Sergey Melnik

Generic Model Management

Concepts and Algorithms

Springer
Preface

Many challenging problems facing information systems engineering involve the manipulation of complex metadata artifacts, or *models*, such as database schemas, interface specifications, or object diagrams, and *mappings* between models. The applications that solve metadata manipulation problems are complex and hard to build. The goal of generic model management is to reduce the amount of programming needed to develop such applications by providing a database infrastructure in which a set of high-level algebraic operators, such as Match, Merge, and Compose, are applied to models and mappings as a whole rather than to their individual building blocks.

This dissertation presents an initial study of the concepts and algorithms for generic model management. We describe the first prototype of a generic model management system, introduce the algebraic operators that are used to manipulate models and mappings, clarify the semantics of the operators, and develop novel algorithms for implementing them. In particular, we present an innovative algorithm based on fixpoint computation that is used for implementing the generic operator Match, which finds correspondences between two models. Using the prototype and the operators presented in the dissertation, we develop solutions for several practically relevant problems, such as change propagation and reintegration.

April 2004

Sergey Melnik
I would like to express my deep gratitude to everyone who helped me shape the ideas explored in this dissertation, either by giving technical advice or encouraging and supporting my work in many other ways.

I enjoyed a rare privilege of collaborating closely with several distinguished database researchers. This dissertation would not have come into existence without their hands-on advice and motivation.

Prof. Erhard Rahm supervised and guided my work from the very first day. He gave me the opportunity to conduct this doctoral research and helped me make the right strategic decisions at many forks along the way. He kept me on track while allowing me to broaden my research horizon in tangential areas. His insightful comments, which densely filled the margins of each draft that I gave to him, gave rise to many creative ideas.

Prof. Hector Garcia-Molina invited me to Stanford University and taught me the art of turning hard research challenges into fun and expressing my thoughts clearly using examples. From him I learned that solid research requires patience: for example, he suggested that a draft of our joint paper [Melnik, Garcia-Molina, Rahm 2002] needed more polishing and so we missed a conference deadline. Later that paper, which underpins Part III of the dissertation, received the Best Student Paper Award at the Intl. Conf. on Data Engineering.

Prof. Emeritus Gio Wiederhold showed me what it takes to step back and see a big picture, and yet keep the details in focus. He gave me the opportunity to collaborate in the DARPA DAML project at Stanford and to get a foretaste of metadata management problems in the context of interoperability on the Semantic Web.

Dr. Philip A. Bernstein has been the driving force behind the emerging research area of generic model management, the subject of the dissertation. His vision papers and talks inspired much of the work done in this thesis. His insightful suggestions on our joint papers and his guidance in designing the first prototype for model management, which is presented in Part I of the dissertation, were invaluable.

Prof. Alon Halevy helped me keep my spirits high while I worked on Part II, a more theoretical part of the dissertation. His encouragement and advice made this work a real pleasure.
I am grateful to Profs. Serge Abiteboul, Paolo Atzeni, Stefano Ceri, Martin Kersten, Renée Miller, and Gerhard Weikum for helpful discussions.

I would like to thank my colleagues and friends in the Database Groups in Leipzig and Stanford, the members of the Graduate Programme on Knowledge Representation in Leipzig, and the colleagues in the RDF Core Working Group at the World-Wide Web Consortium for fruitful exchanges of ideas. The members of the Stanford Database Group helped me conduct the user study presented in Part III.

I am indebted to Drs. Stefan Decker, Andreas Paepcke, Bertram Ludäscher, Felix Naumann, and Arturo Crespo for their support and many informal discussions, which helped me put my academic research into perspective.

I owe very special thanks to my wife Teresa. Her love and energy constantly recharged my forces. She has been my perpetual source of creativity and inspiration, in so many respects.

This dissertation is dedicated to my parents, Tanja and Juri, who are truly the origin of all great things that ever happened to me.

The contributions of the above people made the work on this dissertation a rewarding and memorable experience. I thank you all.

April 2004

Sergey Melnik
Table of Contents

Part I. A Programming Platform for Model Management

1. **Introduction** ... 3
 1.1 Metadata Management .. 3
 1.2 The Problem .. 5
 1.3 A Vision for Management of Complex Models 6
 1.4 Outline and Contributions of the Dissertation 9

2. **Conceptual Structures and Operators** 13
 2.1 Motivating Scenario .. 13
 2.2 Conceptual Structures .. 18
 2.2.1 Models ... 19
 2.2.2 Morphisms ... 20
 2.2.3 Selectors ... 22
 2.3 Operators .. 22
 2.3.1 Primitive Operators 23
 2.3.2 Derived Operators 25
 2.3.3 Extract and Delete 26
 2.3.4 Match .. 27
 2.3.5 Merge .. 28

3. **Implementation and Applications** 29
 3.1 Conceptual Structures .. 29
 3.2 Operators .. 30
 3.2.1 Extract and Delete 30
 3.2.2 Dependencies ... 32
 3.2.3 ExtractMin .. 33
 3.2.4 DeleteHard and DeleteSoft 35
 3.2.5 Diff .. 36
 3.2.6 Match .. 37
 3.2.7 Merge .. 38
 3.3 Prototype “Rondo” .. 42
 3.4 View-Reuse Scenario .. 45
 3.5 Reintegration Scenario .. 47
 3.6 Conclusions .. 50
Table of Contents

Part II. A Semantics for Model Management Operators

4. **State-Based Semantics** ... 55
 4.1 Basic Concepts ... 56
 4.1.1 Models .. 56
 4.1.2 Mappings ... 58
 4.1.3 Formal Notation ... 60
 4.1.4 Semantics of Scripts ... 61
 4.1.5 Preliminaries .. 62
 4.2 Operators ... 64
 4.2.1 Compose Operator ... 65
 4.2.2 Invert Operator .. 67
 4.2.3 Extract Operator ... 68
 4.2.4 Merge Operator .. 73
 4.2.5 Diff Operator .. 77
 4.2.6 Confluence Operator ... 84
 4.2.7 Match Operator .. 85
 4.3 Materialization .. 86

5. **Change Propagation Scenario** ... 91
 5.1 Propagating Additions ... 92
 5.2 Propagating Deletions ... 93
 5.3 A General Solution ... 95
 5.4 Schema Evolution Scenario ... 96
 5.5 Variants of Change Propagation 98

6. **State-Based Semantics in Rondo** ... 101
 6.1 Semantics of Morphisms .. 101
 6.2 Semantics of Selectors .. 105
 6.3 Structural vs. State-Based Operators 106
 6.4 Revisiting Change Propagation 109
 6.5 Conclusions .. 112

Part III. Schema Matching

7. **Similarity Flooding Algorithm** ... 117
 7.1 Overview of the Approach .. 119
 7.2 Similarity Flooding Algorithm 122
 7.2.1 Similarity Propagation Graph 122
 7.2.2 Fixpoint Computation .. 123
 7.3 Generalized Version of the Algorithm 124
 7.4 Convergence and Complexity of the Algorithm 126
 7.5 Features of the Algorithm by Example 127
7.5.1 Semistructured Data .. 128
7.5.2 XML Schemas ... 129
7.5.3 Matching XML Schemas Using Instance Data 131
7.5.4 Finding Related Data 134

8. Filters .. 137
 8.1 Constraints .. 138
 8.2 Selection Metrics ... 139
 8.3 FilterBest Algorithm .. 142
 8.4 Expressing FilterBest in SQL 144

9. Evaluation and Tuning .. 147
 9.1 Matching Accuracy .. 148
 9.2 Intended Match Result 150
 9.3 User Study .. 151
 9.4 Evaluation of Algorithm and Filters 153
 9.5Propagation Coefficients 155
 9.6 Conclusions and Open Issues 156

Part IV. Model Management in Perspective

10. Related Work .. 163
 10.1 Data Integration and Merge 164
 10.1.1 Schema Integration 165
 10.1.2 Answering Queries Using Views 170
 10.2 Schema Matching and Match 173
 10.3 Mapping Composition and Compose 178
 10.4 View Selection and Extract 181
 10.5 View Complement and Diff 182
 10.6 Approaches to Specifying Semantics 184
 10.6.1 Semantics of Models and Mappings 184
 10.6.2 Information Capacity 186
 10.6.3 Category Theory 187
 10.7 Metadata Repositories 189
 10.8 Metadata-Intensive Applications 190
 10.8.1 Declarative Mediation 190
 10.8.2 Change Propagation 193
 10.9 Other Related Work 195

11. Conclusions and Outlook 199
 11.1 Summary of Contributions 199
 11.2 Concluding Discussion 200
 11.3 Open Technical Challenges 205
 11.3.1 Decidability and Complexity 205
11.3.2 Equivalence and Entailment of Scripts 205
11.3.3 Completeness and Redundancy 206
11.3.4 N-ary Mappings ... 209
11.3.5 Formalization of Model-Management Problems 210

A. User Study .. 213
 A.1 BizTalk Schemas (XML) 214
 A.2 Property Listing Schemas (XML) 215
 A.3 Library Schemas (XML) 215
 A.4 Product Schemas with Data Instances (XML) 215
 A.5 University Schemas with Data Instances (XML) 216
 A.6 Catalogs with Data Instances (XML) 217
 A.7 Personnel Schemas (Relational) 219
 A.8 University Schemas (Relational) 219
 A.9 Personnel/University Schemas (Relational) 220

B. Proofs of Simplification Theorems 221
 B.1 Extract Operator .. 221
 B.2 Merge Operator ... 223
 B.3 Diff Operator .. 225

References ... 229
List of Figures

1.1 A high-level architecture of model management 8

2.1 Scenario illustrating propagation of changes from a relational scheme to an XML schema 14

2.2 Schematic representation of a solution for change propagation scenario of Fig. 2.1 .. 15

2.3 Converted schema c and support element ORDERS in c′ 16

2.4 Sample model shown as graph and 4-tuples 19

2.5 A morphism between a relational and an XML schema 21

2.6 Graph representation of XML schema in Fig. 2.5 21

2.7 Example of a selector .. 22

2.8 Examples of copying the model of Fig. 2.4 using selector {a1, a2, a3, a4} .. 26

3.1 Examples of extraction and deletion from a relational schema m .. 31

3.2 Example of existential dependencies in a relational schema 33

3.3 Example of existential dependencies in an XML schema 33

3.4 Merging two sample schemas 39

3.5 Architecture of the prototype 42

3.6 Code size breakdown in prototype (in lines of code) 45

3.7 Morphism between sources S 1 and S 2 45

3.8 Merging two SQL views .. 46

3.9 Reintegration scenario (3-way merge) 48

3.10 Schematic representation of the reintegration scenario 50

4.1 Some instances of relational schema

R(Name: char(3), Sex: bool) .. 57

4.2 Portion of a mapping ... 58

4.3 Schematic representation for Example 4.2.6 (Extract) 68

4.4 Illustration of Extract operator 70

4.5 Schematic representation for Example 4.2.12 (Merge) 73

4.6 Illustration of Merge operator 74

4.7 Schematic representation for Example 4.2.17 (Diff) 77

4.8 Illustration of Diff operator 78

4.9 Example of Diff result by Theorem 4.2.5 80
4.10 The output mapping in \textit{Diff} is not determined up to isomorphism \hfill 80
4.11 Illustration of Theorem 4.2.11 (Mirror Merge) \hfill 86
4.12 Materialization of models and mappings \hfill 88

5.1 Propagating additions \hfill 92
5.2 Propagating deletions \hfill 94
5.3 Propagating deletions over bijection \hfill 94
5.4 Change propagation: a general solution \hfill 96
5.5 Schema evolution: a special case of change propagation \hfill 97
5.6 Addition only, convert first then \textit{Diff} \hfill 98
5.7 Addition only, \textit{Diff} first, then convert \hfill 99

6.1 Three alternative semantics for a morphism \hfill 102
6.2 Relationship between cites and zip codes is not preserved on composition \hfill 104
6.3 Structural composition vs. state-based composition (the latter with and without NULLs; predicate \leftrightarrow denotes if-and-only-if) \hfill 107
6.4 Structural extraction yields materialization of the state-based operator \hfill 108
6.5 Schematic representation for structural change propagation script \hfill 111

7.1 Matching two relational schemas: Personnel and Employee-Department \hfill 119
7.2 A portion of graph representation G_1 for relational schema S_1 \hfill 120
7.3 Example illustrating the Similarity Flooding algorithm \hfill 122
7.4 Matching of semistructured data \hfill 128
7.5 Matching of two XML schemas: AccountOwner (S_1) vs. Customer (S_2) \hfill 130
7.6 Two different representations of XML data: OEM/Lore-like vs. XML/DOM-like \hfill 131
7.7 Matching of two XML schemas using instance data in DOM graph representation \hfill 133
7.8 Excerpt of relationships in the Stanford DB Group \hfill 135

8.1 Cumulative similarity vs. “stable marriage” \hfill 137
8.2 Relative similarities for the example in Fig. 8.1 \hfill 138
8.3 Example illustrating execution of FilterBest in SQL \hfill 144

9.1 Matching accuracy as a function of t_{rel}-threshold for intended match results Sparse, Expected, and Verbose from Table 9.1 \hfill 151
9.2 Average matching accuracy for 7 users and 9 matching problems \hfill 152
9.3 Matching accuracy for different filters and four versions of the algorithm \hfill 153
9.4 Impact of randomizing initial similarities on matching accuracy . . 155
9.5 Impact of different ways of computing propagation coefficients on overall matching accuracy in the user study 156

10.1 Use of composition in (Shanmugasundaram et al. 2001a) 180

11.1 Schematic representation for Conjecture 11.3.1 (Associative Merge) ... 206
11.2 Illustration of **Intersect** operator 207
List of Tables

2.1 Summary of key operators in Rondo ... 23
2.2 Definitions of primitive operators .. 24
3.1 Comparison of variants of extraction and deletion 36
4.1 Summary of key model-management operators 64
7.1 A portion of initialMap obtained by string matching (10 of total
26 entries are shown) .. 120
7.2 The mapping after applying SelectThreshold on result of SFJoin . 121
7.3 Variations of the fixpoint formula .. 124
7.4 The mapping after applying SFJoin ◦ SelectLeft to semistructured
data in Fig. 7.4 .. 129
7.5 Parameters of the fixpoint computation for S₁ and S₂ 131
7.6 Match results for XML schemas in Fig. 7.5 using two different
graph representations ... 132
7.7 Match results for XML element tags in Fig. 7.7 using similarity
threshold 0.05 .. 134
7.8 Relatedness of faculty members in the DB group based on data in
Fig. 7.8 .. 135
9.1 Three plausible intended match results for matching problem in
Fig. 7.1 .. 149
9.2 Sizes of graphs in the user study .. 152
9.3 Illustration of convergence properties of variations of fixpoint
formula for tasks T₁,...,T₉ in the user study. Shows iterations
needed until length of residual vector got below 0.05..................... 154
9.4 Different approaches to computing the propagation coefficients
π_{l,r}(⟨x,p,A⟩,⟨y,q,B⟩) ... 157
10.1 Data integration scenarios ... 165