Lecture Notes in Energy (LNE) is a series that reports on new developments in the study of energy: from science and engineering to the analysis of energy policy. The series’ scope includes but is not limited to, renewable and green energy, nuclear, fossil fuels and carbon capture, energy systems, energy storage and harvesting, batteries and fuel cells, power systems, energy efficiency, energy in buildings, energy policy, as well as energy-related topics in economics, management and transportation. Books published in LNE are original and timely and bridge between advanced textbooks and the forefront of research. Readers of LNE include postgraduate students and non-specialist researchers wishing to gain an accessible introduction to a field of research as well as professionals and researchers with a need for an up-to-date reference book on a well-defined topic. The series publishes single and multi-authored volumes as well as advanced textbooks.

More information about this series at http://www.springer.com/series/8874
Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development
Achieving an affordable, secure and sustainable energy future is one of the central challenges the world faces today. Developing robust strategies to reach these goals requires a comprehensive understanding of the energy system, taking into account the interlinkages between fuels, technologies and policy measures. To inform policymakers on these complex questions, energy modelling and scenario analysis is an invaluable means to explore possible future energy and technology pathways and to evaluate the implications of the various options that are available.

The Energy Technology Systems Analysis Programme (ETSAP) represents a unique network in this field of energy modelling and analysis. Established in 1976 as a Technology Collaboration Programme (TCP) under the auspices of the International Energy Agency (IEA), its two energy system model generators, MARKAL (MARKet ALlocation) and TIMES (The Integrated MARAL-EFOM System), are now used by modelling teams in approximately 200 institutions across 70 countries. While concerns about energy security were the main focus of many model analyses in the 1970s (and remain just as relevant today), their focus has been broadened to also include questions about social and environmental objectives. The model applications today range from the global, regional and national level, down to the local and city level. At the IEA, ETSAP’s modelling tools have been used for more than a decade to help develop scenarios and assess clean energy technologies in the global context. For example, the IEA’s Tracking Clean Energy Progress report consists of a scenario-based assessment of current technology trends against what is needed under a 2-degree pathway.

Following the first book Informing Energy and Climate Policies Using Energy Systems Models, this new ETSAP book provides comprehensive model-based analyses of the overarching goal of the Paris Agreement. It shows that a fundamental transformation of the global energy system is required over the coming decades, driven by rapid and clear policy action to accelerate and scale-up the deployment of clean energy technologies. The analyses in this book highlight how energy models and scenarios can provide invaluable insights into decision-makers
on the interlinked policy dimensions of climate change, energy security and economic development. It also illustrates that technology and system transformations are needed not only in different parts of the energy sector but also at all levels—multilateral, national and local.

I trust readers will find within this book insights that demonstrate both the complexity and usefulness of energy systems modelling in informing technology collaboration and energy policy decision-making.

Paris, France
January 2018

Dr. Fatih Birol
Executive Director
International Energy Agency
This book addresses a number of key questions arising from the transformational global political agreement reached in Paris in December 2015 to ensure human-induced global temperature increases remain well below 2 °C. How far can countries ratchet up the mitigation ambition presented in the Nationally Determined Contributions? What is the magnitude of potential and necessary carbon dioxide removal, more particularly, biomass energy with carbon capture and storage? How can stranded assets be avoided? Is carbon neutrality achievable with technology innovation alone?

These questions are at the core of the global, national and local energy systems modelling analyses in this book that explore the feasibility of roadmaps for a well below 2 °C future. The book is written by more than 20 teams of the IEA Energy Technology Systems Analysis Programme (IEA-ETSAP), a Technology Collaboration Programme supporting about 200 energy systems modelling teams from around 70 countries, which has operated for over 40 years. A key objective of IEA-ETSAP is to assist decision-makers in robustly developing, implementing and assessing the impact of energy and climate mitigation policies with the bottom-up techno-economic models of the MARKAL/TIMES family.

This book constitutes a natural follow-up of the first book *Informing Energy and Climate Policies Using Energy Systems Models*, edited by IEA-ETSAP in 2015, prior to the Paris Agreement on climate change. The methodologies and case studies presented here illustrate how energy systems models have been and are being used to address complex energy and climate policy questions and provide critical insights into the feasibility of enhanced ambition. This responds directly to a requirement of the Paris Agreement and its Talanoa Dialogue to take stock of the collective efforts and determine how we can, all together, move the climate policy agenda forward and turn words into action.

The editors are very grateful to the chapter authors and peer reviewers who willingly shared their expertise and contributed their valuable time, without which this book would not have been possible. In addition, we acknowledge and
appreciate the English language revision support provided by Evan Boyle, Seán Collins, Paul Deane, Fiac Gaffney, James Glynn, Conor Hickey, Sean McAuliffe, Connor McGookin, Tomas Mac Uidhir, Laura Mehigan, Eamonn Mulholland and Fionn Rogan.

Madrid, Spain
Athens, Greece
Kgs. Lyngby, Denmark
Cork, Ireland
January 2018

Dr. Maryse Labriet
Dr. George Giannakidis
Dr. Kenneth Karlsson
Prof. Brian Ó Gallachóir
Contents

Introduction: Energy Systems Modelling for a Sustainable World
Maryse Labriet, George Giannakidis, Kenneth Karlsson and Brian Ó Gallachóir

1

Part I The Radical Transformation of the Global Energy System

Energy System Challenges of Deep Global CO₂ Emissions Reduction Under the World Energy Council’s Scenario Framework
Tom Kober, Evangelos Panos and Kathrin Volkart

17

Pathways to Post-fossil Economy in a Well Below 2 °C World
Antti Lehtilä and Tiina Koljonen

33

How Low Can We Go? The Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving Well Below 2 °C
Matthew Winning, Steve Pye, James Glynn, Daniel Scamman and Daniel Welsby

51

Analysis of the Relative Roles of Supply-Side and Demand-Side Measures in Tackling the Global 1.5 °C Target
Babak Mousavi and Markus Blesl

67

The Role of Population, Affluence, Technological Development and Diet in a Below 2 °C World
Kenneth Karlsson, Jørgen Nørgård, Juan Gea Bermúdez, Olexandr Balyk, Mathis Wackernagel, James Glynn and Amit Kanudia

85

Part II The Diversity of the National Energy Transitions in Europe

A Scandinavian Transition Towards a Carbon-Neutral Energy System
Pernille Seljom and Eva Rosenberg

105
Net-Zero CO₂-Emission Pathways for Sweden by Cost-Efficient Use of Forestry Residues 123
Anna Krook-Riekkola and Erik Sandberg

A Long-Term Strategy to Decarbonise the Danish Inland Passenger Transport Sector 137
Jacopo Tattini, Eamonn Mulholland, Giada Venturini, Mohammad Ahanchian, Maurizio Gargiulo, Olexandr Balyk and Kenneth Karlsson

Challenges and Opportunities for the Swiss Energy System in Meeting Stringent Climate Mitigation Targets 155
Evangelos Panos and Ramachandran Kannan

France 2072: Lifestyles at the Core of Carbon Neutrality Challenges ... 173
Ariane Millot, Rémy Doudard, Thomas Le Gallic, François Briens, Edi Assoumou and Nadia Maïzi

From 2 °C to 1.5 °C: How Ambitious Can Ireland Be? 191
Xiufeng Yue, Fionn Rogan, James Glynn and Brian Ó Gallachóir

The Pivotal Role of Electricity in the Deep Decarbonization of Energy Systems: Cost-Effective Options for Portugal 207
Júlia Seixas, Sofia G. Simoes, Patrícia Fortes and João Pedro Gouveia

Part III The Decarbonisation Pathways Outside Europe

The Canadian Contribution to Limiting Global Warming Below 2 °C: An Analysis of Technological Options and Regional Cooperation 227
Kathleen Vaillancourt, Olivier Bahn and Oskar Sigvaldason

Modeling the Impacts of Deep Decarbonization in California and the Western US: Focus on the Transportation and Electricity Sectors .. 245
Saleh Zakerinia, Christopher Yang and Sonia Yeh

Towards Zero Carbon Scenarios for the Australian Economy 261

Economic Assessment of Low-Emission Development Scenarios for Ukraine .. 277
Maksym Chepeliev, Oleksandr Diachuk and Roman Podolets
Long-Term Climate Change Mitigation in Kazakhstan in a Post Paris Agreement Context
Aiymgul Kerimray, Bakytzhan Suleimenov, Rocco De Miglio, Luis Rojas-Solórzano and Brian Ó Gallachóir

Mexico’s Transition to a Net-Zero Emissions Energy System: Near Term Implications of Long Term Stringent Climate Targets
Baltazar Solano-Rodríguez, Amalia Pizarro-Alonso, Kathleen Vaillancourt and Cecilia Martin-del-Campo

Mitigation Challenges for China’s End-Use Sectors Under a Global Below Two Degree Target
Wenying Chen, Huan Wang and Jingcheng Shi

The Importance of the Water-Energy Nexus for Emerging Countries When Moving Towards Below 2 °C
Gary Goldstein, Pascal Delaquil, Fadiel Ahjum, Bruno Merven, Adrian Stone, James Cullis, Wenying Chen, Nan Li, Yongnan Zhu, Yizi Shang, Diego Rodriguez, Morgan Bazilian, Anna Delgado-Martin and Fernando Miralles-Wilhelm

Part IV The Role of Cities and Local Communities

Challenges Faced When Addressing the Role of Cities Towards a Below Two Degrees World
George Giannakidis, Maurizio Gargiulo, Rocco De Miglio, Alessandro Chiodi, Julia Seixas, Sofia G. Simoes, Luis Dias and João P. Gouveia

Mitigation of Greenhouse Gas Emissions in Urban Areas:
The Case of Oslo
Arne Lind and Kari Espegren

Achieving CO₂ Emission Reductions Through Local-Scale Energy Systems Planning: Methods and Pathways for Switzerland
Mashael Yazdanie