Springer Series in Materials Science

Volume 269

Series editors
Robert Hull, Troy, USA
Chennupati Jagadish, Canberra, Australia
Yoshiyuki Kawazoe, Sendai, Japan
Richard M. Osgood, New York, USA
Jürgen Parisi, Oldenburg, Germany
Udo W. Pohl, Berlin, Germany
Tae-Yeon Seong, Seoul, Republic of Korea (South Korea)
Shin-ichi Uchida, Tokyo, Japan
Zhiming M. Wang, Chengdu, China
The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials.

More information about this series at http://www.springer.com/series/856
Epitaxial Growth
of III-Nitride Compounds
Computational Approach
Preface

Ever since the developments of blue light-emitting diodes and laser diodes using epitaxial GaN thin films, III-nitride compounds such as AlN, GaN, and InN have been paid much attention for the use of light emission over a wide range of wavelengths. To improve the device performance of these materials, strict control over the growth conditions and thorough understanding of surface reconstructions and the growth kinetics are essential. In particular, the surface reconstructions and the growth kinetics are crucial for understanding the physics and the chemistry on various technological stages in III-nitride growth.

In this book, we present a unified treatment for the growth mechanisms of epitaxial growth in III-nitride compounds on the basis of state-of-the-art computational approach using ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations. This book is the first attempt to gather together the information of theoretical/computational aspects of the growth of III-nitrides, which is scattered in the scientific literature, into a single comprehensive work. The most fundamental and basic aspects of the crystal growth of III-nitride compounds are presented, along with the underlying scientific principles. We also provide the readers with important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. The book features advanced discussion of fundamental structural and electronic properties, surface structures, fundamental growth processes, and novel behavior of thin films in III-nitride compounds.

This book will serve as a great practical use to researchers, engineers, and graduate students seeking advanced knowledge of the crystal growth and the application of III-nitride compounds. We hope that the book provides the readers with valuable insight and perspective into this rapidly developing and important field.

Some figures in this book were reproduced from several journals, owing to the kind permission granted by authors and publishers. We would like to express our sincere gratitude and deep appreciation to the following publishers: the American Institute of Physics, Japan Society of Applied Physics, Elsevier Science Publisher B.V., and John Wiley & Sons. Funding from the Japan Society for the
Promotion of Science and the Japan Science and Technology Agency is also greatly appreciated.

We have benefitted from many discussions with colleagues about subjects in this book, especially Prof. Takashi Matsuoka of Institute for Materials Research at Tohoku University, Prof. Tadeusz Suski and Prof. Izabela Gorczyca of Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland.

Tsu, Japan
Tsu, Japan
Fukuoka, Japan
Chiba, Japan
Nagoya, Japan

Toru Akiyama
Tomonori Ito
Yoshihiro Kangawa
Takashi Nakayama
Kenji Shiraishi
Contents

1 Introduction .. 1
 Tomonori Ito

Part I Fundamentals of Computational Approach to Epitaxial
 Growth of III-Nitride Compounds

2 Computational Methods ... 9
 Tomonori Ito and Toru Akiyama

3 Fundamental Properties of III-Nitride Compounds 35
 Toru Akiyama

4 Fundamental Properties of III-Nitride Surfaces 55
 Toru Akiyama

Part II Applications of Computational Approach to Epitaxial
 Growth of III-Nitride Compounds

5 Thermodynamic Approach to InN Epitaxy 95
 Yoshihiro Kangawa

6 Atomic Arrangement and In Composition in InGaN
 Quantum Wells ... 109
 Yoshihiro Kangawa

7 Initial Epitaxial Growth Processes of III-Nitride Compounds 125
 Toru Akiyama

8 Polarity Inversion and Electron Carrier Generation
 in III-Nitride Compounds 145
 Takashi Nakayama
9 Defects in Indium-Related Nitride Compounds and Structural Design of AlN/GaN Superlattices 171
 Kenji Shiraishi

10 Novel Behaviors Related to III-Nitride Thin Film Growth 185
 Toru Akiyama

Index ... 219
Contributors

Toru Akiyama Department of Physics Engineering, Mie University, Tsu, Japan
Tomonori Ito Department of Physics Engineering, Mie University, Tsu, Japan
Yoshihiro Kangawa Research Institutes for Applied Mechanics, Kyushu University, Fukuoka, Japan
Takashi Nakayama Department of Physics, Chiba University, Chiba, Japan
Kenji Shiraishi Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan