Modern Bayesian Statistics in Clinical Research
Modern Bayesian Statistics in Clinical Research
The current textbook has been written as a help to medical/health professionals and students for the study of modern Bayesian statistics, where posterior and prior odds have been replaced with posterior and prior likelihood distributions. Why may likelihood distributions estimate uncertainties of statistical test results better than normal distributions? Nobody knows for sure, and the use of likelihood distributions instead of normal distributions for the purpose has only just begun, but already everybody is trying and using them. SPSS statistical software version 25 (2017) has started to provide a combined module entitled Bayesian Statistics including almost all of the modern Bayesian tests (Bayesian t-tests, analysis of variance (anova), linear regression, crosstabs, etc.).

First of all, Bayesian and traditional tests are different. Bayesian tests assess whether a new treatment is better than control. Traditional tests, in contrast, test whether a new treatment is not better than control and then try and reject this null hypothesis of no difference. A number of arguments in favor of Bayesian methodologies can be given. Bayesian tests work with 95% credible intervals that are usually somewhat wider than the traditional 95% confidence intervals, and this is fine, because it may reduce the chance of statistical significances with little clinical relevance. Also, maximal likelihoods of likelihood distributions are not always identical to the mean effect of traditional tests, and this may be so, because biological likelihoods may better fit biological questions than numerical means do. In addition, Bayesian not only uses likelihood distributions but also ratios of likelihood distributions (Cauchy distributions) rather than ratios of Gaussian distributions, the latter of which are notorious for ill data fit. Fourth, Bayesian integral computations are very advanced and, therefore, give optimal precisions of complex functions and better so than traditional multiple mean calculations of nonrepresentative subsamples do. Fifth, with Bayesian testing type I and II errors need not be taken into account. Obviously, all of this sounds promising, and in the past few years, many scientists including econo-, socio-, and psychometricians are rather satisfied with the result patterns of modern Bayesian data analyses.

The authors are frequentists and know all too well that many of the above are speculative. For now we will stay modest. The advantage of Bayesian may be that a
somewhat better underlying structure of your null and alternative hypotheses is
given. Otherwise, it looks of course much like traditional statistics: a very small
Bayes factor generally corresponds to a very small p-value. The problem for non-
mathematicians is that integral calculations are needed to compute precise areas
under the curve.

The current edition will begin with a brief review of the past and some explana-
tory chapters of modern Bayesian statistics. Then, step-by-step analyses will be
given of clinical data examples according to SPSS’ s recipes. Also Bayesian MCMC
(Markov Chain Monte Carlo) samplings and the current search for causal relations-
ships with Bayesian structural equation modeling will be addressed as methods
where Bayesian statistics successfully helped fostering the deepest enigma of man-
kind, the proof of causality. We should add that each chapter can be studied as a
stand-alone without the need for information from the other chapters. Both real data
and hypothesized self-assessment data files are in extras.springer.com. We do hope
that the current edition will be helpful to the medical and health community for
which the dedication to the search for causalities is more vital than it is for most
other disciplines.

Dordrecht, The Netherlands
Amsterdam, The Netherlands

Ton J. Cleophas
Aeilko H. Zwinderman
Contents

1 General Introduction to Modern Bayesian Statistics 1
 1.1 Background .. 1
 1.2 Introduction ... 2
 1.3 Traditional Bayes .. 3
 1.4 Odds and Probabilities .. 4
 1.5 Posterior- and Prior-Test Odds 5
 1.6 Modern Bayes .. 6
 1.7 Standardized Likelihood Distributions 7
 1.8 Bayes Factor ... 9
 1.9 Uninformed Prior Likelihood Distributions, Example One 11
 1.10 Uninformed Prior Likelihood Distributions, Example Two 13
 1.11 Uninformed Prior Likelihood Distributions, Example Three ... 15
 1.12 Priors, the Achilles Heal of Modern Bayesian Statistics 17
 1.13 Differences Between Traditional and Bayesian Statistics 18
 1.14 Conclusion .. 20
 1.14.1 Odds and Probabilities .. 20
 1.14.2 Posterior- and Prior-Test Odds 20
 1.14.3 'Traditional Bayes’ Theorem 21
 1.14.4 Modern Bayes .. 21
 1.14.5 Bayes Factor ... 21
 1.14.6 Achilles Heal of Modern Bayesian Statistics 21
 1.14.7 Differences Between Traditional and Bayesian Statistics ... 22

Suggested Reading ... 22

2 Traditional Bayes: Diagnostic Testing, Genetic Data Analyses, Bayes and Drug Trials 23
 2.1 Background .. 23
 2.2 Diagnostic Testing .. 24
 2.3 Analysis of Genetic Data ... 28
 2.4 Bayes and Drug Trials ... 29
 2.5 Conclusion ... 31

Suggested Reading ... 32
Bayesian Tests for One Sample Continuous Data

3.1 Background

3.2 Example

3.3 Traditional One-Sample T-Test

3.4 Bayesian One-Sample T-Test

3.5 Conclusion

Suggested Reading

Bayesian Tests for One Sample Binary Data

4.1 Background

4.2 Example

4.3 Traditional Analysis of Binary Data with the Z-Test

4.4 Analysis: Bayesian Statistics One Sample Binomial

4.5 Conclusion

Suggested Reading

Bayesian Paired T-Test

5.1 Background

5.2 Example

5.3 Traditional Analysis with Paired T-Test

5.4 Bayesian Analysis of Paired Continuous Data

5.5 Conclusion

Suggested Reading

Bayesian Unpaired T-Test

6.1 Background

6.2 Example

6.3 Traditional Unpaired T-Test

6.4 Bayesian Unpaired T-Test

6.5 Bayesian Unpaired T-Test with Informed Prior: Variance per Group Adjusted

6.6 Conclusion

Suggested Reading

Bayesian Regressions

7.1 Background

7.2 Introduction, Data Example

7.3 Traditional Linear Regression Analysis

7.4 Bayesian Linear Regression Analysis

7.5 Traditional Multiple Linear Regression Analysis with Binary Predictors

7.6 Bayesian Multiple Linear Regression Analysis

7.7 Traditional Linear Regression Analysis with a Continuous Predictor

7.8 Bayesian Linear Regression Analysis with a Continuous Predictor

7.9 Conclusion

Suggested Reading
13.4 Path Analysis and Partial Correlations
 13.4.1 D-Separations
 13.4.2 Partial Correlations Analysis
 13.4.3 Higher Order Partial Correlations Analysis
13.5 Conclusion
Suggested Reading

14 Bayesian Network
 14.1 Introduction
 14.2 Bayesian Networks for Cause Effect Modeling in Surveys
 14.2.1 Example
 14.2.2 Binary Logistic Regression in SPSS
 14.2.3 Konstanz Information Miner (Knime)
 14.2.4 Knime Workflow
 14.2.5 Discussion
 14.3 Bayesian Networks for Cause Effect Modeling in Clinical Trials
 14.3.1 Example
 14.3.2 Methodological Background of Bayesian Networks
 14.3.3 Results of Fitting a Bayesian Network to Our Example
 14.3.4 Discussion
 14.4 Bayesian Networks for Analyzing Meta-Data
 14.4.1 Meta-Data from Lazarou-1
 14.4.2 Meta-Data from Atiqi
 14.4.3 Meta-Data from Lazarou-1 and Atiqi
 14.4.4 Meta-Data from Lazarou-1 and -2
 14.4.5 Discussion
 14.5 Bayesian Networks in Ensembled Procedures
 14.5.1 Example
 14.5.2 Step 1 Open SPSS Modeler
 14.5.3 Step 2 the Statistics File Node
 14.5.4 Step 3 the Type Node
 14.5.5 Step 4 the Auto Classifier Node
 14.5.6 Step 5 the Expert Tab
 14.5.7 Step 6 the Settings Tab
 14.5.8 Step 7 the Analysis Node
 14.5.9 Discussion
 14.6 Conclusion
Suggested Reading

Summary
Index