Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
 Lancaster University, Lancaster, UK
Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
 University of Surrey, Guildford, UK
Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA
Friedemann Mattern
 ETH Zurich, Zurich, Switzerland
John C. Mitchell
 Stanford University, Stanford, CA, USA
Moni Naor
 Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan
 Indian Institute of Technology, Madras, India
Bernhard Steffen
 TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos
 University of California, Los Angeles, CA, USA
Doug Tygar
 University of California, Berkeley, CA, USA
Gerhard Weikum
 Max Planck Institute for Informatics, Saarbrücken, Germany
More information about this series at http://www.springer.com/series/7408
This volume contains the proceedings of the 15th Asian Symposium on Programming Languages and Systems (APLAS 2017), held in Suzhou, China during November 27–29, 2017. APLAS aims to stimulate programming language research by providing a forum for the presentation of latest results and the exchange of ideas in programming languages and systems. APLAS is based in Asia but is an international forum that serves the worldwide programming languages community.

APLAS 2017 solicited submissions in two categories: regular research papers and tool demonstrations. The conference solicits contributions in, but is not limited to, the following topics: semantics, logics, and foundational theory; design of languages, type systems, and foundational calculi; domain-specific languages; compilers, interpreters, and abstract machines; program derivation, synthesis, and transformation; program analysis, verification, and model-checking; logic, constraint, probabilistic and quantum programming; software security; concurrency and parallelism; and tools for programming and implementation.

New to APLAS in 2017, the conference employed a double-blind reviewing process with an author-response period. Within the review period, APLAS 2017 used an internal two-round review process where each submission received three first-round reviews to drive the possible selection of additional expert reviews as needed before the author response period. All submissions received at least three reviews with nearly half of the submissions receiving four or five reviews. The author response period was followed by a two-week Program Committee discussion period with over 425 comments generated and culminating in a synchronous, virtual Program Committee meeting on August 11, 2017, to finalize the selection of papers.

This year APLAS received 56 submissions. After thoroughly evaluating the relevance and quality of each paper, the Program Committee decided to accept 24 contributions. We were also honored to include four invited talks by distinguished researchers:

- Gilles Barthe (IMDEA, Spain) on “Relational Verification of Higher-Order Probabilistic Programs”
- Ron Garcia (University of British Columbia, Canada) on “Gradual Enforcement of Program Invariants”
- Sumit Gulwani (Microsoft Research, USA) on “Programming by Examples: PL Meets ML”
- Naijun Zhan (Chinese Academy of Sciences, China) on “Synthesizing SystemC Code from Delay Hybrid CSP”

This program would not have been possible without the substantial efforts of many people, whom I sincerely thank. The Program Committee, sub-reviewers, and external expert reviewers worked tirelessly to select the strongest possible program while simultaneously offering constructive and supportive comments in their reviews.
Xinyu Feng (University of Science and Technology of China) serving as general chair of APLAS 2017 ensured that all aspects of the conference planning were addressed. I also graciously thank the APLAS Steering Committee for their leadership, as well as APLAS 2016 PC chair Atsushi Igarashi (Kyoto University, Japan) for timely advice.

Lastly, I would like to acknowledge the organizers of the associated events that makes APLAS a truly exciting event: the Poster Session and Student Research Competition (Yu Zhang, University of Science and Technology of China) and the APLAS Workshop on New Ideas and Emerging Results (Wei-Ngan Chin, National University of Singapore and Zhenjiang Hu, National Institute of Informatics, Japan).

September 2017

Bor-Yuh Evan Chang
Organization

General Chair
Xinyu Feng University of Science and Technology of China

Program Chair
Bor-Yuh Evan Chang University of Colorado Boulder

Program Committee
Andreas Abel Gothenburg University, Sweden
Aws Albarghouthi University of Wisconsin-Madison, USA
Sam Blackshear Facebook, USA
Yu-Fang Chen Academia Sinica, Taiwan
Yuting Chen Shanghai Jiao Tong University, China
Stephen Chong Harvard University, USA
Vijay D’Silva Google, USA
Benjamin Delaware Purdue University, USA
Rayna Dimitrova The University of Texas at Austin, USA
Cezara Dragoi Inria, ENS, CNRS, France
William Harris Georgia Institute of Technology, USA
Guoliang Jin North Carolina State University, USA
Akash Lal Microsoft Research, India
Vu Le Microsoft, USA
Akimasa Morihata The University of Tokyo, Japan
Sergio Mover University of Colorado Boulder, USA
Santosh Nagarakatte Rutgers University, USA
Hakjoo Oh Korea University, South Korea
Bruno C.D.S. Oliveira The University of Hong Kong, SAR China
Xiaokang Qiu Purdue University, USA
Arjun Radhakrishna University of Pennsylvania, USA
Aseem Rastogi Microsoft Research, India
Sukyoung Ryu KAIST, South Korea
Ilya Sergey University College London, UK
Makoto Tatsuta National Institute of Informatics, Japan
Tachio Terauchi Waseda University, Japan
Bow-Yaw Wang Academia Sinica, Taiwan
Yingfei Xiong Peking University, China
Kwangkeun Yi Seoul National University, South Korea
Danfeng Zhang Pennsylvania State University, USA
Xin Zhang Georgia Institute of Technology, USA
Kenny Zhu Shanghai Jiao Tong University, China

Poster Chair

Yu Zhang University of Science and Technology of China

Workshop on New Ideas and Emerging Results Organizers

Wei-Ngan Chin National University of Singapore
Zhenjiang Hu National Institute of Informatics, Japan

Asian Association for Foundation of Software Executive Committee

Co-chairs

Wei-Ngan Chin National University of Singapore
Zhenjiang Hu National Institute of Informatics, Japan

Members

Xinyu Feng University of Science and Technology of China
Yuxi Fu Shanghai Jiao Tong University, China
Jacques Garrigue Nagoya University, Japan
Atsushi Igarashi Kyoto University, Japan
Ranjit Jhala University of California, San Diego, USA
Yukiyoshi Kameyama University of Tsukuba, Japan
Naoki Kobayashi The University of Tokyo, Japan
Shin-Cheng Mu Academia Sinica, Taiwan
Sungwoo Park Pohang University of Science and Technology, South Korea
Chung-chieh Shan Indiana University, USA
Zhong Shao Yale University, USA
Harald Sondergaard The University of Melbourne, Australia
Kazunori Ueda Waseda University, Japan
Hongseok Yang KAIST, South Korea
Kwangkeun Yi Seoul National University, South Korea
Additional Reviewers

Brotherston, James
Chen, Yifan
Docherty, Simon
Dodds, Mike
Dolby, Julian
Enea, Constantin
Hammer, Matthew
Hong, Chih-Duo
Jia, Limin
Kang, Jeehoon
Kedia, Piyus
Kimura, Daisuke
Kwang, Jeehoon

López Juan, Victor
Nakazawa, Koji
Nordvall Forsberg, Fredrik
Ramyaa, Ramyaa
Rennela, Mathys
Sankaranarayanan, Sriram
Sjöberg, Vilhelm
Tang, Hao
Tzevelekos, Nikos
Vazou, Niki
Xie, Ningning
Yang, Yanpeng
Zhang, Weixin
Abstracts of Invited Talks
Relational Verification of Higher-Order Probabilistic Programs

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Hyperproperties go beyond the traditional formulation of program verification by considering sets of sets of traces—in contrast to program properties which consider sets of traces. Common instances of hyperproperties include robustness, information flow security, and for probabilistic programs differential privacy. These latter properties are instances of the more restricted class of 2-properties, which contemplate related executions of the same program, or executions of two different programs. These properties can be formally established using lightweight type systems, which are tailored to enforce specific classes of properties, relational program logics, which are tailored to reason about relations between two programs, or product programs which construct from each pair of programs a single product program that emulates their behavior. One challenge, independently of the approach chosen, is to develop methods that support syntax-directed reasoning that is traditionally favoured in standard verification and yet provides sufficient flexibility to accommodate programs that are structurally different or have diverging control flow on different but related inputs.

The talk shall present and compare the different approaches, including Relational Higher-Order Logic [1]. Moreover, it will present several applications, including relational cost and security.

Reference

Programming by Examples: PL Meets ML

Sumit Gulwani1 and Prateek Jain2

1 Microsoft Corporation, Redmond, USA
sumitg@microsoft.com

2 Microsoft Research, Bangalore, India
prajain@microsoft.com

Abstract. Programming by Examples (PBE) involves synthesizing intended programs in an underlying domain-specific language from example-based specifications. PBE systems are already revolutionizing the application domain of data wrangling and are set to significantly impact several other domains including code refactoring.

There are three key components in a PBE system. (i) A search algorithm that can efficiently search for programs that are consistent with the examples provided by the user. We leverage a divide-and-conquer-based deductive search paradigm that inductively reduces the problem of synthesizing a program expression of a certain kind that satisfies a given specification into sub-problems that refer to sub-expressions or sub-specifications. (ii) Program ranking techniques to pick an intended program from among the many that satisfy the examples provided by the user. We leverage features of the program structure as well of the outputs generated by the program on test inputs. (iii) User interaction models to facilitate usability and debuggability. We leverage active-learning techniques based on clustering inputs and synthesizing multiple programs.

Each of these PBE components leverage both symbolic reasoning and heuristics. We make the case for synthesizing these heuristics from training data using appropriate machine learning methods. This can not only lead to better heuristics, but can also enable easier development, maintenance, and even personalization of a PBE system.
Gradual Enforcement of Program Invariants

Ronald Garcia

University of British Columbia, Vancouver, British Columbia, Canada
rxg@cs.ubc.ca

Abstract. Static and dynamic techniques have long been used to check and enforce properties of program executions. They are often seen as diametrically opposed, as exemplified by the long-running kerfuffle over the merits and deficits of static versus dynamic type checking.

Recently, PL researchers and designers have sought to bridge the divide between these approaches to program checking and analysis. In particular, gradual typing sets out to seamlessly combine static and dynamic checking of how closely programs adhere to standard typing disciplines from the literature. In this context, static and dynamic checking and enforcement are treated as complementary rather than conflicting.

In this talk I will discuss the theory and practice of gradual typing. Both have undergone significant development in the last few years. These advances in language design change not only how dynamic and static checking can work together, but also change how we think about each individually.
Synthesizing SystemC Code from Delay Hybrid CSP

Gaogao Yan1,2, Li Jiao1, Shuling Wang1, and Naijun Zhan1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
\{yangg,ljiao,wangsl,znj\}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Delay is omnipresent in modern control systems, which can prompt oscillations and may cause deterioration of control performance, invalidate both stability and safety properties. This implies that safety or stability certificates obtained on idealized, delay-free models of systems prone to delayed coupling may be erratic, and further the incorrectness of the executable code generated from these models. However, automated methods for system verification and code generation that ought to address models of system dynamics reflecting delays have not been paid enough attention yet in the computer science community. In our previous work, on one hand, we investigated the verification of delay dynamical and hybrid systems; on the other hand, we also addressed how to synthesize SystemC code from a verified hybrid system modelled by Hybrid CSP (HCSP) without delay. In this paper, we give a first attempt to synthesize SystemC code from a verified delay hybrid system modelled by Delay HCSP (dHCSP), which is an extension of HCSP by replacing ordinary differential equations (ODEs) with delay differential equations (DDEs). We implement a tool to support the automatic translation from dHCSP to SystemC.
Contents

Invited Contributions

Programming by Examples: PL Meets ML
Sumit Gulwani and Prateek Jain

Synthesizing SystemC Code from Delay Hybrid CSP
Gaogao Yan, Li Jiao, Shuling Wang, and Naijun Zhan

Security

Taming Message-Passing Communication in Compositional Reasoning About Confidentiality
Ximeng Li, Heiko Mantel, and Markus Tasch

Capabilities for Java: Secure Access to Resources
Ian J. Hayes, Xi Wu, and Larissa A. Meinicke

Enforcing Programming Guidelines with Region Types and Effects
Serdar Erbatur, Martin Hofmann, and Eugen Zălinescu

Automatically Generating Secure Wrappers for SGX Enclaves from Separation Logic Specifications
Neline van Ginkel, Raoul Strackx, and Frank Piessens

Heap and Equivalence Reasoning

Black-Box Equivalence Checking Across Compiler Optimizations
Manjeet Dahiya and Sorav Bansal

Weakly Sensitive Analysis for Unbounded Iteration over JavaScript Objects
Yoonseok Ko, Xavier Rival, and Sukyoung Ryu

Decision Procedure for Entailment of Symbolic Heaps with Arrays
Daisuke Kimura and Makoto Tatsuta

Bringing Order to the Separation Logic Jungle
Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel
Concurrency and Verification

Programming and Proving with Classical Types 215
 Cristina Matache, Victor B.F. Gomes, and Dominic P. Mulligan

Static Analysis of Multithreaded Recursive Programs Communicating
via Rendez-Vous .. 235
 Adrien Pommellet and Tayssir Touili

Verified Root-Balanced Trees ... 255
 Tobias Nipkow

Safety and Liveness of MCS Lock—Layer by Layer 273
 Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao

Domain-Specific Languages

Palgol: A High-Level DSL for Vertex-Centric Graph Processing
with Remote Data Access ... 301
 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

Efficient Functional Reactive Programming Through
Incremental Behaviors ... 321
 Bob Reynders and Dominique Devriese

Implementing Algebraic Effects in C: “Monads for Free in C” 339
 Daan Leijen

Sound and Efficient Language-Integrated Query: Maintaining the ORDER 364
 Oleg Kiselyov and Tatsuya Katsushima

Semantics

A Computational Interpretation of Context-Free Expressions 387
 Martin Sulzmann and Peter Thiemann

Partiality and Container Monads ... 406
 Tarmo Uustalu and Niccolò Veltri

The Negligible and Yet Subtle Cost of Pattern Matching 426
 Beniamino Accattoli and Bruno Barras

A Lambda Calculus for Density Matrices with Classical
and Probabilistic Controls ... 448
 Alejandro Díaz-Caro
Numerical Reasoning

Compact Difference Bound Matrices 471
Aziem Chawdhary and Andy King

Sharper and Simpler Nonlinear Interpolants for Program Verification. 491
Takamasa Okudono, Yuki Nishida, Kensuke Kojima, Kohei Suenaga, Kengo Kido, and Ichiro Hasuo

A Nonstandard Functional Programming Language 514
Hirofumi Nakamura, Kensuke Kojima, Kohei Suenaga, and Atsushi Igarashi

Counterexample-Guided Bit-Precision Selection 534
Shaobo He and Zvonimir Rakamarić

Author Index .. 555