The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined topic
• to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas
• to be a source of advanced teaching material for specialized seminars, courses and schools

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com

More information about this series at http://www.springer.com/series/5304
This book is the fifth volume of a series of Lecture Notes in Physics, which emerged from the Euroschool on Exotic Beams. This book appears in 2018, when the 25th anniversary of the establishment of this school will take place. This anniversary will be celebrated in August in Leuven (Belgium), where the Euroschool started in 1993. With one exception (in 1999), the Euroschool on Exotic Beams has been held every year, first in Leuven from 1993 to 2000, and then, starting in 2001, it travelled to various places in Europe: Finland (2001, 2011), France (2002, 2007, 2017), Spain (2003, 2010), United Kingdom (2004), Germany (2005, 2016), Italy (2006), Poland (2008), Belgium (2009), Greece (2012), Russia (2013), Italy (2014), and Croatia (2015). Based on lectures given at these Euroschool events, the Lecture Notes provide an introduction, for graduate students and young researchers, to novel and exciting fields of physics with radioactive ion beams and their applications. The fifth volume in this series covers topics that were presented in Euroschool lectures between 2006 and 2015 and comprises recent updates.

Current research in nuclear physics aims at a comprehensive understanding and description of atomic nuclei and their properties, based on their fundamental degrees of freedom, protons and neutrons, and their interaction. The field has advanced tremendously with the advent of radioactive ion-beam facilities and intense stable beams, which allow the production and study of exotic nuclei, i.e., short-lived nuclei far-off stability, and superheavy elements. These studies opened the pathway to the terra incognita of the nuclear chart, leading, for instance, to the discovery of new chemical elements, novel magic numbers in nuclei with a large neutron excess, and new phenomena, such as neutron skins and collective excitations, in which these neutron skins oscillate against a rigid nuclear core. Laboratory access to exotic nuclei is also essential for the understanding of many astrophysical objects whose dynamics and associated nucleosynthesis are driven by short-lived nuclei. A new degree of freedom to study the strong interaction in nuclei has been opened up by hypernuclei, which involve hyperons, i.e., baryons that contain at least one strange quark. Studies of the baryon-baryon interactions in hypernuclei are also an essential approach for the understanding of extreme astrophysical objects with high densities, such as the cores of neutron stars, where hyperons are predicted to
play important roles in the equation of state. This wide field, including applications in material research, biology, medicine, imaging techniques, security, and other areas, is explored on theoretical grounds and in experiments with exotic beams. These experiments are now being carried out at existing facilities and will be performed at future facilities. It is the goal of the Euroschool lectures and the present Lecture Notes to fill the gap between classical university education and research life in laboratories, and in this way to contribute to the education of the next generation of scientists, who will explore the terra incognita. Also, the Nuclear Physics European Collaboration Committee (NuPECC) states, in its Long Range Plan 2017, that activities such as the Euroschool on Exotic Beams are vital for training highly qualified researchers in nuclear science and are a very important element for maintaining development in the field. In the very first original funding request for the Euroschool on Exotic Beams, which was submitted to the European Commission in 1992, we read: “The school forms an ideal basis for exchange of technical and scientific know-how, and for mobility between different research institutes and universities”. Now, 25 years later, this statement is still valid, and the Euroschool’s Board of Directors, which organizes the Euroschool every year, is indebted to this mission.

Clearly, the present book cannot cover all the topics and methods in the broad field of radioactive beams. Therefore, with this fifth volume, we follow the previous examples and have selected topics from the traditional core of the field of exotic nuclei (fission, alpha decays, giant resonances) and included new directions (hypernuclei and nucleon resonances) and applied areas (laser acceleration and dating methods). None of these topics has been treated before in this series; therefore, the present volume complements the previous editions. This is an indicator of the breadth and prosperity of an active field. Owing to the engagement of Euroschool lecturers who are world class experts in their domains, the Euroschool Lecture Notes are a valuable asset for the high-level education of present and next-generation scientists. We hope that this volume will be as useful and as successful as the previous ones.

It is our pleasure to thank the sponsors for their support over many years; this support makes the Euroschool events possible and contributes to the education of next-generation scientists. The sponsors, to whom we are indebted, are:

- ADS; Arenberg Doctoral School (Belgium)
- CEA; Commissariat à l’énergie atomique et aux énergies alternatives (France)
- CNRS; Centre national de la recherche scientifique (France)
- Demokritos; National Center for Scientific Research, Athens (Greece)
- ECT*, European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Trento (Italy)
- GANIL; Grand Accelerateur National d’IONS Lourds, Caen (France)
- Gobierno de España; Ministerio de Economia y Competitividad FANUC Network and CPAN Ingenio 2010, Madrid (Spain)
- GSI: Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)
- HIC-4-FAIR; Helmholtz International Center for FAIR, Darmstadt (Germany)
At this point, we would like to thank all those who have contributed to this volume in various ways. We owe the lecturers the largest debt of gratitude, for their efforts in preparing and giving the excellent lectures for Euroschool participants, and for their dedication of much time and effort to the preparation of the contributions to this book: very warm thanks for writing these educational and understandable pieces for our students! Next, we would like to thank all the members of the Board of Directors of the Euroschool on Exotic Beams, who inspired the development of this book with their many ideas. Finally, it is, once more, our pleasure to thank Dr. Chris Caron and his colleagues at Springer Verlag for their encouragement and continuous support in a fruitful collaboration.

Warsaw, Poland
Marek Pfützner

Darmstadt/Giessen, Germany
Christoph Scheidenberger

November 2017
Contents

1 Applications of 14C, the Most Versatile Radionuclide to Explore Our World ... 1
 Walter Kutschera
 1.1 Introduction .. 1
 1.2 The Unique Properties of 14C 5
 1.3 Applications of 14C .. 7
 1.3.1 Atmosphere .. 7
 1.3.2 Hydrosphere .. 10
 1.3.3 Biosphere ... 13
 1.3.4 Study of the Natural Changes of Alpine Glaciers 20
 1.4 Conclusion .. 23
 References .. 24

2 Giant Resonances: Fundamental Modes and Probes of Nuclear Properties ... 31
 M. N. Harakeh
 2.1 Introduction .. 32
 2.2 The Compression Modes and Incompressibility of Nuclear Matter ... 34
 2.3 Spin-Isospin Excitations .. 40
 2.3.1 GT Strength in fp-Shell Nuclei 43
 2.3.2 Determination of GT$^+$ Strength 44
 2.3.3 Determination of GT$^+$ Strength and Its Astrophysical Implications ... 50
 2.4 Conclusions and Outlook .. 61
 References .. 63

3 Alpha Decay and Beta-Delayed Fission: Tools for Nuclear Physics Studies ... 65
 P. Van Duppen and A. N. Andreyev
 3.1 Introduction and Physics Motivation 65
3.2 Alpha Decay .. 67
 3.2.1 Basics of the α-Decay Process 67
 3.2.2 Theoretical Approaches to the α-Decay Process 71
 3.2.3 Experimental Approaches and Observables 76
 3.2.4 Examples of Nuclear-Structure InformationExtracted from α-Decay Studies .. 79
3.3 Beta-Delayed Fission ... 86
 3.3.1 Introduction to Low-Energy Fission 86
 3.3.2 Mechanism of Beta-Delayed Fission, Conditions to Occur, Observables ... 88
 3.3.3 Production of βDF Nuclei and Determination of Their Properties .. 92
 3.3.4 Recent βDF Results at Recoil Separators 93
 3.3.5 A New Approach to Study βDF at the ISOLDE Mass Separator at CERN ... 95
 3.3.6 β-Delayed Fission Rates and Their Use to Determine Fission Barrier Heights .. 106
3.4 Conclusion and Outlook .. 109
References ... 110

4 Introduction to Hypernuclear Experiments, and Hypernuclear Spectroscopy with Heavy Ion Beams .. 117
Take R. Saito
4.1 Introduction to Hypernuclear Experiments 118
 4.1.1 Physics Motivation in Brief ... 118
 4.1.2 Discovery of Hypernuclei and the Nuclear Emulsion Era 119
 4.1.3 Hypernuclear Experiments with Secondary Meson Beams and Counter Techniques .. 120
 4.1.4 Hypernuclear Experiments with Primary Electron Beams.... 125
 4.1.5 Gamma-Ray Spectroscopy on Hypernuclei 127
 4.1.6 Spectroscopy on Double-Λ Hypernuclei 131
4.2 Hypernuclear Spectroscopy with Heavy Ion Beams 133
4.3 The HypHI Experiment .. 139
 4.3.1 Experimental Setup .. 139
 4.3.2 Particle Identification ... 141
 4.3.3 Vertex Reconstruction and Invariant Mass of $p + \pi^-$, $^3\text{He} + \pi^-$ and $^5\text{He} + \pi^-$.. 143
 4.3.4 Lifetime of $^3\Lambda\text{H}$ and $^4\Lambda\text{H}$, and the Puzzle on the Hypertriton Lifetime ... 145
 4.3.5 Production Cross Section of Λ, $^3\Lambda\text{H}$ and $^4\Lambda\text{H}$, and Their Kinematics .. 149
 4.3.6 Invariant Mass and Lifetime of $d + \pi^-$ and $t + \pi^-$ Final States .. 150
4.4 Perspective of the Hypernuclear Spectroscopy with Heavy Ion Beams at FAIR Phase 0 and 1 ... 154
References ... 158
Hyperons and Resonances in Nuclear Matter

Horst Lenske and Madhumita Dhar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>5.2</td>
<td>Interactions of SU(3) Flavor Octet Baryons</td>
<td>164</td>
</tr>
<tr>
<td>5.2.1</td>
<td>General Aspects of Nuclear Strangeness Physics</td>
<td>164</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Interactions in the Baryon Flavor Octet</td>
<td>166</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Baryon-Baryon Scattering Amplitudes and Cross Sections</td>
<td>174</td>
</tr>
<tr>
<td>5.2.4</td>
<td>In-Medium Baryon-Baryon Vertices</td>
<td>183</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Vertex Functionals and Self-Energies</td>
<td>186</td>
</tr>
<tr>
<td>5.3</td>
<td>Covariant DFT Approach to Nuclear and Hypernuclear Physics</td>
<td>188</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Achievements of the Microscopic DDRH Nuclear DFT</td>
<td>188</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Covariant Lagrangian Approach to In-Medium Baryon Interactions</td>
<td>189</td>
</tr>
<tr>
<td>5.4</td>
<td>DBHF Investigations of Λ Hypernuclei and Hypermatter</td>
<td>192</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Global Properties of Single-Λ Hypernuclei</td>
<td>192</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Spectroscopic Details of Single-Λ Hypernuclei</td>
<td>195</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Interactions in Multiple-Strangeness Nuclei</td>
<td>196</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Hyperon Interactions and Hypernuclei by Effective Field Theory</td>
<td>198</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Brief Overview on LQCD Activities</td>
<td>202</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Infinite Hypermatter</td>
<td>202</td>
</tr>
<tr>
<td>5.5</td>
<td>SU(3) Constraints on In-Medium Baryon Interactions</td>
<td>205</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Meson Octet-Singlet Mixing</td>
<td>205</td>
</tr>
<tr>
<td>5.5.2</td>
<td>SU(3) In-medium Vertices</td>
<td>207</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Mean-Field Self-Energies of Octet Baryons in Infinite Nuclear Matter</td>
<td>211</td>
</tr>
<tr>
<td>5.5.4</td>
<td>SU(3) Symmetry Breaking for Lambda Hyperons</td>
<td>212</td>
</tr>
<tr>
<td>5.5.5</td>
<td>$\Lambda\Sigma^0$ Mixing in Asymmetric Nuclear Matter</td>
<td>215</td>
</tr>
<tr>
<td>5.6</td>
<td>Theory of Baryon Resonances in Nuclear Matter</td>
<td>216</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Decuplet Baryons as Dynamically Generated, Composite States</td>
<td>216</td>
</tr>
<tr>
<td>5.6.2</td>
<td>The N^*N^{-1} Resonance Nucleon-Hole Model</td>
<td>219</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Δ Mean-Field Dynamics</td>
<td>225</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Response Functions in Local Density Approximation</td>
<td>227</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Resonances in Neutron Stars</td>
<td>229</td>
</tr>
<tr>
<td>5.7</td>
<td>Production and Spectroscopy of Baryon Resonances in Nuclear Matter</td>
<td>230</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Resonances as Nuclear Matter Probes</td>
<td>230</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Interaction Effects in Spectral Distribution in Peripheral Reactions</td>
<td>232</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Resonances in Central Heavy Ion Collisions</td>
<td>234</td>
</tr>
<tr>
<td>5.7.4</td>
<td>The Delta Resonance as Pion Source in Heavy Ion Collisions</td>
<td>234</td>
</tr>
</tbody>
</table>
6 Particle Acceleration Driven by High-Power, Short Pulse Lasers 255
Peter G. Thirolf
6.1 Introduction .. 255
6.2 Relativistic Laser-Plasma Interaction 259
6.3 Laser-Driven Electron Acceleration .. 263
6.4 Laser-Driven Ion Acceleration ... 269
 6.4.1 Mechanisms of Laser-Driven Ion Acceleration 270
6.5 Application of Ultra-Dense Laser-Accelerated Ion Beams
 for Nuclear Astrophysics .. 276
 6.5.1 The Quest for the Waiting Point at N = 126
 of the Astrophysical r-Process Nucleosynthesis 277
 6.5.2 The Novel Laser-Driven “Fission-Fusion” Nuclear
 Reaction Mechanism .. 279
 6.5.3 Stopping Power of Very Dense Ion Bunches 283
6.6 Conclusion ... 285
References ... 285