning, in managerial accounting, in production and operations management, and in supply chain management. Indeed, most of the applications have to do with some aspects of supply chain management, investigating various coordination problems.
in this broad field. In doing so, the reader is provided with a host of comparatively easy-to-understand examples and standard settings. Dealing painfully with the specificities of particular and diverse areas of business administration would not be conductive to gain an understanding of the main concepts of distributed decision making.

Part I of the book and some of the chapters of Part II are now accompanied by exercises (together with the solutions) making it easier to be used as an introductory text on the graduate level. Since the first edition in 1999, I have had the opportunity to present part of the text repeatedly in class not only to my students in Mannheim but also to graduate students at the engineering department of Operations Management of the Bosphorus University in Istanbul as well as the department of Operations Management and Information Technology at the University of Auckland, New Zealand. All these lectures have greatly helped to further clarify basic notions, to simplify and unify the notation, and to add some more easy-to-understand examples.

Thus thanks are due to all these students, particularly to the small groups abroad who had a different background compared to the students in Mannheim. In fact, the text, at least of Part I, should be easily accessible to students having a typical background in business administration, particularly in medium-term production planning. From a formal point of view, the numerous examples are mainly restricted to simple linear programs. Intellectually, the level of abstraction and of conceptual thinking is comparable with the one usually encountered on a graduate level in micro economics.

Since the first edition, a lot of colleagues helped to improve the text. This is due to many members of the European Working Group on Distributed Decision Making, particularly to Prof. Dr. Carsten Homburg and Dr. Michael Krapp who contributed valuable comments. Dipl.-Wirt.-Ing. Erich Kleindienst assisted me in preparing the exercises, and parts of the doctoral theses of Dr. Rüdiger Eichin and Dr. Kirstin Zimmer enriched the text. Dipl.-Kfm. Ralf Bauer, Dipl.-Kfm. Michael Zimmermann, and Dr. Hans-Joachim Vaterrodt read parts of the manuscript and substantially helped to improve the presentation. All their contributions are gratefully acknowledged. Again I would like to express my gratitude to Gabriele Eberhard and particularly to Ruth Pfitzmann who permanently accompanied me in writing the many
versions of the manuscript. Finally, thanks are due to Dr. Werner A. Müller, Springer Publishing House, who encouraged me to prepare this second edition of *Distributed Decision Making*.

Mannheim, March 2003

Christoph Schneeweiss
Contents

Chapter 1: Introduction 1
 1.1 Some Typical Examples of Distributed Decision Making Situations .. 7
 1.2 Examples of DDM Systems 11
 1.3 Some Important Properties of DDM Systems 17
 1.4 Outline of the Treatise 19

PART I: Basic Foundations 23

Chapter 2: Basic Concepts 25
 2.1 General Characterization of Hierarchical Planning Structures .. 26
 2.2 Coupling Equations and Anticipation Function 32
 2.3 Distinguishing DDM Systems by Their Team Character within Hierarchical Interactions 39
 2.4 Classifying General Planning Hierarchies by Their Anticipation .. 41
 2.5 Illustrative Examples 46
 2.5.1 Example 1: Make-or-Buy Decisions 46
 2.5.2 Example 2: A Working Time Planning Model 53
 2.5.3 Example 3: Supply Contracts 57
 2.5.4 Example 4: Stackelberg Duopoly 65
 2.6 Some Remarks Concerning General Solution Properties 69
Contents

Chapter 3: Constructional DDM Systems ... 73

3.1 Decomposition DDM Systems ... 75

3.1.1 A Capacity Adaptation Model ... 76

3.1.2 A Coordination DDM System of the Dantzig/Wolfe Type 81

3.2 Relaxation Systems .. 86

3.3 A Brief Remark on Bi-Level Programming 90

Chapter 4: Organizational DDM Systems ... 93

4.1 Top-Down DDM Systems ... 94

4.1.1 A Hierarchical Planning Model for the
Repair Shops of the Deutsche Lufthansa AG 95

4.2 Tactical-Operational DDM Systems .. 99

4.2.1 Capacity Adaptation Hierarchy .. 101

4.2.2 Investment-Production Hierarchies .. 104

4.2.3 Strategic-Tactical-Operational DDM System 107

4.3 Value of Information and Delegation .. 113

4.3.1 Value of Information ... 113

4.3.2 Value of Delegation .. 115

4.4 Some Brief Remarks on Stochastic Programming 116

4.4.1 An Example of a Two-Stage Linear
Stochastic Programming .. 119

4.4.2 Some General Remarks on Solution Procedures 121

Chapter 5: Principal Agent Theory .. 125

5.1 Information Situation in the Principal Agent Theory 126

5.2 The Standard Problem of Principal Agent Theory 130

5.3 An Illustrative Example with Risk-Neutral Antagonists 133

5.3.1 Problem Statement and Problem Formulation 133

5.3.2 Problem Solution .. 135

5.4 Some General Observations Concerning the Solution
of the Principal Agent Coupling Equations 138

5.5 The LEN Model .. 140

5.6 Some Extensions of the Standard Situation 146

5.6.1 Self-Selection Illustrated with a Supply Chain Contract 147

5.6.2 Hidden Information and Truthful Communication 149
PART II: General Applications .. 157

Chapter 6: Hierarchical Production Planning 159
6.1 Standard Model of Hierarchical Production Planning 160
6.1.1 The Structure of the Model .. 160
6.1.2 Mathematical Formulation of the Decision Models
for the Three Levels ... 163
6.1.3 General Discussion of Hierarchical Production Planning 166
6.2 Integrative Hierarchical Production Planning 170
6.2.1 A Model to Illustrate the Integrative Approach to HPP 171
6.2.2 Interpretation of the Integrative Model in Terms
of a Tactical-Operational DDM System 177
6.2.3 General Discussion of Aggregation Procedures and
the Integrative HPP .. 179
6.3 Process Production .. 183
6.3.1 A Dynamic Programming Formulation for Medium-Term
and Short-Term Process Production 184
6.3.2 Integrative Hierarchical Production Planning for
Process Production .. 191
6.4 General Discussion .. 201

Chapter 7: Organizational Design ... 205
7.1 Designing the Organizational Structure
as a DDM Problem .. 206
7.2 Process Design: The Design of a Flexibility Potential 209
7.2.1 Some Preliminary Remarks 210
7.2.2 Elementary Components of a Flexibility Measure 211
7.2.3 A General Measure of Flexibility 213
7.2.4 Numerical Specification of Flexibility 214
7.2.5 Planning and Implementation Ability as Further
Components of Flexibility ... 216
7.2.6 The Design of Flexibility as a Hierarchical
Planning Problem ... 217
Chapter 8: Implementation 221
8.1 Planning and Implementation as a Two-Stage Decision Problem .. 223
8.2 Implementation as a Three-Stage Hierarchy 225
8.2.1 A General Model .. 225
8.2.2 The Solution Hierarchy 227
8.3 Formal Description of the Planning and Implementation Problem 228
8.3.1 The Coupling Equations 228
8.4 Working Time Contract 230
8.5 Implementation of Lotsizes 233
8.5.1 The Planning Level: Determination of Target Lotsizes .. 235
8.5.2 The Implementation Level: Adaptation of Target Lots .. 236
8.5.3 Anticipation ... 238
8.5.4 Description within the Framework of Hierarchical Planning 239

Chapter 9: Supply Chain Management 243
9.1 The Design of Supply Chain Contracts to Coordinate Operational Interdependencies 247
9.1.1 Type of Contracts and Their Operational Impact .. 248
9.1.2 A Formal Description of the Operational Level .. 253
9.1.3 The Contract Level .. 262
9.1.4 Numerical Analysis .. 266
9.1.5 Summarizing Remarks 273
9.2 Process Coordination in a Supply Chain - a Continuous One-Period Model 274
9.2.1 Problem Description 274
9.2.2 Main Features of the Producer’s and Supplier’s Model .. 277
9.2.3 Coordination Schemes 278
9.2.4 Analytic Investigation 279
9.2.5 An Illustrative Numerical Example .. 283
9.3 A Multi-Period Model with Private Information 285
9.3.1 General Characteristics of the Multi-Period Model .. 286
9.3.2 Formal Description of the Supply Link .. 288
9.3.3 The Interrelation of the Producer’s and the Supplier’s Model 295
9.3.4 Types of Anticipation and Coordination .. 296
Chapter 10: Service Operations .. 323
10.1 Characterization of Services .. 324
10.1.1 Specification of Service Operations 324
10.1.2 Phases of Service Production 326
10.2 Execution Phase of a Service Operation 329
10.3 The Agreement-Execution Relationship 331
10.4 Delegation of a Service Operation 334
10.4.1 Coupling Equations .. 337
10.4.2 Modeling the Relationship Between Manager and Agent 339

Chapter 11: Managerial Accounting .. 341
11.1 General Considerations and the Cost Value Problem 343
11.1.1 Classification .. 344
11.1.2 The Cost Value Problem 347
11.2 Steering Costs .. 347
11.2.1 Description of the Concept of Steering Costs 348
11.2.2 A Numerical Example ... 350
11.3 Tactical-Operational Cost Evaluation 352
11.3.1 Investment-Oriented Depreciations - Preliminary
 Considerations ... 353
11.3.2 Description of the Investment and the Production Level ... 354
11.3.3 Defining Investment-Oriented Depreciations 360
11.3.4 An Illustrative Numerical Example and Some
 Further Numerical Insights 363
11.3.5 General Discussion ... 367
11.4 Decision-Oriented Assignment of Common Cost 368
11.4.1 The Cost Separation Problem 370
11.4.2 The Algorithmic Determination of Steering Costs 372
PART III: Leadership and Coordination Processes 385

Chapter 12: General DDM Systems 387
12.1 The Individual Decision Process 389
12.1.1 General Two-Step Structure 389
12.1.2 A More Refined Description 391
12.1.3 The Entire Decision Process 395
12.2 A Formal Description of General DDM Systems 398
12.2.1 The Interaction of Individual Decision Processes 398
12.2.2 The General Coupling Equations 401
12.2.3 Leadership Properties of the Coupling Equations 405

Chapter 13: Coordination through Communication 411
13.1 General Features of a Coordination and
Communication Process .. 412
13.2 A Linear Coordination Process 415
13.3 Hierarchical Interference with the Base-Level
Decision Processes ... 418
13.4 The Entire Coordination Process 420

Chapter 14: Negotiations 423
14.1 A Hierarchical Negotiation Situation 424
14.2 A Formal Description of the Negotiation 427
14.3 Negotiations in the Presence of Multiple Scenarios 429
14.4 The Strategic Decision 432
14.5 The Entire Negotiation Process 433