More information about this series at http://www.springer.com/series/7407
Preface

This volume comprises the proceedings of the 12th International Conference on Parallel Processing and Applied Mathematics – PPAM 2017, which was held in Lublin, Poland, September 10–13, 2017. It was organized by the Department of Computer and Information Science of the Czestochowa University of Technology together with Maria Curie-Skłodowska University in Lublin, under the patronage of the Committee of Informatics of the Polish Academy of Sciences, in technical cooperation with the IEEE Computer Society and ICT COST Action IC1305 “Network for Sustainable Ultrascale Computing (NESUS)”. The main organizer was Roman Wyrzykowski.

The PPAM conferences have become an international forum for the exchange of ideas between researchers involved in parallel and distributed computing, including theory and applications, as well as applied and computational mathematics. The focus of PPAM 2017 was on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications, including big data and machine learning problems.

This meeting gathered more than 170 participants from 25 countries. A strict review process resulted in the acceptance of 100 contributed papers for publication in the conference proceedings, while approximately 42% of the submissions were rejected. For regular tracks of the conference, 49 papers were selected from 98 submissions, giving an acceptance rate of 50%.

The regular tracks covered such important fields of parallel/distributed/cloud computing and applied mathematics as:

- Numerical algorithms and parallel scientific computing, including parallel matrix factorizations and particle methods in simulations
- Task-based paradigm of parallel computing
- GPU computing
- Parallel non-numerical algorithms
- Performance evaluation of parallel algorithms and applications
- Environments and frameworks for parallel/distributed/cloud computing
- Applications of parallel computing
- Soft computing with applications
The invited talks were presented by:

- Rosa Badia from the Barcelona Supercomputing Center (Spain)
- Franck Cappello from the Argonne National Laboratory (USA)
- Cris Cecka from NVIDIA and Stanford University (USA)
- Jack Dongarra from the University of Tennessee and ORNL (USA)
- Thomas Fahringer from the University of Innsbruck (Austria)
- Dominik Göddeke from the University of Stuttgart (Germany)
- William Gropp from the University of Illinois Urbana-Champaign (USA)
- Georg Hager from the University of Erlangen-Nurnberg (Germany)
- Alexey Lastovetsky from the University College Dublin (Ireland)
- Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)
- Karlheinz Meier from the University of Heidelberg (Germany)
- Manish Parashar from Rutgers University (USA)
- Jean-Marc Pierson from the University Paul Sabatier (France)
- Uwe Schwiegelshohn from TU Dortmund (Germany)
- Bronis R. de Supinski from the Lawrence Livermore National Laboratory (USA)
- Boleslaw K. Szymanski from the Rensselaer Polytechnic Institute (USA)
- Michela Taufer from the University of Delaware (USA)
- Andrei Tchernykh from the CICESE Research Center (Mexico)
- Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of Technology (USA)

Important and integral parts of the PPAM 2017 conference were the workshops:

- Workshop on Models, Algorithms, and Methodologies for Hierarchical Parallelism in New HPC Systems organized by Giuliano Laccetti and Marco Lapegna from the University of Naples Federico II (Italy), and Raffaele Montella from the University of Naples Parthenope (Italy)
- Workshop on Power and Energy Aspects of Computation — PEAC 2017 organized by Ariel Oleksiak from the Poznan Supercomputing and Networking Center (Poland) and Laurent Lefevre from Inria (France)
- Workshop on Scheduling for Parallel Computing — SPC 2017 organized by Maciej Drozdowski from the Poznań University of Technology (Poland)
- The 7th Workshop on Language-Based Parallel Programming Models — WLPP 2017 organized by Ami Marowka from Bar-Ilan University (Israel)
- Workshop on PGAS Programming organized by Piotr Bała from Warsaw University (Poland)
- Special Session on Parallel Matrix Factorizations organized by Marian Vajtersic from the University of Salzburg (Austria) and Slovak Academy of Sciences
- Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz Kamieniarz and Wojciech Florek from the A. Mickiewicz University in Poznań (Poland)
- Minisymposium on High-Performance Computing Interval Methods organized by Bartłomiej J. Kubica from Warsaw University of Technology (Poland)
- Workshop on Complex Collective Systems organized by Paweł Topa and Jarosław Waś from the AGH University of Science and Technology in Kraków (Poland)
The PPAM 2017 meeting began with three tutorials:

- Scientific Computing with GPUs, by Dominik Göddeke from the University of Stuttgart (Germany) and Robert Strzodka from Heidelberg University (Germany)
- Advanced OpenMP Tutorial, by Dirk Schmidl from RWTH Aachen University (Germany)
- Parallel Computing in Java, by Piotr Bala from Warsaw University (Poland), and Marek Nowicki from the Nicolaus Copernicus University in Toruń (Poland)

A new topic at PPAM 2017 was “Particle Methods in Simulations.” Particle-based and Lagrangian formulations are all-time classics in supercomputing and have been wrestling with classic mesh-based approaches such as finite elements for quite a while now, in terms of computational expressiveness and efficiency. Computationally, particle formalisms benefit from very costly inter-particle interactions. These interactions with high arithmetic intensity make them reasonably “low-hanging” fruits in supercomputing with its notoriously limited bandwidth and high concurrency.

Surprisingly, PPAM 2017 was shaped by articles that give up on expensive particle–particle interactions: discrete element methods (DEM) study rigid bodies which interact only rarely once they are in contact, while particle-in-cell (PIC) methods use the physical expressiveness of Lagrangian descriptions but make the particles interact solely locally with a surrounding grid. It is obvious that the lack of direct long-range particle–particle interaction increases the concurrency of the algorithms. Yet, it comes at a price. With low arithmetic intensity, all data structures have to be extremely fine-tuned to perform on modern hardware, and load-balancing has to be lightweight. Codes cannot afford to resort data inefficiently all the time, move around too much data, or work with data structures that are ill-suited for vector processing, while notably the algorithmic parts with limited vectorization potential have to be revisited and maybe rewritten for emerging processors tailored toward stream processing.

The new session “Particle Methods in Simulations” provided a platform for some presentations with interesting and significant contributions addressing these challenges:

- Contact problems are rephrased as continuous minimization problems coupled with a posteriori validity checks, which allows codes to vectorize at least the first step aggressively (by K. Krestenitis, T. Weinzierl, and T. Koziara)
- Classic PIC is recasted into a single-touch algorithm with only few synchronization points, which releases pressure from the memory subsystem (by Y. Barsamian, A. Chargueraud, and A. Ketterlin)
- Cell-based shared memory parallelization of PIC is revised from a scheduling point of view and tailored parallelization schemes are developed, which anticipate the enormous per-cell load imbalances resulting from clustered particles (by A. Larin et al.)
- Particle sorting algorithms are revisited that make the particles be stored in memory in the way they are later accessed by the algorithm even though the particles tend to move through the domain quickly (by A. Dorobisz et al).

Another new topic at PPAM 2017 was “Task-Based Paradigm of Parallel Computing.” Task-based parallel programming models have appeared in the recent years as an alternative to traditional parallel programming models, both for fine-grain and
coarse-grain parallelism. In this paradigm, the task is the unit of execution and traditionally a data-dependency graph of the application tasks represents the application. From this graph, the potential parallelism of the application is exploited, enabling an asynchronous execution of the tasks that do not require explicit fork-join structures.

Research topics in the area are multiple, from the specification of the syntax or programming interfaces, the definition of new scheduling and resource management algorithms that take into account different metrics, the design of the interfaces with the actual infrastructure, or new algorithms specified in this parallel paradigm. As an example of the success of this paradigm, the OpenMP standard has adopted this paradigm in its latest releases.

This topic was presented at PPAM 2017 in the form of a session that consisted of several presentations from various topics:

- “A Proposal for a Unified Interface for Task-Based Programming Models That Enables the Execution of Applications in Multiple Parallel Environments” (by A. Zafari)
- “A Comparison of Time and Energy Oriented Scheduling for Task-Based Programs, Which Is Based on Real Measured Data for the Tasks Leading to Diverse Effects Concerning Time, Energy, and Power Consumption” (by T. Rauber and G. Rünger)
- “A Study of a Set of Experiments with the Sparse Cholesky Decomposition on Multicore Platforms, Using a Parametrized Task Graph Implementation” (by I. Duff and F. Lopez)
- “A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur Form, Which Is Realized on Top of the StarPU Runtime System” (by M. Myllykoski)

A new topic at PPAM 2017 was the “Special Session on Parallel Matrix Factorizations.” Nowadays, in order to meet demands of high-performance computing, it is necessary to pay serious attention to the development of fast, reliable, and communication-efficient algorithms for solving kernel linear algebra problems. Tasks that lead to matrix decomposition computations are undoubtedly some of the most frequent problems encountered in this field. Therefore, the aim of the special session was to present new results from parallel linear algebra with an emphasis on methods and algorithms for factorizations and decompositions of large sparse and dense matrices. Both theoretical aspects and software issues related to this problem area were considered for submission.

The topics of the special session focused on: (a) efficient algorithms for the EVD/SVD/NMF decompositions of large matrices, their design and analysis; (b) implementation of parallel matrix factorization algorithms on parallel CPU and GPU systems; (c) usage of parallel matrix factorizations for solving problems arising in scientific and technical applications. Seven papers were accepted for presentation, which covered the session topics. Geographically, the authors were dispersed among two continents and five countries. The individual themes of the contributions included:

- “New Preconditioning for the One-Sided Block-Jacobi Singular Value Decomposition Algorithm” (by M. Bečka, G. Okša, and E. Vidličková)
“Using the Cholesky QR Method in the Full-Blocked One-Sided Jacobi Algorithm” (by S. Kudo and Y. Yamamoto)

“Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue Problems on Manycore Systems” (by Y. Hirota and I. Toshiyuki)

“Structure-Preserving Technique in the Block SS-Hankel Method for Solving Hermitian Generalized Eigenvalue Problems” (by A. Imakura, Y. Futamura, and T. Sakurai)

“Parallel Inverse of Non-Hermitian Block Tridiagonal Matrices” (by L. Spellacy and D. Golden)

“Tunability of a New Hessenberg Reduction Algorithm Using Parallel Cache Assignment” (by M. Eljammaly, L. Karlsson, and B. Kågström)

“Convergence and Parallelization of Nonnegative Matrix Factorization (NMF) with Newton Iteration” (by R. Kutil, M. Flatz, and M. Vajtersic).

The organizers are indebted to the PPAM 2017 sponsors, whose support was vital for the success of the conference. The main sponsor was the Intel Corporation. Another important sponsor was Lenovo. We thank all the members of the international Program Committee and additional reviewers for their diligent work in refereeing the submitted papers. Finally, we thank all the local organizers from the Częstochowa University of Technology, and Maria Curie-Skłodowska University in Lublin, who helped us run the event very smoothly. We are especially indebted to Grażyna Kołakowska, Urszula Kroczewska, Łukasz Kuczyński, Adam Tomaś, and Marcin Woźniak from the Częstochowa University of Technology; and to Przemysław Stpiczyński and Beata Bylina from Maria Curie-Skłodowska University. Also, Paweł Gepner from Intel offered great help in organizing social events for PPAM 2017, including the excursion to the Zamoyski Palace in Kozłówka and the concert of the youth accordion orchestra “Arte Sentemo” at the Royal Castle in Lublin.

We hope that this volume will be useful to you. We would like everyone who reads it to feel invited to the next conference, PPAM 2019, which will be held during September 8–11, 2019, in Białystok, the largest city in northeastern Poland, located close to the world-famous Białowieża Forest.

January 2018

Roman Wyrzykowski
Jack Dongarra
Ewa Deelman
Konrad Karczewski
Organization

Program Committee

Jan Węglarz
(Honorary Chair)
Poznań University of Technology, Poland

Roman Wyrzykowski
(Program Chair)
Częstochowa University of Technology, Poland

Ewa Deelman
(Program Co-chair)
University of Southern California, USA

Pedro Alonso
Universidad Politecnica de Valencia, Spain

Hartwig Anzt
University of Tennessee, USA

Peter Arbenz
ETH, Zurich, Switzerland

Cevdet Aykanat
Bilkent University, Ankara, Turkey

Marc Baboulin
University of Paris-Sud, France

David A. Bader
Georgia Institute of Technology, USA

Michael Bader
TU München, Germany

Piotr Bała
Warsaw University, Poland

Krzysztof Banaś
AGH University of Science and Technology, Poland

Olivier Beaumont
Inria Bordeaux, France

Włodzimierz Bielecki
West Pomeranian University of Technology, Poland

Paolo Bientinesi
RWTH Aachen, Germany

Radim Blaheta
Czech Academy of Sciences, Czech Republic

Jacek Błażewicz
Poznań University of Technology, Poland

Pascal Bouvry
University of Luxembourg

Jerzy Brzeziński
Poznań University of Technology, Poland

Marian Bubak
AGH Kraków, Poland and University of Amsterdam, The Netherlands

Tadeusz Burczyński
Polish Academy of Sciences, Warsaw, Poland

Christopher Carothers
Rensselaer Polytechnic Institute, USA

Jesus Carretero
Universidad Carlos III de Madrid, Spain

Raimondas Čiegis
Vilnius Gediminas Technical University, Lithuania

Andrea Clematis
IMATI-CNR, Italy

Zbigniew Czech
Silesia University of Technology, Poland

Paweł Czarnul
Gdańsk University of Technology, Poland

Jack Dongarra
University of Tennessee and ORNL, USA

Maciej Drozdowski
Poznań University of Technology, Poland

Mariusz Flasiński
Jagiellonian University, Poland

Tomas Fryza
Brno University of Technology, Czech Republic

Jose Daniel García
Universidad Carlos III de Madrid, Spain

Paweł Gepner
Intel Corporation, Poland

Shamsollah Ghanbari
Universiti Putra, Malaysia
Organization

Domingo Gimenez University of Murcia, Spain
Jacek Gondzio University of Edinburgh, Scotland, UK
Andrzej Gościnski Deakin University, Australia
Laura Grigori Inria, France
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politecnica de Catalunya, Barcelona, Spain
Ladislav Hluchy Slovak Academy of Sciences, Bratislava, Slovakia
Sasha Hunold Vienna University of Technology, Austria
Aleksandar Ilic Technical University of Lisbon, Portugal
Florin Isaia Universidad Carlos III de Madrid, Spain
Ondrej Jakl Institute of Geonics, Czech Academy of Sciences, Czech Republic

Emmanuel Jeannot Inria, France
Bo Kagstrom Umea University, Sweden
Grzegorz Kamieniarz A. Mickiewicz University in Poznań, Poland
Eleni Karatza Aristotle University of Thessaloniki, Greece
Ayse Kiper Middle East Technical University, Turkey
Jacek Kitowski Institute of Computer Science, AGH, Poland
Joanna Kołodziej Cracow University of Technology, Poland
Jozef Korbicz University of Zielona Góra, Poland
Stanislaw Kozielski Silesia University of Technology, Poland
Tomas Kozubek Technical University of Ostrava, Czech Republic
Dieter Kranzlmueller Ludwig-Maximillian University, Munich and Leibniz Supercomputing Centre, Germany

Henryk Krawczyk Gdańsk University of Technology, Poland
Piotr Krzyżanowski University of Warsaw, Poland
Krzysztof Kurowski PSNC, Poznań, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Giuliano Laccetti University of Naples Federico II, Italy
Marco Lapegna University of Naples Federico II, Italy
Alexey Lastovetsky University College Dublin, Ireland
Laurent Lefevre Inria and University of Lyon, France
Joao Lourenco University Nova of Lisbon, Portugal
Tze Meng Low Carnegie Mellon University, USA
Hatem Ltaief KAUST, Saudi Arabia
Emilio Luque Universitat Autonoma de Barcelona, Spain
Piotr Luszczek University of Tennessee, USA
Victor E. Malyshev Siberian Branch, Russian Academy of Sciences, Russian Federation

Pierre Manneback University of Mons, Belgium
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poznań, Poland
Iosif Meyerov Lobachevsky State University of Nizhni Novgorod, Russian Federation
Marek Michalewicz ICM, Warsaw University, Poland
Ricardo Morla INESC Porto, Portugal
Jarek Nabrzyski University of Notre Dame, USA
Raymond Namyst University of Bordeaux and Inria, France
Edoardo Di Napoli Forschungszentrum Juelich, Germany
Gabriel Oksa Slovak Academy of Sciences, Bratislava, Slovakia
Tomasz Olas Czestochowa University of Technology, Poland
Ariel Oleksiak PSNC, Poland
Ozcan Ozturk Bilkent University, Turkey
Marcin Paprzycki IBS PAN and SWPS, Warsaw, Poland
Dana Petcu West University of Timisoara, Romania
Jean-Marc Pierson University Paul Sabatier, France
Radu Prodan University of Innsbruck, Austria
Enrique S. Quintana-Ortí Universidad Jaime I, Spain
Omer Rana Cardiff University, UK
Thomas Rauber University of Bayreuth, Germany
Krzysztof Rojek Czestochowa University of Technology, Poland
Jacek Rokicki Warsaw University of Technology, Poland
Leszek Rutkowski Czestochowa University of Technology, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Stanislaw Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw, Poland
Happy Sithole Centre for High Performance Computing, South Africa
Jurij Silc Jozef Stefan Institute, Slovenia
Karolj Skala Ruder Boskovic Institute, Croatia
Renata Slota Institute of Computer Science, AGH, Poland
Leonel Sousa Technical University of Lisbon, Portugal
Vladimir Stegailov Joint Institute for High Temperatures of RAS, Moscow, Russian Federation
Radek Stompor Universite Paris Diderot and CNRS, France
Przemysław Stpiczyński Maria Curie-Skłodowska University, Poland
Maciej Stroński PSNC, Poznań, Poland
Reiji Suda University of Tokyo, Japan
Łukasz Szustak Czestochowa University of Technology, Poland
Bolesław Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Andrei Tchernykh CICESE Research Center, Ensenada, Mexico
Christian Terboven RWTH Aachen, Germany
Parimala Thulasiraman University of Manitoba, Canada
Roman Trobec Jozef Stefan Institute, Slovenia
Giuseppe Trunfio University of Sassari, Italy
Denis Trystram Grenoble Institute of Technology, France
Marek Tudruj
Polish Academy of Sciences and Polish-Japanese Academy of Information Technology, Warsaw, Poland

Pavel Tvrdik
Czech Technical University, Prague, Czech Republic

Bora Ucar
Ecole Normale Superieure de Lyon, France

Marian Vajtersic
Salzburg University, Austria, and Slovak Academy of Sciences, Slovakia

Vladimir Voevodin
Moscow State University, Russian Federation

Kazimierz Wiatr
Academic Computer Center CYFRONET AGH, Poland

Bogdan Wiszniewski
Gdańsk University of Technology, Poland

Roel Wuyts
IMEC, Belgium

Andrzej Wyszogrodzki
Institute of Meteorology and Water Management, Warsaw, Poland

Ramin Yahyapour
University of Göttingen/GWDG, Germany

Jiangtao Yin
University of Massachusetts Amherst, USA

Krzysztof Zielinski
Institute of Computer Science, AGH, Poland

Julius Žilinskas
Vilnius University, Lithuania

Jarosław Žola
University of Buffalo, USA

Steering Committee

Jack Dongarra
University of Tennessee and ORNL, USA

Leszek Rutkowski
Częstochowa University of Technology, Poland

Bolesław Szymanski
Rensselaer Polytechnic Institute, USA
Contents – Part II

Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems

An Experience Report on (Auto-)tuning of Mesh-Based PDE Solvers on Shared Memory Systems .. 3
 Dominic E. Charrier and Tobias Weinzierl

Using GPGPU Accelerated Interpolation Algorithms for Marine Bathymetry Processing with On-Premises and Cloud Based Computational Resources ... 14
 Livia Marcellino, Raffaele Montella, Sokol Kosta, Ardelio Galletti,
 Diana Di Luccio, Vincenzo Santopietro, Mario Ruggieri,
 Marco Lapegna, Luisa D’Amore, and Giuliano Laccetti

Relaxing the Correctness Conditions on Concurrent Data Structures for Multicore CPUs. A Numerical Case Study 25
 Giuliano Laccetti, Marco Lapegna, Valeria Mele,
 and Raffaele Montella

Energy Analysis of a 4D Variational Data Assimilation Algorithm and Evaluation on ARM-Based HPC Systems 37
 Rossella Arcucci, Davide Basciano, Alessandro Cilardo,
 Luisa D’Amore, and Filippo Mantovani

Performance Assessment of the Incremental Strong Constraints 4DVAR Algorithm in ROMS .. 48
 Luisa D’Amore, Rossella Arcucci, Yi Li, Raffaele Montella,
 Andrew Moore, Luke Phillipson, and Ralf Toumi

Evaluation of HCM: A New Model to Predict the Execution Time of Regular Parallel Applications on a Heterogeneous Cluster 58
 Thiago Marques Soares, Rodrigo Weber dos Santos,
 and Marcelo Lobosco

Workshop on Power and Energy Aspects of Computations (PEAC 2017)

Applicability of the Empirical Mode Decomposition for Power Traces of Large-Scale Applications ... 71
 Gary Lawson, Masha Sosonkina, Tal Ezer, and Yuzhong Shen
Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware for Memory-Bound Problems: A Case Study of Ab Initio Calculations with VASP 81
Vladimir Stegailov and Vyacheslav Vecher

GPU Power Modeling of HPC Applications for the Simulation of Heterogeneous Clouds ... 91
Antonios T. Makaratzis, Malik M. Khan, Konstantinos M. Giannoutakis, Anne C. Elster, and Dimitrios Tzovaras

Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency ... 102
Pawel Foszner and Przemyslaw Skurowski

Performance and Energy Analysis of Scientific Workloads Executing on LPSoCs ... 113
Anish Varghese, Joshua Milthorpe, and Alistair P. Rendell

Energy Efficient Dynamic Load Balancing over MultiGPU Heterogeneous Systems ... 123
Alberto Cabrera, Alejandro Acosta, Francisco Almeida, and Vicente Blanco

Workshop on Scheduling for Parallel Computing (SPC 2017)

Scheduling Data Gathering with Maximum Lateness Objective 135
Joanna Berlińska

Fair Scheduling in Grid VOs with Anticipation Heuristic 145
Victor Toporkov, Dmitry Yemelyanov, and Anna Toporkova

A Security-Driven Approach to Online Job Scheduling in IaaS Cloud Computing Systems ... 156
Jakub Gąsior, Franciszek Seredyński, and Andrei Tchernykh

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 166
Tiago Marques do Nascimento, Rodrigo Weber dos Santos, and Marcelo Lobosco

Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs ... 176
Ivanoe De Falco, Eryk Laskowski, Richard Olejnik, Umberto Scafuri, Ernesto Tarantino, and Marek Tudruj
Workshop on Language-Based Parallel Programming Models (WLPP 2017)

Pardis: A Process Calculus for Parallel and Distributed Programming in Haskell. ... 191
 Christopher Blöcker and Ulrich Hoffmann

Towards High-Performance Python .. 203
 Ami Marowka

Actor Model of a New Functional Language - Anemone 213
 Paweł Batko and Marcin Kuta

Almost Optimal Column-wise Prefix-sum Computation on the GPU 224
 Hiroki Tokura, Toru Fujita, Koji Nakano, and Yasuaki Ito

A Combination of Intra- and Inter-place Work Stealing
for the APGAS Library .. 234
 Jonas Posner and Claudia Fohry

Benchmarking Molecular Dynamics with OpenCL
on Many-Core Architectures .. 244
 Rene Halver, Wilhelm Homberg, and Godehard Sutmann

Efficient Language-Based Parallelization of Computational Problems Using Cilk Plus .. 254
 Przemysław Stpiczyński

A Taxonomy of Task-Based Technologies for High-Performance Computing ... 264
 Peter Thoman, Khalid Hasanov, Kiril Dichev, Roman Iakymchuk,
 Xavier Aguilar, Philipp Gschwandtner, Pierre Lemarinier,
 Stefano Markidis, Herbert Jordan, Erwin Laure, Kostas Katrinis,
 Dimitrios S. Nikolopoulos, and Thomas Fahringer

Workshop on PGAS Programming

Interoperability of GASPI and MPI in Large Scale Scientific Applications ... 277
 Dana Akhmetova, Luis Cebamanos, Roman Iakymchuk,
 Tiberiu Rotaru, Mirko Rahn, Stefano Markidis, Erwin Laure,
 Valeria Bartsch, and Christian Simmendinger

Evaluation of the Parallel Performance of the Java and PCJ
on the Intel KNL Based Systems .. 288
 Marek Nowicki, Łukasz Górska, and Piotr Bala
Fault-Tolerance Mechanisms for the Java Parallel Codes Implemented with the PCJ Library ... 298
 Michał Szynkiewicz and Marek Nowicki

Exploring Graph Analytics with the PCJ Toolbox 308
 Roxana Istrate, Panagiotis Kl. Barkoutsos, Michele Dolfi,
 Peter W. J. Staar, and Costas Bekas

Big Data Analytics in Java with PCJ Library: Performance Comparison with Hadoop .. 318
 Marek Nowicki, Magdalena Ryczkowska, Łukasz Górski,
 and Piotr Bala

Performance Comparison of Graph BFS Implemented in MapReduce and PGAS Programming Models 328
 Magdalena Ryczkowska and Marek Nowicki

Minisymposium on HPC Applications in Physical Sciences

Efficient Parallel Generation of Many-Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations 341
 Daniel Langr, Tomáš Dytrych, Tomáš Oberhuber,
 and František Knapp

Parallel Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling .. 351
 Michał Antkowiak

Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains 359
 Ryszard Matysiak, Philipp Gegenwart, Akira Ochiai,
 and Frank Steglich

Minisymposium on High Performance Computing Interval Methods

A New Method for Solving Nonlinear Interval and Fuzzy Equations 371
 Ludmila Dymova and Pavel Sevastjanov

Role of Hull-Consistency in the HIBA_USNE Multithreaded Solver for Nonlinear Systems ... 381
 Bartłomiej Jacek Kubica

Parallel Computing of Linear Systems with Linearly Dependent Intervals in MATLAB .. 391
 Ondřej Král and Milan Hladik
What Decision to Make in a Conflict Situation Under Interval Uncertainty:
Efficient Algorithms for the Hurwicz Approach 402
 Bartłomiej Jacek Kubica, Andrzej Pownuk, and Vladik Kreinovich

Practical Need for Algebraic (Equality-Type) Solutions of Interval
Equations and for Extended-Zero Solutions 412
 Ludmila Dymova, Pavel Sevastjanov, Andrzej Pownuk,
 and Vladik Kreinovich

Workshop on Complex Collective Systems

Application of Local Search with Perturbation Inspired
by Cellular Automata for Heuristic Optimization
of Sensor Network Coverage Problem .. 425
 Krzysztof Trojanowski, Artur Mikitiuk, and Krzysztof J. M. Napiorkowski

A Fuzzy Logic Inspired Cellular Automata Based Model for Simulating
Crowd Evacuation Processes .. 436
 Prodromos Gavriilidis, Ioannis Gerakakis, Ioakeim G. Georgoudas,
 Giuseppe A. Trunfio, and Georgios Ch. Sirakoulis

Nondeterministic Cellular Automaton for Modelling Urban Traffic with
Self-organizing Control ... 446
 Jacek Szklarski

Towards Multi-Agent Simulations Accelerated by GPU 456
 Kamil Piętak and Paweł Topa

Tournament-Based Convection Selection in Evolutionary Algorithms 466
 Maciej Komosinski and Konrad Miazga

Multi-agent Systems Programmed Visually with Google Blockly 476
 Szymon Górowski, Robert Maguda, and Paweł Topa

Author Index ... 485
Contents – Part I

Numerical Algorithms and Parallel Scientific Computing

Advances in Incremental PCA Algorithms 3
 Tal Halpern and Sivan Toledo

Algorithms for Forward and Backward Solution of the Fokker-Planck
Equation in the Heliospheric Transport of Cosmic Rays 14
 Anna Wawrzynczak, Renata Modzelewska, and Agnieszka Gil

Efficient Evaluation of Matrix Polynomials 24
 Niv Hoffman, Oded Schwartz, and Sivan Toledo

A Comparison of Soft-Fault Error Models in the Parallel Preconditioned
Flexible GMRES ... 36
 Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou,
 and Masha Sosonkina

Multilayer Approach for Joint Direct and Transposed Sparse Matrix
Vector Multiplication for Multithreaded CPUs 47
 Ivan Šimeček, Daniel Langr, and Ivan Kotenkov

Comparison of Parallel Time-Periodic Navier-Stokes Solvers 57
 Peter Arbenz, Daniel Hupp, and Dominik Obrist

Blocked Algorithms for Robust Solution of Triangular Linear Systems 68
 Carl Christian Kjelgaard Mikkelsen and Lars Karlsson

A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional
Power Diffusion Problems .. 79
 Raimondas Čiegis, Vadim Starikovičius, Svetozar Margenov,
 and Rima Kriauciūnė

Efficient Cross Section Reconstruction on Modern Multi and Many
Core Architectures ... 90
 Yunsong Wang, François-Xavier Hugot, Emeric Brun,
 Fausto Malvagi, and Christophe Calvin

Parallel Assembly of ACA BEM Matrices on Xeon Phi Clusters 101
 Michal Kravcenko, Lukas Maly, Michal Merta, and Jan Zapletal

Stochastic Bounds for Markov Chains on Intel Xeon Phi Coprocessor 111
 Jarosław Bylina
Particle Methods in Simulations

Fast DEM Collision Checks on Multicore Nodes .. 123

Konstantinos Krestenitis, Tobias Weinzierl, and Tomasz Koziora

A Space and Bandwidth Efficient Multicore Algorithm
for the Particle-in-Cell Method ... 133

Yann Barsamian, Arthur Charguéraud, and Alain Ketterlin

Load Balancing for Particle-in-Cell Plasma Simulation
on Multicore Systems .. 145

Anton Larin, Sergey Bastrakov, Aleksei Bashinov,
Evgeny Efimenko, Igor Surmin, Arkady Gonoskov,
and Iosif Meyerov

The Impact of Particle Sorting on Particle-In-Cell Simulation Performance........ 156

Andrzej Dorobisz, Michał Kotwica, Jacek Niemiec, Oleh Kobzar,
A lexei Bashinov, Evgeny Efimenko, Igor Surmin, Arkady Gonoskov,
and Iosif Meyerov

Task-Based Paradigm of Parallel Computing

TaskUniVerse: A Task-Based Unified Interface for Versatile
Parallel Execution .. 169

Afshin Zafari

Comparison of Time and Energy Oriented Scheduling
for Task-Based Programs .. 185

Thomas Rauber and Gudula Rünger

Experiments with Sparse Cholesky Using a Parametrized Task
Graph Implementation .. 197

Iain Duff and Florent Lopez

A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix
in Real Schur Form .. 207

Mirko Myllykoski

GPU Computing

Radix Tree for Binary Sequences on GPU ... 219

Krzysztof Kaczmarcki and Albert Wolant

A Comparison of Performance Tuning Process for Different Generations
of NVIDIA GPUs and an Example Scientific Computing Algorithm 232

Krzysztof Banaś, Filip Krużel, Jan Bielański, and Kazimierz Chłon
Contents – Part I

NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal Systems
Implementation of cuThomasBatch ... 243
Pedro Valero-Lara, Ivan Martínez-Pérez, Raúl Sirvent,
Xavier Martorell, and Antonio J. Peña

Two-Echelon System Stochastic Optimization with R and CUDA 254
Witold Andrzejewski, Maciej Drozdowski, Gang Mu,
and Yong Chao Sun

Parallel Hierarchical Agglomerative Clustering for fMRI Data 265
Mélodie Angeletti, Jean-Marie Bonny, Franck Durif, and Jonas Koko

Parallel Non-numerical Algorithms

Two Parallelization Schemes for the Induction of Nondeterministic Finite
Automata on PCs ... 279
Tomasz Jastrzab

Approximating Personalized Katz Centrality in Dynamic Graphs 290
Eisha Nathan and David A. Bader

Graph-Based Speculative Query Execution for RDBMS 303
Anna Sasak-Okoń and Marek Tudruj

A GPU Implementation of Bulk Execution of the Dynamic Programming
for the Optimal Polygon Triangulation 314
Kohei Yamashita, Yasuaki Ito, and Koji Nakano

Performance Evaluation of Parallel Algorithms and Applications

Early Performance Evaluation of the Hybrid Cluster with Torus
Interconnect Aimed at Molecular-Dynamics Simulations 327
Vladimir Stegailov, Alexander Agarkov, Sergey Biryukov,
Timur Ismagilov, Mihail Khalilov, Nikolay Kondratyuk,
Evgeny Kushtanov, Dmitry Makagon, Anatoly Mukosey,
Alexander Semenov, Alexey Simonov, Alexey Timofeev,
and Vyacheslav Vecher

Load Balancing for CPU-GPU Coupling in Computational
Fluid Dynamics ... 337
Immo Huismann, Matthias Lieber, Jörg Stiller, and Jochen Fröhlich

Implementation and Performance Analysis of 2.5D-PDGEMM
on the K Computer .. 348
Daichi Mukunoki and Toshiyuki Imamura
An Approach for Detecting Abnormal Parallel Applications Based on Time Series Analysis Methods .. 359
 Denis Shaykhislamov and Vadim Voevodin

Prediction of the Inter-Node Communication Costs of a New Gyrokinetic Code with Toroidal Domain ... 370
 Andreas Joëchsch, Noë Ohana, Emmanuel Lanti, Aaron Scheinberg, Stephan Brunner, Claudio Gheller, and Laurent Villard

D-Spline Performance Tuning Method Flexibly Responsive to Execution Time Perturbation ... 381
 Guning Fan, Masayoshi Mochizuki, Akihiro Fujii, Teruo Tanaka, and Takahiro Katagiri

Environments and Frameworks for Parallel/Distributed/Cloud Computing

Dfuntest: A Testing Framework for Distributed Applications 395
 Grzegorz Milka and Krzysztof Rzadca

Security Monitoring and Analytics in the Context of HPC Processing Model .. 406
 Mikolaj Dobski, Gerard Frankowski, Norbert Meyer, Maciej Młostan, and Michał Pilc

Multidimensional Performance and Scalability Analysis for Diverse Applications Based on System Monitoring Data 417
 Maya Neytcheva, Sverker Holmgren, Jonathan Bull, Ali Dorostkar, Anastasia Kruchinina, Dmitry Nikitenko, Nina Popova, Pavel Shvets, Alexey Teplov, Vadim Voevodin, and Vladimir Voevodin

Bridging the Gap Between HPC and Cloud Using HyperFlow and PaaSage ... 432
 Dennis Hoppe, Yosandra Sandoval, Anthony Sulistio, Maciej Malawski, Bartosz Balis, Maciej Pawlik, Kamil Figiela, Dariusz Krol, Michal Orzechowski, Jacek Kitowski, and Marian Babak

A Memory Efficient Parallel All-Pairs Computation Framework: Computation – Communication Overlap 443
 Venkata Kasi Viswanath Yeleswarapu and Arun K. Somani

Automatic Parallelization of ANSI C to CUDA C Programs 459
 Jan Kwiatkowski and Dzanan Bajgoric

Consistency Models for Global Scalable Data Access Services 471
 Michał Wrzeszcz, Darin Nikolow, Tomasz Lichoń, Rafał Słota, Łukasz Dutka, Renata G. Słota, and Jacek Kitowski
Applications of Parallel Computing

Global State Monitoring in Optimization of Parallel Event–Driven Simulation .. 483
Łukasz Mańko and Marek Tudruj

High Performance Optimization of Independent Component Analysis Algorithm for EEG Data .. 495
Anna Gajos-Balińska, Grzegorz M. Wójcik, and Przemysław Stpiczyński

Continuous and Discrete Models of Melanoma Progression Simulated in Multi-GPU Environment .. 505
Witold Dzwinel, Adrian Klusek, Rafał Wcisło, Marta Panuszewska, and Paweł Topa

Early Experience on Using Knights Landing Processors for Lattice Boltzmann Applications .. 519
Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, and Raffaele Tripiccione

Soft Computing with Applications

Towards a Model of Semi-supervised Learning for the Syntactic Pattern Recognition-Based Electrical Load Prediction System .. 533
Janusz Jurek

Parallel Processing of Color Digital Images for Linguistic Description of Their Content .. 544
Krzysztof Wiaderek, Danuta Rutkowska, and Elisabeth Rakus-Andersson

Co-evolution of Fitness Predictors and Deep Neural Networks .. 555
Włodzimierz Funika and Paweł Koperek

Performance Evaluation of DBN Learning on Intel Multi- and Manycore Architectures .. 565
Tomasz Olas, Wojciech K. Mleczko, Marcin Wozniak, Robert K. Nowicki, and Pawel Gepner

Special Session on Parallel Matrix Factorizations

On the Tunability of a New Hessenberg Reduction Algorithm Using Parallel Cache Assignment .. 579
Mahmoud Eljammaly, Lars Karlsson, and Bo Kågström

New Preconditioning for the One-Sided Block-Jacobi SVD Algorithm .. 590
Martin Bečka, Gabriel Okša, and Eva Vidličková
Structure-Preserving Technique in the Block SS–Hankel Method
for Solving Hermitian Generalized Eigenvalue Problems 600
 Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai

On Using the Cholesky QR Method in the Full-Blocked One-Sided
Jacobi Algorithm ... 612
 Shuhei Kudo and Yusaku Yamamoto

Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue
Problems on Manycore Systems ... 623
 Yusuke Hirota and Toshiyuki Imamura

Partial Inverses of Complex Block Tridiagonal Matrices 634
 Louise Spellacy and Darach Golden

Parallel Nonnegative Matrix Factorization Based on Newton Iteration
with Improved Convergence Behavior 646
 Rade Kutil, Markus Flatz, and Marián Vajteršic

Author Index ... 657