Lecture Notes in Artificial Intelligence 10928

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany
More information about this series at http://www.springer.com/series/1244
Preface

These proceedings contain the papers presented at Living Machines 2018: the 7th International Conference on Biomimetic and Biohybrid Systems, held in Paris, France, July 17–20, 2018. The international conferences in the Living Machines series are targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems. The conference aim is to highlight the most exciting international research in both of these fields united by the theme of “Living Machines.”

The Living Machines conference series was first organized by the Convergent Science Network (CSN) of biomimetic and biohybrid systems to provide a focal point for the gathering of world-leading researchers and the presentation and discussion of cutting-edge research in this rapidly emerging field. The modern definition of biomimetics is the development of novel technologies through the distillation of principles from the study of biological systems. The investigation of biomimetic systems can serve two complementary goals. First, a suitably designed and configured biomimetic artifact can be used to test theories about the natural system of interest. Second, biomimetic technologies can provide useful, elegant, and efficient solutions to unsolved challenges in science and engineering. Biohybrid systems are formed by combining at least one biological component — an existing living system — and at least one artificial, newly engineered component. By passing information in one or both directions, such a system forms a new hybrid bio-artificial entity.

Although one may consider this approach to be modern, the underlying principles are centuries old. More specifically, after the European Renaissance, we observe the usage of automata to imitate the functionality of both animals and humans. Such endeavors not only served to entertain but can also be considered as philosophical experiments that allowed for the reproduction of aspects of living organisms in machines, while revealing important information regarding their nature. What initially started as a philosophical idea turned into a mechanical revolution as most of the automata of the 18th century were not only imitating the external appearance of an organism but also simulated the organism’s functionalities or behaviors. An example of linking human kinesiology and anatomy is Leonardo da Vinci’s “Knight” in 1495, where an elaborate system of pulleys and cables moved the knight’s armor to produce various human-like independent motions. This compelling artifact has endowed modern robotics with scaffolds for kinematics and structural design.

A way to appreciate the early simulation of living beings is the central idea of “moving anatomy” in the creations of Jacques de Vaucanson (1709–1782), a French inventor and artist. One of his first biomechanical automata was the “Flute Player,” a life-sized wooden statue of a man who played the flute by emitting air through its mouth. This design resulted from the extensive study of human flute players and was used to validate Vaucanson’s hypothesis that the consequent pitch of a note was
affected by the blowing pressure, aperture, and sounding length. Notably, his most famous creation was the “Digesting Duck” (1739) a mechanical artifact modeled upon thorough studies of real ducks that was conceptualized to teach the animal’s anatomy. Both the “Flute Player” and the “Digesting Duck,” although used for entertainment, are good examples that intended to approximate their biological counterparts.

Attention to anatomical, physiological, and behavioral simulations started with Vaucanson and climaxed with the creations of Pierre Jaquet-Droz (1721–1790). The father-and-son team of Pierre and Henri-Louis Jaquet-Droz produced three automata: “the Writer,” “the Draughtsman,” and “the Musician.” Their hands were modeled after real human hands that later constituted the basis for constructing prosthetic limbs. The tendency of that period was to use mechanical artifacts to approximate nature and, through modeling, experimentation, and observation, draw conclusions about their biological counterparts. Nowadays, the study and modeling of biological systems has led to the acquisition of insights into a plethora of domains ranging from architecture to materials, sensors, and control systems and even robotics. Advances in each of these areas were presented in detail at the conference.

The main conference, July 18–20, took the form of a three-day single-track oral and poster presentation program that included five plenary lectures from leading international researchers in biomimetic and biohybrid systems: Jérôme Casas (University of Tours) on insect-inspired mechatronics; Metin Sitti (Max Planck Institute) on bio-inspired and bio-hybrid miniature mobile robots; Stéphane Viollet (Aix-Marseille University) on the application of insect perception models to robots; Simon Thorpe (University of Toulouse) on memory storage and retrieval in both humans and machines; and Pascal Brioist (University of Tours) on the machines of Leonardo Da Vinci. There were also 22 regular talks and one poster session and poster spotlight (featuring approximately 36 posters). Session themes included: advances in soft robotics; 3D-printed bio-machines; robots and society; biomimetic vision and control; utility and limits of deep learning for bio-robotics; collective and emergent behaviors in animals and robots; and bioinspired flight. The conference was complemented by workshops on July 17, 2018, held at the École Normale Superieure in Paris. More specifically, “Sapiens 5.0: Augmenting Humanity to Overcome the Challenges of the Anthropocene” was organized by professor Paul F. M. J. Verschure and Tony Prescott.

The main conference was hosted at the Muséum national d’Histoire Naturelle, MNHN (Paris, France), a place built initially for medicinal and educational purposes. Surrounded by the botanical garden and next to the Seine, for more than four centuries, the MNHN hosted revolutionary discoveries in the field of natural sciences held by prodigious minds, such as Buffon, Lamarck, or Cuvier. Today, the MNHN is one of the most highly considered places in Europe with regard to scientific dissemination, education, and integration of multiple areas of expertise, ranging from molecular biology to applied technology. Hosting the Living Machines conference in such a place reinforces the aim of MNHN in the exploration and promotion of nature to protect it and understand it. This year, Living Machines was held in Paris after successful previous editions in Stanford, USA in 2017; Edinburgh, UK in 2016; Barcelona, Spain in 2015; Milan Italy in 2014; London, UK in 2013; and Barcelona, Spain in 2012.

We would like to thank our hosts at the National History Museum of Paris, Emmanuelle Pouydebat DR CNRS, and Vincent Bels, our hosts for the poster session
that was held at the Pierre and Marie Curie University, on the Jussieu Campus, in collaboration with Stéphane Doncieux UMPC, ISIR, and Benoît Girard DR CNRS, UPMC, ISIR.

We also wish to thank the many people that were involved in making the seventh edition of Living Machines possible: José Halloy and Paul Verschure co-chaired the meeting; Vasiliki Vouloutsi and Michael Mangan chaired the Program Committee and edited the conference proceedings; Tony Prescott chaired the international Steering Committee; Nathan Lepora was involved in the conference communication; Anna Mura was the general organization chair and also coordinated the website and communications; José Halloy and his group provided administrative and local organizational support in Paris. We are grateful to the SPECS lab and the Communication Unit at the Institute for Bioengineering of Catalonia (IBEC) in Barcelona for the assistance in the organization and for technical support. We would also like to thank the authors and speakers who contributed their work, and the members of the Program Committee for their detailed and considered reviews. We are grateful to the five keynote speakers who shared with us their vision of the future.

Finally, we wish to thank the organizers and sponsors of LM 2018: The Convergence Science Network for Biomimetic and Neurotechnology (CSNII; ICT-601167); the Institute for Bioengineering of Catalonia IBEC, and the Catalan Institution for Research and Advanced Studies (ICREA). Additional support was also provided by Springer. Living Machines 2018 was further supported by: the IOP physics journal *Bioinspiration & Biomimetics*, which will publish a special issue of articles based on the best conference papers, and *Biomimetics*, an Open Access journal, which will publish a special issue of articles based on the best conference posters, and by Eodyne SL (neuro-rehabilitation solutions) with an award for best paper with a social impact.

July 2018

Vasiliki Vouloutsi
José Halloy
Anna Mura
Michael Mangan
Nathan Lepora
Tony J. Prescott
Paul F. M. J. Verschure
Organization

Conference Chairs
José Halloy
Université Paris Diderot, France
Tony J. Prescott
University of Sheffield, UK
Paul F. M. J. Verschure
Institute for Bioengineering of Catalonia (IBEC), Barcelona
 Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

Program Chairs
Vasiliki Vouloutsi
Institute for Bioengineering of Catalonia (IBEC), Barcelona
 Institute of Science and Technology (BIST), Barcelona, Spain
Michael Mangan
University of Lincoln, UK

Local Organizers
José Halloy
Université Paris Diderot, France
Stéphane Doncieux
UMPC, ISIR, France
Benoît Girard
DR CNRS, UPMC, ISIR, France
Emmanuelle Pouydebat
DR CNRS, Muséum d’Histoire Naturelle, France
Vincent Bels
Muséum d’Histoire Naturelle, France

Communications
Anna Mura
Institute for Bioengineering of Catalonia (IBEC), Barcelona
 Institute of Science and Technology (BIST), Barcelona, Spain
Nathan Lepora
University of Bristol, UK

Conference Website
Anna Mura
Institute for Bioengineering of Catalonia (IBEC), Barcelona
 Institute of Science and Technology (BIST), Barcelona, Spain
Workshop Organizers

Tony J. Prescott
University of Sheffield, UK

Paul F. M. J. Verschure
Institute for Bioengineering of Catalonia (IBEC), Barcelona
Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

International Steering Committee

Joseph Ayers
Northeastern University, USA

Mark Cutkosky
Stanford University, USA

Marc Desmulliez
Heriot-Watt University, UK

José Halloy
Université Paris Diderot, France

Nathan Lepora
University of Bristol, UK

Barbara Mazzolai
Istituto Italiano di Tecnologia, Italy

Anna Mura
Catalan Institution for Research and Advanced Studies (IBEC-BIST), Barcelona, Spain

Tony Prescott
University of Sheffield, UK

Roger Quinn
Western Reserve University, USA

Paul Verschure
Catalan Institution for Research and Advanced Studies (IBEC-BIST) and Catalan Institution for Research and Advanced Studies, Barcelona, Spain

Vasiliki Vouloutsi
Catalan Institution for Research and Advanced Studies (IBEC-BIST), Barcelona, Spain

Stuart Wilson
University of Sheffield, UK

Program Committee

Andrew Adamatzky
UWE, Bristol, UK

Xerxes Arsiwalla
Institute for Bioengineering of Catalonia (IBEC), Spain

Farshad Arvin
University of Manchester, UK

Farshad Arvin Tareq Assaf
BRL, UK

Pankaja Bagul
Symbiosis School of Architecture, Urban Development, and Planning, India

Yoseph Bar-Cohen
JPL, USA

Josh Bongard
University of Vermont, USA

Jorg Conradt
TU München, Germany

Federico Corradi
University of Zurich and ETH, Switzerland

Heriberto Cuayáhuítl
University of Lincoln, UK

Mark Cutkosky
Stanford University, USA

Vassilis Cutsuridis
University of Lincoln, UK

Kathryn Daltorio
Case Western Reserve University, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stuart Wilson</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>Daniel Withey</td>
<td>Council for Scientific and Industrial Research, South Africa</td>
</tr>
<tr>
<td>Hartmut Witte</td>
<td>Technische Universität Ilmenau, Germany</td>
</tr>
<tr>
<td>Jiawei Xu</td>
<td>University of Newcastle, UK</td>
</tr>
<tr>
<td>Shigang Yue</td>
<td>University of Lincoln, UK</td>
</tr>
<tr>
<td>Ketao Zhang</td>
<td>Imperial College London, UK</td>
</tr>
<tr>
<td>Riccardo Zucca</td>
<td>Institute for Bioengineering of Catalonia (IBEC), Spain</td>
</tr>
</tbody>
</table>
Contents

Undulatory Swimming Locomotion Driven by CPG with Multimodal Local Sensory Feedback .. 1

Kyoichi Akiyama, Kotaro Yasui, Jonathan Arreguit, Laura Paez, Kamilo Melo, Takeshi Kano, Auke Jan Ijspeert, and Akio Ishiguro

A Nitinol-Actuated Worm Robot Bends for Turning and Climbing Obstacles ... 6

Kayla B. Andersen, Akhil Kandhari, Hillel J. Chiel, Roger D. Quinn, and Kathryn A. Daltorio

Are Brains Computers, Emulators or Simulators? 11

Xerxes D. Arsiwalla, Camilo M. Signorelli, Jordi-Ysard Puigbo, Ismael T. Freire, and Paul F. M. J. Verschure

Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays ... 16

Lise Aubin, Mehdi Khamassi, and Benoît Girard

Should Mobile Robots Have a Head? A Rationale Based on Behavior, Automatic Control and Signal Processing 28

François Bailly, Emmanuelle Pouydebat, Bruno Watier, Vincent Bels, and Philippe Souères

The Neck of Pinobo, A Low-Cost Compliant Robot 40

Arnaud Blanchard and Djamel Mebarki

Artificial Compound Eye and Synthetic Neural System for Motion Recognition ... 52

Drago Bračun, Nicholas S. Szczecinski, Gašper Škulj, Alexander J. Hunt, and Roger D. Quinn

Living in a Machine: Experiencing the World Through a Robotic Avatar ... 64

Daniel Camilleri and Tony Prescott

How to Blend a Robot Within a Group of Zebrafish: Achieving Social Acceptance Through Real-Time Calibration of a Multi-level Behavioural Model .. 73

Leo Cazanille, Yohann Chemtob, Frank Bonnet, Alexey Gribovskiy, Francesco Mondada, Nicolas Bredeche, and José Halloy
Evolutionary Optimisation of Neural Network Models for Fish Collective Behaviours in Mixed Groups of Robots and Zebrafish 85
Leo Cazenille, Nicolas Bredeche, and José Halloy

The Impact of Nature Inspired Algorithms on Biomimetic Approach in Architectural and Urban Design 97
Natasha Chayaamor-Heil

Spiders’ Ballooning Flight as a Model for the Exploration of Hazardous Atmospheric Weather Conditions 110
Moonsung Cho, Klaus Affeld, Peter Neubauer, and Ingo Rechenberg

Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks 115
Thomas Dalgaty, Elisa Vianello, Denys Ly, Giacomo Indiveri, Barbara De Salvo, Etienne Nowak, and Jerome Casas

Understanding Interstate Competitiveness and International Security in European Dual-Use Research 129
Saheli Datta Burton, Christine Aicardi, Tara Mahfoud, and Nikolas Rose

Neuromechanical Model of Rat Hind Limb Walking with Two Layer CPGs and Muscle Synergies 134
Kaiyu Deng, Nicholas S. Szczecinski, Dirk Arnold, Emanuel Andrada, Martin Fischer, Roger D. Quinn, and Alexander J. Hunt

A Hexapod Walking Robot Mimicking Navigation Strategies of Desert Ants Cataglyphis 145
Julien Dupeyroux, Julien Serres, and Stéphane Viollet

Development and Characterization of a Novel Biomimetic Peristaltic Pumping System with Flexible Silicone-Based Soft Robotic Ring Actuators ... 157
Falk Esser, Friederike Krüger, Tom Masselter, and Thomas Speck

Artificial System Inspired by Climbing Mechanism of Galium Aparine Fabricated via 3D Laser Lithography 168
Isabella Fiorello, Omar Tricinci, Anand Kumar Mishra, Francesca Tramacere, Carlo Filippeschi, and Barbara Mazzolai

Modeling the Opponent’s Action Using Control-Based Reinforcement Learning ... 179
Ismael T. Freire, Jordi-Ysard Puigbò, Xerxes D. Arsiwalla, and Paul F. M. J. Verschure
Estimating Body Pitch from Distributed Proprioception in a Hexapod 187
 Arne Gollin and Volker Dürr

Emulating Balance Control Observed in Human Test Subjects
 with a Neural Network ... 200
 Wade W. Hilts, Nicholas S. Szczecinski, Roger D. Quinn,
 and Alexander J. Hunt

Active Collision Free Closed-Loop Control of a Biohybrid
Fly-Robot Interface ... 213
 Jiaqi V. Huang, Yiran Wei,
 and Holger G. Krapp

Cognitive Architectures on Discourse 223
 M. Iza

Slip Detection on Natural Objects with a Biomimetic Tactile Sensor ... 232
 Jasper W. James and Nathan F. Lepora

Distributed Sensing for Soft Worm Robot Reduces Slip
for Locomotion in Confined Environments 236
 Akhil Kandhari, Matthew C. Stover, Prithvi R. Jayachandran,
 Alexander Rollins, Hillel J. Chiel, Roger D. Quinn,
 and Kathryn A. Daltorio

Snake-Like Robot that Can Generate Versatile Gait Patterns
by Using Tegotae-Based Control 249
 Takeshi Kano, Ryo Yoshizawa, and Akio Ishiguro

Observation of Calcium Wave on Physical Stimulus
for Realizing Cell Tactile Sensor 255
 Hiroki Kawashima, Umakshi Sajnani, Masahiro Shimizu,
 and Koh Hosoda

Active Touch with a Biomimetic 3D-Printed Whiskered Robot 263
 Nathan F. Lepora, Niels Burnus, Yilin Tao,
 and Luke Cramphorn

Implementation of Deep Deterministic Policy Gradients
for Controlling Dynamic Bipedal Walking 276
 Chujun Liu, Andrew G. Lonsberry, Mark J. Nandor,
 Musa L. Audu, and Roger D. Quinn

Investigation of Tip Extrusion as an Additive Manufacturing
Strategy for Growing Robots 288
 Dario Lunni, Emanuela Del Dottore, Ali Sadeghi,
 Matteo Cianchetti, Edoardo Sinibaldi,
 and Barbara Mazzolai
Quad-Morphing: Towards a New Bio-inspired Autonomous Platform for Obstacle Avoidance at High Speed
Valentin Riviere and Stephane Viollet
387

Toward Computing with Spider Webs: Computational Setup Realization
S. M. Hadi Sadati and Thomas Williams
391

Whisker-RatSLAM Applied to 6D Object Identification and Spatial Localisation
Mohammed Salman and Martin J. Pearson
403

Insect Behavioral Evidence of Spatial Memories During Environmental Reconfiguration
Diogo Santos-Pata, Alex Escuredo, Zenon Mathews, and Paul F. M. J. Verschure
415

Object Localisation with a Highly Compliant Tactile Sensory Probe via Distributed Strain Sensors
Marco Schultz and Volker Dürr
428

How the Sandfish Lizard Filters Particles and What We May Learn from It
Anna Theresia Stadler, Michael Krieger, and Werner Baumgartner
439

Braided Pneumatic Actuators as a Variable Stiffness Approximation of Synovial Joints
Alexander G. Steele and Alexander J. Hunt
450

An Analysis of a Ring Attractor Model for Cue Integration
Xuelong Sun, Michael Mangan, and Shigang Yue
459

Hide and Seek: Knowledge Search in Biomimicry
Sun-Joong Kim
471

Direction-Specific Footpaths Can Be Predicted by the Motion of a Single Point on the Body of the Fruit Fly
Drosophila Melanogaster
Nicholas S. Szczecinski, Ansgar Büschges, and Till Bockemühl
477

A Novel Spatially Resolved 3D Force Sensor for Animal Biomechanics and Robotic Grasping Hands
Séverine Toussaint and Artémis Llamosi
490
Aquatic Swimming of a Multi-functional Pedundulatory Bio-Robotic Locomotor ... 494
 Dimitris P. Tsakiris, Theodoros Evdaimon,
 and Emmanouil Papadakis

Evolution of Neural Networks for Physically Simulated Evolved Virtual Quadruped Creatures .. 507
 Neil Vaughan

Evolutionary Robot Swarm Cooperative Retrieval 517
 Neil Vaughan

Multi-agent Reinforcement Learning for Swarm Retrieval with Evolving Neural Network ... 522
 Neil Vaughan

A Neuromechanical Rat Model with a Complete Set of Hind Limb Muscles ... 527
 Fletcher Young, Alexander J. Hunt, and Roger D. Quinn

Guided Growth of Bacterial Cellulose Biofilms 538
 Katia Zolotovsky, Merav Gazit, and Christine Ortiz

Author Index ... 549