The volumes in the **CRM Short Courses** series have a primarily instructional aim, focusing on presenting topics of current interest to readers ranging from graduate students to experienced researchers in the mathematical sciences. Each text is aimed at bringing the reader to the forefront of research in a particular area or field, and can consist of one or several courses with a unified theme. The inclusion of exercises, while welcome, is not strictly required. Publications are largely but not exclusively, based on schools, instructional workshops and lecture series hosted by, or affiliated with, the *Centre de Recherche Mathématiques* (CRM). Special emphasis is given to the quality of exposition and pedagogical value of each text.

More information about this series at http://www.springer.com/series/15360
Homological Methods, Representation Theory, and Cluster Algebras
This volume includes six mini-courses delivered at the 2016 CIMPA (Centre International de Mathématiques Pures et Appliquées) research school held in the Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, from the 7th to the 18th of March 2016. More than 80 mathematicians and students from a dozen countries participated in the event.

This research school was dedicated to the founder of the Argentinian research group in representation theory of algebras, Dr. M.I. Platzeck, on the occasion of her 70th birthday. It was devoted to interactions between representation theory, homological algebra and the new ever-expanding theory of cluster algebras. While homological algebra has always been present as one of the main tools in the study of finite dimensional algebras, the more recent strong connection with cluster algebras quickly established itself as one of the important features of the mathematical landscape. This connection has been fruitful to both areas, representation theory provided a categorification of cluster algebras, while the study of cluster algebras provided representation theory with new objects of study like tilting in the cluster category. This volume stands as a partial testimony to this new and welcome development.

The six courses presented at the research school were organised as follows. During the first week the more elementary courses were delivered (in this volume, the courses “Introduction to the Representation Theory of Finite-Dimensional Algebras: The Functorial Approach,” “Auslander–Reiten Theory for Finite-Dimensional Algebras” and “Cluster Algebras from Surfaces”), the first two of which form the basis of modern-day representation theory and the third one an introductory course on an important class of cluster algebras. The more advanced courses, which concentrate on connections between representation theory and cluster algebras, took place during the second week (in this volume, the courses “Cluster Characters,” “A Course on Cluster-Tilted Algebras” and “Brauer Graph Algebras”). We would like to express our gratitude to the authors who submitted contributions and to the referees for their assistance.

The courses in this volume are addressed to graduate students or young researchers with some previous knowledge of noncommutative algebra or homological algebra. This volume will also be of interest to any mathematician who is not a specialist of the topics presented here and would like to access this fast-developing field. Because interactions between topics of the research school can only increase, and the courses presented reflect
the diversity as well as the rich activity of the groups working in the area, we hope that this volume will be useful to its readers.

We wish to express our thanks for financial support to the CIMPA, the CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, the IMU (International Mathematical Union), the IMJ-PRG (Institut de Mathématiques de Jussieu, Paris Rive Gauche) and the Universidad Nacional de Mar del Plata. We also wish to extend our gratitude to Drs. Galia Dafni and Véronique Hussin of the CRM as well as Elizabeth Loew from Springer for permission to publish this volume in their joint series. We also thank André Montpetit from the CRM for his help in putting the volume in its final form.

Sherbrooke, Canada
Mar del Plata, Buenos Aires, Argentina

Ibrahim Assem
Sonia Trepode
Contents

Introduction to the Representation Theory of Finite-Dimensional Algebras:
The Functorial Approach .. 1
María Inés Platzeck
1 Preliminaries and Notation ... 2
2 Projective Covers and Simple Functors 4
3 Finitely Presented Functors .. 10
4 Simple Functors Are Finitely Presented 12
References ... 20

Auslander–Reiten Theory for Finite-Dimensional Algebras 21
Piotr Malicki
1 Basic Facts and Notation ... 22
2 The Auslander–Reiten Theorems 26
3 The Auslander–Reiten Quiver of an Algebra 31
4 Hereditary Algebras ... 48
5 The Number of Terms in the Middle of Almost Split Sequences .. 54
References ... 60

Cluster Algebras from Surfaces .. 65
Ralf Schiffler
1 Cluster Algebras .. 66
1.1 Ground Ring \mathbb{Z}P .. 66
1.2 Seeds and Mutations ... 67
1.3 Definition ... 69
1.4 Example 1 \rightarrow 2 .. 69
1.5 Example ... 70
1.6 Laurent Phenomenon and Positivity 71
1.7 Classifications ... 72
2 Cluster Algebras of Surface Type 73
2.1 Marked Surfaces .. 73
2.2 Arcs and triangulations .. 74
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Cluster Algebras from Surfaces</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>Snake Graphs and Expansion Formulas</td>
<td>78</td>
</tr>
<tr>
<td>3.1</td>
<td>Snake graphs</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Band Graphs</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>From Snake Graphs to Surfaces</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Labeled Snake Graphs from Surfaces</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Perfect Matchings, Height, and Weight</td>
<td>82</td>
</tr>
<tr>
<td>3.6</td>
<td>Expansion Formula</td>
<td>83</td>
</tr>
<tr>
<td>3.7</td>
<td>Examples</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>Bases for the Cluster Algebra</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Skein Relations</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Definition of the bases \mathcal{B}° and \mathcal{B}</td>
<td>88</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>

Cluster Characters

Pierre-Guy Plamondon

1 Introduction | 101
2 Quiver Representations and Submodule Grassmannians | 102
2.1 Quiver Representations | 102
2.2 Submodule Grassmannian | 104
2.3 F-Polynomials of Modules | 105
2.4 Examples of F-Polynomials | 107
3 Cluster Categories | 109
3.1 Derived Categories | 109
3.2 Cluster Categories | 115
4 2-Calabi–Yau Categories | 116
4.1 Definition | 116
4.2 Cluster-Tilting Objects | 117
4.3 Index | 118
5 Cluster Characters | 119
5.1 Definition | 120
5.2 Multiplication Formula | 120
5.3 Mutation of Cluster-Tilting Objects | 121
5.4 Application: Categorification of Cluster Algebras | 122
References | 123

A Course on Cluster Tilted Algebras

Ibrahim Assem

1 Tilting in the Cluster Category | 127
1.1 Notation | 127
1.2 The Derived Category of a Hereditary Algebra | 128
1.3 The Cluster Category | 131
1.4 Tilting Objects | 133
2 Cluster Tilted Algebras | 136
2.1 The Definition and Examples | 136
2.2 Relation with Mutations | 137
5 Auslander–Reiten Components .. 207
5.1 Finite, Tame and Wild Representation Type, Domestic
Algebras and Algebras of Polynomial Growth 207
5.2 Domestic Brauer Graph Algebras 208
5.3 The Stable Auslander–Reiten Quiver of a Self-Injective
Special Biserial Algebra .. 209
5.4 Green Walks, Double-Stepped Green Walks and Exceptional
Tubes ... 210
5.5 Exceptional Tubes ... 213
5.6 Auslander–Reiten Components of Non-domestic Brauer
Graph Algebras .. 215
5.7 Auslander–Reiten Components of Domestic Brauer Graph
Algebras .. 215
5.8 Position of Modules in the Auslander–Reiten Quiver 217
References ... 220
List of Contributors

Ibrahim Assem
Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada, e-mail: ibrahim.assem@usherbrooke.ca

Piotr Malicki
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland, e-mail: pmalicki@mat.umk.pl

Pierre-Guy Plamondon
Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, 91405 Orsay, France, e-mail: pierre-guy.plamondon@math.u-psud.fr

María Inés Platzeck
Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina, e-mail: platzeck@uns.edu.ar

Ralf Schiffler
Department of Mathematics, University of Connecticut, 341 Mansfield Road, Storrs, CT 06269-1009, USA, e-mail: schiffler@math.uconn.edu

Sibylle Schroll
Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom, e-mail: schroll@leicester.ac.uk