Conference Proceedings of the Society for Experimental Mechanics Series

Series Editor

Kristin B. Zimmerman, Ph.D.
Society for Experimental Mechanics, Inc.,
Bethel, CT, USA
More information about this series at http://www.springer.com/series/8922
Dynamics of Coupled Structures, Volume 4
Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018
Preface

Dynamics of Coupled Structures represents one of nine volumes of technical papers presented at the 36th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in Orlando, Florida, February 12–15, 2018. The full proceedings also include volumes on Nonlinear Dynamics; Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Special Topics in Structural Dynamics; Structural Health Monitoring, Photogrammetry and DIC; Rotating Machinery, Vibro-Acoustics and Laser Vibrometry; Sensors and Instrumentation, Aircraft/Aerospace and Energy Harvesting; and Topics in Modal Analysis and Testing.

Each collection presents early findings from experimental and computational investigations on an important area within Structural Dynamics. Coupled structures or substructuring is one of these areas.

Substructuring is a general paradigm in engineering dynamics where a complicated system is analyzed by considering the dynamic interactions between subcomponents. In numerical simulations, substructuring allows one to reduce the complexity of parts of the system in order to construct a computationally efficient model of the assembled system. A subcomponent model can also be derived experimentally, allowing one to predict the dynamic behavior of an assembly by combining experimentally and/or analytically derived models. This can be advantageous for subcomponents that are expensive or difficult to model analytically. Substructuring can also be used to couple numerical simulation with real-time testing of components. Such approaches are known as hardware-in-the-loop or hybrid testing.

Whether experimental or numerical, all substructuring approaches have a common basis, namely the equilibrium of the substructures under the action of the applied and interface forces and the compatibility of displacements at the interfaces of the subcomponents. Experimental substructuring requires special care in the way the measurements are obtained and processed in order to assure that measurement inaccuracies and noise do not invalidate the results. In numerical approaches, the fundamental quest is the efficient computation of reduced order models describing the substructure’s dynamic motion. For hardware-in-the-loop applications difficulties include the fast computation of the numerical components and the proper sensing and actuation of the hardware component. Recent advances in experimental techniques, sensor/actuator technologies, novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years leading to new insights and improved experimental and analytical techniques.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in this track.

Växjö, Sweden
Andreas Linderholt
Madison, WI, USA
Matthew S. Allen
Albuquerque, NM, USA
Randall L. Mayes
München, Germany
Daniel Rixen
Contents

1. **Modeling an Electrodynamic Shaker Using Experimental Substructuring** .. 1
 Benjamin Moldenhauer, Matt Allen, Washington J. DeLima, and Eric Dodgen

2. **Predicting Assembly Effective Mass from Two Component Effective Mass Models** 23
 Benjamin R. Pacini, Randall L. Mayes, and Patrick S. Hunter

3. **Comparison of Craig-Bampton Approaches for Systems with Arbitrary Viscous Damping in Dynamic Substructuring** ... 35
 Fabian M. Gruber and Daniel Rixen

4. **Experimental Verification of a Recently Developed FRF Decoupling Method for Nonlinear Systems** 51
 Taner Kalaycıoğlu and H. Nevzat Özgüven

5. **Automated Correction of Sensor Orientation in Experimental Dynamic Substructuring** 65
 M. Haeussler, S. Sendlbeck, and D. Rixen

6. **Real-Time Hybrid Substructuring Shake Table Test of a Seismically Excited Base Isolated Building** 71
 Muammer Avci and Richard Christenson

7. **A Comparison of Two Reduction Techniques for Forced Response of Shrouded Blades with Contact Interfaces** .. 79
 Fahimeh Mashayekhi, Stefano Zucca, and Ali Salehzadeh Nobari

8. **Experimental-Analytical Substructuring of a Complicated Jointed Structure Using Nonlinear Modal Models** ... 89
 Daniel R. Roettgen, Benjamin R. Pacini, Randall L. Mayes, and Tyler F. Schoenherr

9. **Dynamic Substructuring with a Sliding Contact Interface** ... 105
 Jacopo Brunetti, Walter D’Ambrogio, and Annalisa Fregolent

10. **Introducing SEMM: A Novel Method for Hybrid Modelling** .. 117
 S. W. B. Klaassen and M. V. van der Seijs

11. **Transmission Simulator Mass Loading Effects in Experimental Substructuring – A Study of the Ampair 600 Benchmark System** .. 127
 Andreas Linderholt

12. **Modeling Transverse Vibration in Spider Webs Using Frequency-Based Dynamic Substructuring** 143
 Andrew W. Otto, Damian O. Elias, and Ross L. Hatton

13. **Recent Advances to Estimation of Fixed-Interface Modal Models Using Dynamic Substructuring** 157
 Mathew S. Allen and Randall L. Mayes

14. **On the Problem of Describing the Coupling Interface Between Sub-structures: An Experimental Test for ‘Completeness’** ... 171
 J. W. R. Meggitt, A. T. Moorhouse, and A. S. Elliott
15 Coupling Acoustic-Structure Systems Using Dynamic Substructuring ... 183
 R. Benjamin Davis and Ryan Schultz

16 Dynamic Substructuring Applied to the Decoupling of Acoustic-Structure Systems 191
 Ryan Schultz and R. Benjamin Davis

17 Interface Reduction in Component Mode Synthesis of Bladed Disks by Orthogonal-Polynomial Series 201
 Luigi Carassale, Andrea Bessone, and Andrea Cavicchi

18 Frequency Based Substructuring with the Virtual Point Transformation, Flexible Interface Modes and a Transmission Simulator ... 205
 E. A. Pasma, M. V. van der Seijs, S. W. B. Klaassen, and M. W. van der Kooij