The Emergence, Complexity and Computation (ECC) series publishes new developments, advancements and selected topics in the fields of complexity, computation and emergence. The series focuses on all aspects of reality-based computation approaches from an interdisciplinary point of view especially from applied sciences, biology, physics, or chemistry. It presents new ideas and interdisciplinary insight on the mutual intersection of subareas of computation, complexity and emergence and its impact and limits to any computing based on physical limits (thermodynamic and quantum limits, Bremermann’s limit, Seth Lloyd limits...) as well as algorithmic limits (Gödel’s proof and its impact on calculation, algorithmic complexity, the Chaitin’s Omega number and Kolmogorov complexity, non-traditional calculations like Turing machine process and its consequences,...) and limitations arising in artificial intelligence field. The topics are (but not limited to) membrane computing, DNA computing, immune computing, quantum computing, swarm computing, analog computing, chaos computing and computing on the edge of chaos, computational aspects of dynamics of complex systems (systems with self-organization, multiagent systems, cellular automata, artificial life,...), emergence of complex systems and its computational aspects, and agent based computation. The main aim of this series it to discuss the above mentioned topics from an interdisciplinary point of view and present new ideas coming from mutual intersection of classical as well as modern methods of computation. Within the scope of the series are monographs, lecture notes, selected contributions from specialized conferences and workshops, special contribution from international experts.

More information about this series at http://www.springer.com/series/10624
Andrew Schumann

Behaviourism in Studying Swarms: Logical Models of Sensing and Motoring

Springer
## Contents

1 Introduction ................................................................. 1
  1.1 Designing a Biological Computer ................................. 2
    1.1.1 From Controlling Reflexes to Biological Computer ... 2
    1.1.2 Bounded Rationality and Cognitive Biases .............. 5
    1.1.3 Experiments .................................................. 10
  1.2 Methodology .......................................................... 11
    1.2.1 Tools for Studying Non-additive Behavioural Patterns ... 11
    1.2.2 Tools of Unconventional Computing .................... 12
    1.2.3 Anti-platonism ............................................. 13
    1.2.4 Object-Oriented Programming Language ................ 14
References ................................................................. 20

2 Actin Filament Networks ................................................. 27
  2.1 Reversible Logic Gates on Actin Filaments ................. 29
    2.1.1 Unconventional Computing on Actin Filaments .......... 29
    2.1.2 Actin Filaments as “Swarms” .......................... 31
    2.1.3 Actin Filaments as “Metaswarm” ........................ 36
    2.1.4 Motility of *Amoeba Proteus* and Actin Filaments ...... 39
    2.1.5 Actin Filament Zones as Fuzzy Logic Gates ........... 42
    2.1.6 Fredkin Gate on Amoeboid Motions .................... 46
    2.1.7 Neural Properties of Actin Filament Networks .......... 48
  2.2 Arithmetics in Actin Filament Networks ..................... 57
    2.2.1 *p*-Adic Valued Arithmetic Functions in Actin Filament Networks ............................................. 57
    2.2.2 Undecidable Functions in Actin Filament Networks .... 60
    2.2.3 Formal Systems and Undecidability .................... 61
References ................................................................. 66
3 Unconventional Computers Designed on Swarm Behaviours . . . . . . 73
   3.1 Reaction-Diffusion Computing .................................. 73
      3.1.1 Prehistory of Unconventional Computing ................. 73
      3.1.2 Unconventional Computing as Novel Paradigm
         in Natural Sciences .................................. 77
      3.1.3 Reaction-Diffusion Automata .............................. 78
      3.1.4 Approximation of Voronoi Diagram and Calculations
         on Reaction-Diffusion Media .......................... 83
      3.1.5 Process Calculus of Reaction-Diffusion Computing ....... 91
   3.2 Automata on Slime Mould ........................................ 96
      3.2.1 Slime Mould Cellular Automata ............................ 96
      3.2.2 Process Calculus of Slime Mould Computing ............... 99
      3.2.3 Performative Propositions in Slime
         Mould π-Calculus ...................................... 102
   3.3 Reversible Logic Gates on Swarm Behaviours .................... 104
      3.3.1 Reaction-Diffusion Media of Topology
         of Attractants ......................................... 104
      3.3.2 Sequential Logic Gates on Slime Mould and Some
         Examples of Reversible Logic Gates ..................... 107
      3.3.3 Conventional Reversible Logic Gates on Slime
         Mould .................................................. 109
      3.3.4 Unconventional Reversible Logic Gates on Swarm
         Behaviours ............................................. 118

References ........................................................................ 122

4 Conventional and Unconventional Automata on Swarm
   Behaviours ............................................................ 127
   4.1 Formalizations of Swarm Transitions ............................. 127
      4.1.1 From Emergent Computing to Swarm Computing ........... 127
      4.1.2 Ant Colony Transitions .................................... 130
      4.1.3 Bee Colony Transitions ................................... 131
      4.1.4 Escherichia Coli Transitions ............................... 132
      4.1.5 Paenibacillus Vortex Transitions ......................... 133
      4.1.6 Towards Slime Mould Machines ............................. 135
   4.2 Conventional Approach to Swarm Machines ....................... 136
      4.2.1 Physarum Kolmogorov-Uspensky Machines ................. 136
      4.2.2 Physarum Schönhage’s Storage Modification
         Machines ..................................................... 137
      4.2.3 Physarum Random-Access Machines ......................... 138
      4.2.4 Problems of Conventional Approach ....................... 139
4.3 Unconventional Approach to Simulating the Swarm Behaviour ........................................ 140
  4.3.1 $p$-Adic Integers .................................. 140
  4.3.2 Synchronous Slime Mould Automata .................. 142
  4.3.3 Non-linear Strings and the Limits in the Swarm Propagation ................................. 147
  4.3.4 $p$-Adic Valued Logic for Non-linear Strings .......... 149
  4.3.5 Relations and Functions on Non-linear Strings and the Non-linear Group Theory .. 155

References ............................................ 161

5 Non-Archimedean Valued Fuzzy and Probability Logics ........................................... 165
  5.1 Non-Archimedean Numbers as Logical Values ................. 165
    5.1.1 Hypernumbers ................................... 168
    5.1.2 $p$-Adic Numbers ................................ 168
  5.2 Hyper-valued and $p$-Adic Valued Logical Matrices .......... 170
    5.2.1 Hyper-valued ŁPi-Matrix .......................... 170
    5.2.2 $p$-Adic Valued BL-Matrix ........................ 172
    5.2.3 Non-Archimedean Approach to Higher-Order Fuzzy Classes .................................. 175
    5.2.4 Non-Archimedean Valued Predicate Logic BLv∞ ... 178
  5.3 Non-Archimedean Valued Probability Logics .................. 187
    5.3.1 Hyper-valued Probabilities .......................... 187
    5.3.2 Hyper-valued Probability Logic .................... 188
    5.3.3 $p$-Adic Valued Probabilities ..................... 192
  5.4 $p$-Adic Valued Logic for Simulating the Swarm Behaviours ... 194
    5.4.1 $p$-Adic Logical Values in Experiments on Swarms ... 194
    5.4.2 $p$-Adic Valued Adder and $p$-Adic Valued Subtractor ........................................... 197
    5.4.3 $p$-Adic Valued Towers of Higher-Order Sequents .. 200
    5.4.4 $p$-Adic Valued Natural Deductions .................. 202

References ............................................ 206

6 Individual-Collective Duality in Swarm Behaviours ................. 209
  6.1 Quantum Double-Slit Experiment .......................... 209
    6.1.1 Non-additive Measures ............................. 209
    6.1.2 Performativity in Quantum Experiments ............. 210
    6.1.3 Different Syllogistics for Classical Mechanics and Quantum Mechanics .................. 216
  6.2 Non-additivity of Swarm Behaviour ........................ 222
    6.2.1 Double-Slit Experiment with Physarum Polycaphalum ............................................. 222
    6.2.2 Growing Sample Space ................................ 226
    6.2.3 $p$-Adic Valued Probability Measure .................. 230
6.2.4 $p$-Adic Valued Fuzzy Syllogistic ........................................... 231
6.2.5 $p$-Adic Valued Fuzzy Logic Controllers .............................. 236
References ............................................................................. 239

7 Syllogistic Systems of Swarm Propagation ............................... 243
7.1 Aristotelian and Non-Aristotelian Syllogistics for Modelling the Swarm Behaviour ...................................................... 243
7.1.1 Leśniewski’s Ontology Without Logical Atoms ................... 243
7.1.2 Lateral Inhibition and Lateral Activation ............................. 249
7.1.3 Lateral Inhibition and Aristotelian Syllogistic .................... 253
7.1.4 Lateral Activation and Non-Aristotelian Syllogistic .......... 254
7.2 Spatial Diagrams for Syllogistic Propositions......................... 256
7.2.1 Strings in the Slime Mould Growing Universe .................... 257
7.2.2 Aristotelian Syllogistic for Physarum Plasmodia with Repellents ................................................................. 258
7.2.3 Non-Aristotelian Syllogistic for Physarum Plasmodia Without Repellents ......................................................... 261
7.3 Syllogistic System for the Parasite Propagation ....................... 268
7.3.1 Trichobilharzia szidati (Diginea: Schistosomatidae) and Their Life Cycle .............................................................. 269
7.3.2 Miracidia (Genus Trichobilharzia): Morphology and Behaviour .............................................................. 270
7.3.3 Cercariae (Genus Trichobilharzia): Morphology and Behaviour .............................................................. 271
7.3.4 Syllogistic System for the Propagation of Schistosomatidae .............................................................. 274
References ............................................................................. 280

8 Context-Based Games of Swarms ......................................... 283
8.1 Bio-inspired Game Theory ..................................................... 283
8.1.1 Symbolic Values and Non-additive Measures .................... 283
8.1.2 Basic Assumptions of Game Theory and Non-additivity in Symbolic Interactions ................................................. 286
8.1.3 Concurrent Go Games on the Slime Mould ....................... 288
8.1.4 Aristotelian Go Game on the Slime Mould ....................... 290
8.1.5 Non-Aristotelian Go Game on the Slime Mould ............... 294
8.2 Towards Theory of Context-Based Concurrency ................... 298
8.2.1 Hybrid Simple Actions and Overlapping of Transition Systems .............................................................. 298
8.2.2 Formal Logical Language for the Context-Based Concurrency .............................................................. 302
10.2.4 Reflexion Disagreement Theorem Proved on Streams and \( p \)-Adic Integers ........................................... 363

10.2.5 Reflexion Disagreement Theorem Proved on Hypernumbers ........................................... 368

10.3 Hierarchies of Reflexion .................................................. 371

10.3.1 Orders of Reflexion .................................................. 371

10.3.2 Non-Archimedean Probabilities for Discrete and Continuous Reflexive Levels .................. 373

References ........................................................................ 377

11 Payoff Cellular Automata and Reflexive Games .......................... 379

11.1 Cellular-Automatic Approach in Logical Simulations of Swarm Behaviour .................................. 379

11.1.1 Ecological Rationality and Cellular Automata .............. 381

11.1.2 Proof-Theoretic Cellular Automata ............................ 384

11.1.3 Proof-Theoretic Simulation of Belousov-Zhabotinsky Reaction ........................................ 388

11.1.4 Proof-Theoretic Simulation of Slime Mould Dynamics ........................................ 391

11.2 Payoff Cellular Automata .................................................. 396

11.2.1 Saddle Point ............................................................. 397

11.2.2 Minimax and Maximin ................................................. 397

11.2.3 Equilibrium in Dominant Strategies as Conditional .......... 399

11.2.4 PROMETHEE Method ............................................. 401

11.3 Reflexive Games .............................................................. 402

11.3.1 Reflexive Game of the Second Level ....................... 403

11.3.2 Logic for Reflexive Decision Making ......................... 405

11.3.3 Biological Implementations of Reflexive Games .......... 408

References ........................................................................ 409

12 Foundations of Mathematics Within Lateral Inhibition and Lateral Activation .................................. 411

12.1 Lateral Inhibition and Lateral Activation in Mathematical Cognitions ........................................ 411

12.1.1 What Are Foundations of Mathematics? ................. 411

12.1.2 Cognitive Blindness and Mechanisms of Lateral Activation and Lateral Inhibition .................. 413

12.1.3 Proof Trees and Proof Forests ..................................... 415

12.2 Foundations of Mathematics Within the Lateral Activation .......... 419

12.2.1 What Is Talmudic Logic? ............................................. 419

12.2.2 Talmudic Reasoning for Simulating Swarms ......... 423

12.2.3 Metareasoning in Mathematical Analysis ................. 430

12.2.4 Metric Space for Proof Forests ..................................... 437

References ........................................................................ 441
13 Conclusion and Future Work ........................................... 443
  13.1 Main Results ......................................................... 443
    13.1.1 Morphological Processors .................................... 444
    13.1.2 Actin Filament Networks ...................................... 445
    13.1.3 \( p \)-Adic Valued Logic and Arithmetics .................... 445
    13.1.4 Process-Algebraic Formalization of Swarm Behaviour and Hybrid Actions ............ 446
    13.1.5 Computations on Trees ...................................... 447
    13.1.6 Neural Properties of Swarm Behavioural Patterns .......... 448
    13.1.7 Bio-inspired Games .......................................... 449
    13.1.8 Chemical Interface ........................................... 449
    13.1.9 Reflexive Games ............................................ 450
  13.2 Designing a Protein Monster as Future Work .................. 453
    13.2.1 Main Objectives ............................................ 453
    13.2.2 Previous Project and Preliminary Results ................. 453
    13.2.3 Concreteness and Pertinence of the Objective ........... 454
    13.2.4 Expected Impacts ............................................ 456
References ................................................................. 458

Index ................................................................. 461