Light Metals 2013

Proceedings of the symposia sponsored by the TMS Aluminum Committee at the TMS 2013 Annual Meeting & Exhibition, San Antonio, Texas, USA March 3-7, 2013

Edited by
Barry A. Sadler
TABLE OF CONTENTS
Light Metals 2013

Preface .. xxi
About the Editor ... xxiii
Program Organizers .. xxv
Aluminum Committee .. xxvii

2013 Aluminum Keynote: Impurities in the Aluminum Supply Chain

Keynote Session

Raw Material Impurities and the Challenge Ahead .. 5
S. Lindsay

Impacts of Impurities Introduced into the Aluminium Reduction Cell ... 9
J. Metson, D. Wong, J. Hung, and M. Taylor

Changes in Global Refining and Its Impact on Anode Quality Petroleum Coke.. 15
K. Bartholomew

Impact of Higher Vanadium Levels on Smelter Operations .. 21
C. Coney, L. Crabtree, J. Gavin, W. Marcrum, A. Weber, and L. Edwards

Impact on Smelter Operations of Operating High Purity Reduction Cells ... 27
S. Hamilton, and R. Cook

Management of Impurities in Cast House with Particular Reference to Ni and V 33
M. Rhamdhani, J. Grandfield, A. Khaliq, and G. Brooks

An Initial Assessment of the Effects of Increased Ni and V Content in A356 and AA6063 Alloys 39

Alumina and Bauxite

Digestion

Implementation of Logic Control by DCS to Measure the Caustic Concentration in Spent Liquor 51
A. Oliveira-Santos, A. Carvalho, B. Urakawa, M. Maciel, and A. Santos

Study of Influences on the Alumina/Caustic (A/C) Ratio and Discharge Digestion (DBO) Caustic of Through
Design of Experiments (DOE) Statistic Tool .. 55
A. Borges, A. Monteiro, A. Oliveira, B. Urakawa, J. Miranda, and D. Silva

Particle Size Distribution Model for Kinetics of Digesting Alumina .. 59

Fractal Kinetic Model for Digesting Alumina ... 65
L. Bao, T. Zhang, A. Nguyen, W. Long, J. Ma, Z. Dou, and G. Lv
MAX HT® Bayer Sodalite Scale Inhibiter: A Green Solution to Energy Consumption ... 71

Clarification
Sodalite Solids Formation at the Surface of Iron Oxide and Its Impact on Flocculation ... 77
A. Senaputra, P. Fawell, F. Jones, and P. Smith

Improvement on the Operation Management System of Vertical Pressure Filters ... 83
T. Santos, L. Moraes, A. Sampaio, M. Maciel, H. Lima, J. Miranda, A. Júnior, and J. Borges

Using a Multivariate Statistical in the Identification of Alumina Loss in Red Mud ... 87

Bevill and the Aluminum Industry ... 91
A. Schoedel

New Development Model for Bauxite Deposits - Dedicated Compact Refinery ... 97
P. ter Weer

Red Mud
Automatic Control of Drum Filters Operation ... 105
A. Sampaio, L. Moraes, T. Santos, H. Lima, A. Borges, and J. Borges

A New Technology for Dry Disposal of Alunorte’s Bauxite Residue .. 109
M. de Castro, R. Trindade, R. Pantoja, E. Alves, and A. Martins

Pilot Test of Bauxite Residue Carbonation with Flue Gas ... 113
L. Venancio, J. Souza, E. Macedo, F. Botelho, and G. César

Management of Industrial Waste: The Case of Effective Utilization of Red Mud and Fly Ash at Vedanta Aluminium Limited - Lanjigarh ... 119
M. Kumar, B. Senapati, and C. Kumar

Iron Recovery from Red Mud by Reduction Roasting-Magnetic Separation .. 125
M. Rao, J. Zhuang, G. Li, J. Zeng, and T. Jiang

Removal of Methylene Blue from Aqueous Solutions Using a Novel Granular Red Mud Mixed with Cement 131
L. Shuaidan, L. Thiquynhxuan, S. Ju, P. Jin-hui, and Z. Li-bo

Precipitation and Calcination
Environmentally Safe Operation of Barometric Condensers ... 139
M. Jacobs

Hatch - ETI Aluminyum Precipitation Modeling ... 143
E. Stamatiou, D. Chinloy, B. Çelikel, M. Kayaci, and E. Savkilioglu

Improve the Classification System in Hydro Alunorte Lines 4/5 ... 147

Increase in the Stability of Gravimetric Classification System of Precipitation at Hydro Alunorte .. 151
V. Cruz, E. Moraes, C. Junior, D. Rodrigues, A. Sousa, A. Furtado, and D. Silva
Experience with Commissioning New Generation Gas Suspension Calciner ... 155
S. Wind, and B. Raahauge

Bayer Process Efficiency Improvement .. 163
S. Gui

HyClass™ Technology for Improvement of Trihydrate Classification in the Bayer Process 169
J. Wang, J. Herrera, S. Kostelak, and K. Frederic

Impurities
Metallic Impurities from the Mine to Metal Products ... 177
S. Lindsay

The Control of Fluoride Concentration in ETI Alúminyum Bayer Refinery Liquor ... 183
E. Savkilioglu, C. Carton, S. Ertugral, M. Baygul, K. Dinç, and S. Avcu

Beneficiation of High Silica Bauxite Ores of India - An Innovative Approach .. 187
M. Kumar, B. Senapati, and C. Kumar

Morphological Investigation of Sodium Oxalate Crystals Grown in Aqueous Sodium Hydroxide Solution 191
W. Fu, and J. Vaughan

Impurities in Raw Gas and Secondary Alumina .. 195
S. Kalyavina, A. Ratvik, and T. Aarhaug

Low Grade Alumina Sources
Innovative Technology for Alumina Production from Low-grade Raw Materials .. 203
A. Senyuta, A. Panov, A. Suss, and Y. Layner

Improving Characterization of Low Grade Diasporic Bauxite to Be Utilize in Jajarm Alumina Plant 209
M. Shadloo, M. Zarbayani, E. Jorjani, and M. Aram

The Processing of High Quartz Bauxite .. 217
E. Gasaji, A. Scarsella, V. Hartmann, and H. Schmidt

Appropriate Reduction and Fe-Al Separation of High Iron Gibbsite .. 223
Z. Liu, M. Chu, J. Tang, Y. Han, and X. Wu

Influence of MgO and C/A and Cooling System on Alumina Leaching Properties of Calcium Aluminate Slag... 229
Z. Tong, Y. Li, and T. Chen

Calcification-Carbonation Method for Alumina Production by Using Low-Grade Bauxite 233
T. Zhang, X. Zhu, G. Lv, L. Pan, Y. Liu, Q. Zhao, Y. Li, X. Jiang, and J. He

Basic Research on Calcification Transformation Process of Low Grade Bauxite ... 239
X. Zhu, T. Zhang, G. Lv, Y. Liu, Q. Zhao, Y. Li, and Z. Dou

Research on the Phase Transformation and Separation Performance in Calcification-Carbonation Method for Alumina Production ... 245
G. Lv, T. Zhang, X. Zhu, L. Pan, M. Qin, Y. Liu, Q. Zhao, X. Jiang, and Y. Li
Aluminum Alloys: Fabrication, Characterization and Applications

Development and Application

Mechanical Properties of Al-Zn-Mg-Cu Alloys Processed with High-pressure Torsion ...255
S. Kuramoto, I. Aoi, and T. Furuta

High-Performance Be-Al Casting Alloys ..259
G. Schuster, and C. Pokross

Structure Optimization of Al-Si-Type Alloys for Thermal and Mechanical High Loaded Components265
A. Kleine, M. Rosefort, A. Pithan, C. Matthies, and H. Koch

Development of High Strength Aluminium Alloys at BALCO ...269
M. Kar, S. Prasad, A. Paul, and P. Raghavan

Corrosion Resistance Performance

Strength and Failure of Ultrafine Grain and Bimodal Al-Mg Alloy at High Temperatures279
A. Magee, and L. Ladani

Process Development of AA3103 Aluminum Alloy for Automotive Thins..283
M. Paes, A. Coelho, R. Netto, and F. Aguiar

Casting and Solidification

Atom Probe Analysis of Sr Distribution in AlSi Foundry Alloys ..291
J. Barrirero, M. Engstler, and F. Mücklich

The Role of Sr on Microstructure Formation and Mechanical Properties of Al-Si-Cu-Mg Cast Alloy297
M. Zamani, S. Seifeddine, and M. Aziziderouei

Modification of the Eutectic Mg2Si-Phase of AlMgSi-Cast Alloys ..303
T. Pabel, T. Petkov, C. Kneissl, and P. Schumacher

The Influence of Casting Speed in the as Cast Strip Mechanical Properties of 8079 and 8006 Alloys305
D. Spathis, and J. Tsiros

Effect of Cooling Rate on Iron-Rich Intermetallic Phases in 206 Cast Alloys ...311
K. Liu, X. Cao, and X. Chen

Effect of Iron in Al-Mg-Si-Mn Ductile Diecast Alloy ..317
S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan

Oxidation Behavior of Al1Ca Added Al-5Mg Alloy in the Liquid State ...323
Y. Yoon, S. Ha, G. Yeom, H. Lim, and S. Kim

Effect of the Thermal Modulus and Mould Type on the Grain Size of AlSi7Mg Alloy327
I. Lizarralde, A. Niklas, A. Fernández-Calvo, and J. Lacaze

Alloy AlSi30 Cast in the Process of Rapid Solidification and Consolidated in the Process of Plastic Forming333
W. Szymanski, M. Szymanek, J. Zelechowski, M. Bigaj, M. Gawlik, and B. Plonka
Thermal Mechanical Processing

Effects of Homogenization Treatment Conditions on the Recrystallization Behavior of Al-1.2Mn Aluminum Alloy Sheets ...341
P. Zhao, X. Chen, W. Chen, and Y. Zhang

Toward a Recrystallized Microstructure in Extruded AA6005A Alloy ..347
A. Bahrami, A. Bakker, A. Miroux, and J. Sietsma

Grain Subdivision and Its Effect on Texture Evolution in an Aluminum Alloy Under Plane Strain Compression ...351
Q. Ma, W. Mao, B. Li, P. Wang, and M. Horstemeyer

Fatigue Analysis of Ultrafine Grained Al 1050 Alloy Produced by Cyclic Forward Backward Extrusion357
H. Alhosseini, and M. Zaeem

Effect of Zn Content and Process Parameters on Corrosion Behaviour of Twin-Roll Cast Aluminum Brazing Alloys ...361
M. Dündar, M. Güneyüz, C. Isıksaçan, and A. Pastirmaci

Solutioning and Aging

Growth Ledges on Silver-Segregated θ’ (Al₃Cu) Precipitates ...367
J. Rosalie, and L. Bourgeois

On the Aging Behavior of AA2618 DC Cast Alloy ..373
P. Shen, E. Elgallad, and X. Chen

The Effect of Cold Work on the Precipitation and Recrystallization Kinetics in Al-Sc-Zr Alloys379
C. McNamara, S. Kampe, P. Sanders, and D. Swenson

A Novel Solution Heat Treatment of 7075-Type Alloy ..383
M. Ibrahim, A. Samuel, S. Alkahtani, and F. Samuel

Experimental Study of the Al-rich Corner of the Al-Si-Ti System at 500°C ..391
Y. Li, Q. Luo, J. Zhang, and Q. Li

Emerging Technology

Transient Microstructural Thermomechanical Fatigue and Deformation Characteristics under Superimposed Mechanical and Thermal Loading in AlSi Based Automotive Diesel Pistons ..397
R. Morgenstern, and S. Kenningley

Mechanical Behaviour of Cold Formed Metal-Polymer Laminate and the Interaction of Its Layers405
F. Ó Dubhlaing, D. Browne, R. Remnicks, and C. Remnicks

Mechanical and Tribological Properties of AA2124-Graphene Self Lubricating Nanocomposite411
A. Ghazaly, B. Seif, and H. Salem

Joining Vacuum High Pressure Die Cast A356 under T4 Treatment to Wrought Alloy 6061417
M. Wang, Y. Zou, H. Hu, G. Meng, P. Cheng, and Y. Chu
General Poster Session

Applications of the Horizontal Squeeze Casting Process for Automotive Parts Manufacturing225
 P. Dulyapraphant, E. Kittikhewtraweeserd, P. Kritboonyarit, and N. Den mud

Characterization of the Developed Precipitates in Al-2 at.%Zn-x at.%Mg, (x=1.8, 2, 2.4, 3, 4.2)231
 N. Affy, A. Gaber, and G. Abbady

Design and Development of a Permanent Mould for the Production of Motor-Cycle Piston in Sedi-Enugu237
 C. Ilochonwu, and E. Nwonye

Development and Research of New Aluminium Alloys with Transition and Rare-Earth Metals and Equipment
for Production of Wire for Electrotechnical Applications by Methods of Combined Processing243
 I. Matveeva, N. Dovzhenko, S. Sidelnikov, L. Trifonенkov, V. Baranov, and E. Lopatina

Influence of Machining Parameters on Al-4.5Cu-TiC In-Situ Metal Matrix Composites249
 P. Jha, A. Kumar, and M. Mahapatra

Effect of Mg Contents on Fluidity of Al-xMg Alloys ...253
 N. Kim, S. Ha, Y. Yoon, G. Yeom, H. Lim, and S. Kim

Effect of Process Parameters on Centrifugally Cast Al-Si FGM ...257
 K. Aithal, V. Desai, N. S, and P. Mukunda

Effects of Minor Sc Addition on the Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Casting
Aluminum Alloy ...263
 G. Yang, S. Liu, and W. Jie

Microhardness, Corrosion Behaviour and Microstructures of Directionally Solidified Al-Cu Alloys269
 A. Ares, C. Rodriguez, C. Mendez, C. Schvezov, and M. Rosenberger

Production of Single Cylinder Engine Components through High Pressure Die Casting in Sedi Enugu275
 E. Nwonye, C. Ilochonwu, and C. Nwajagu

The Effect of Thermomechanical Aging of Aluminium-Copper Alloy (MATLAB Approach)281
 A. Adegbola, A. Ghazali, O. Fashina, A. Omotoyinbo, and O. Olaniran

Aluminum Processing

Aluminum Processing I

Surface Crack Characterization of Twin Roll Caster Shells and Its Influence on As-Cast Strip Surface Quality291
 M. Dü ndar, B. Beyhan, O. Birbasar, H. Altuner, and C. Isiksa çan

Aluminum Processing II

The Effect of Magnesium Content on Microstructure Evolution during Hot Deformation of Aluminum Alloys309

High Strength Nanostructured Al-Zn-Mg-Cu-Zr Alloy Manufactured by High-Pressure Torsion315
 C. An, H. Lu, and S. Yuan

Corrosion Behavior of 2024 Aluminum Alloy Anodized in Sulfuric Acid Containing Inorganic Inhibitor321
 M. Mohammadi, A. Yazdani, F. Mohammadi, and A. Alfantazi
Laboratory Simulation of Wear during Hot Extrusion of Aluminium ... 515
G. Kugler, and M. Tercelj

The Production of Wrought AISi30Cu1.5Mg1.2Ni1.5Fe0.8 Alloy with Ultrafine Structure 521
M. Szymarek, B. Augustyn, W. Szymanski, and D. Kapinos

The Structure and Properties of Wrought Aluminium Alloys Series 6xxx with Vanadium for Automotive Industry .. 527
M. Lech-Grega, W. Szymanski, B. Plonka, S. Boczkal, M. Gawlik, M. Bigaj, and P. Korczak

Aluminum Reduction Technology

Cell Design and Performance

In Depth Analysis of Energy-Saving and Current Efficiency Improvement of Aluminum Reduction Cells 537
F. Yan, M. Dupuis, J. Zhou, and S. Ruan

Rio Tinto Alcan AP4X Low Energy Cell Development .. 543
P. Thibeault, S. Becasse, A. Blais, P. Coté, L. Fiot, and F. Laflamme

Energy Reduction Technology for Aluminum Electrolysis: Choice of the Cell Voltage 549
F. Naixiang, P. Jianping, W. Yaowu, D. Yuzhong, and L. Xian’an

Advancements of Dubal High Amperage Reduction Cell Technologies .. 553

Development of Low-Voltage Energy-Saving Aluminum Reduction Technology .. 557
J. Li, X. Lv, H. Zhang, and Y. Liu

D18+: Potline Modernisation at DUBAL .. 561
S. Akhmetov, D. Whitfield, M. Al-Jallaf, A. Al Zarouni, A. Arkhipov, A. Al-Redhwan, and W. Abou Sidou

Industry Test of Perforation Anode in Aluminium Electrolysis Technology .. 567
Y. Tian, H. Li, L. Wei, X. Cao, and J. Yin

The First Results of the Industrial Application of the EcoSoderberg Technology at the Krasnoyarsk Aluminium Smelter ... 573
V. Buzunov, V. Mann, E. Chichuk, V. Frizorger, A. Pinaev, and E. Nikitin

Fundamentals: Modelling

Unsteady MHD Modelling Applied to Cell Stability .. 579
S. Renaudier, B. Bardet, G. Steiner, A. Pedcenko, J. Rappaz, S. Molokov, and A. Masserey

Impact of Magnetohydrodynamic and Bubbles Driving Forces on the Alumina Concentration in the Bath of an Hall-Héroult Cell ... 585
R. von Kaenel, J. Antille, M. Romerio, and O. Besson

Investigation of Electrolytic Bubble Behaviour in Aluminium Smelting Cell .. 591
M. Alam, Y. Morsi, W. Yang, K. Mohanarangam, G. Brooks, and J. Chen

Mathematical Model Validation of Aluminium Electrolysis Cells at DUBAL .. 597
A. Zarouni, L. Mishra, M. Bastaki, A. Al Jasmi, A. Arkhipov, and V. Potocnik
Production Application Study on Magneto-Hydro-Dynamic Stability of a Large Prebaked Anode Aluminum Reduction Cell

S. Ruan, F. Yan, M. Dupuis, V. Bojarevics, and J. Zhou

MHD of Aluminium Cells with the Effect of Channels and Cathode Perturbation Elements

V. Bojarevics

Magnetohydrodynamic Model Coupling Multiphase Flow in Aluminum Reduction Cell with Innovative Cathode Protrusion

Q. Wang, B. Li, F. Wang, and N. Feng

Optimization of the Cathode Collector Bar with a Copper Insert Using Finite Element Method

M. Gagnon, P. Goulet, R. Beeler, D. Ziegler, and M. Fafard

Energy Savings in Aluminum Electrolysis Cells: Effect of the Cathode Design

M. Blais, M. Desilets, and M. Lacroix

Potline Operation I: Smelter Operations

Low Power Operation at Aluminium Dunkerque Smelter

J. Peyneau, L. Fiot, S. Mermet-Guyenet, and O. Rebouillat

Maximizing Creeping Value through Rigorous Methodology

B. Champel, and N. Monnet

The Quick Shut Down and Restarting of 291 kA Pre-Baked Potline at JSC "RUSAL Sayanogorsk" from May to August 2011

V. Buzunov, A. Soldatov, V. Mann, A. Pavin, V. Borisov, S. Zatepyakin, E. Scherbakov, E. Scherbakov, and A. Gouzenkov

Production Growth and Future Challenges in Aluminium Bahrain (Alba)

I. Al-Ansari, A. Habib, A. Mittal, and N. Al-Jallabi

High Frequency Power Modulation - TRIMET Smelters Provide Primary Control Power for Stabilizing the Frequency in the Electricity Grid

A. Lutzerath

Autonomous Vehicle and Smelter Technologies

A. Tews, and P. Borges

Preventive Maintenance of Transport Vehicles: Is It Improving Production Stability of a Smelter?

M. Meijer

Fundamentals: Chemistry

Composition and Thermal Analysis of Crust Formed from Industrial Anode Cover

Liquidus Temperatures of Na$_3$AlF$_6$ -AlF$_3$-CaF$_2$-KF-LiF-Al$_2$O$_3$ Melts

D. Yuezhong, P. Jianping, B. Yunbin, and F. Naixiang

The Effect of Calcium Fluoride on Alumina Solubility in Low Temperature Cryolite Melts

P. Tingaev, Y. Zaikov, A. Apisarov, A. Dedyukhin, and A. Redkin
Conductivity of KF-NaF-AlF₃ System Low-temperature Electrolyte ... 689
 J. Yang, W. Li, H. Yan, and D. Liu

Numerical Analysis of Ionic Mass Transfer in the Electrolytic Bath of an Aluminium Reduction Cell 695
 M. Ariana, M. Désilets, and P. Proulx

Liquids Temperature of Electrolytes for Aluminum Reduction Cells ... 701
 D. Shi, B. Gao, Z. Wang, Z. Shi, and X. Hu

Effect of LiAlO₂ and KF on Physicochemical Properties for Industrial Aluminum Electrolyte 705
 X. Lv, S. Chen, Y. Lai, Z. Tian, J. Li, and H. Zhang

Cell Operations and Process Control

Improvement of Alumina Dissolution Rate through Alumina Feeder Pipe Modification 713
 J. Tessier, G. Tarcy, E. Batista, X. Wang, and P. Doiron

Reduction Cell Restart Method Influence on Cell Life Evolution ... 719
 M. Lukin, and R. Jettsch

Start of an Aluminum Reduction Cell without Liquid Bath .. 725
 K. Lalonde, B. Audie, W. Kristensen, and T. Snyder

A MIMO Modeling Strategy for Bath Chemistry ... 729
 F. Soares, and R. Oliveira

Cumulative Distributions of Metallic Impurities ... 735
 S. Lindsay

Sodium Content in Aluminum and Current Efficiency - Correlation through Multivariate Analysis 741
 L. Dion, L. Kiss, P. Chartrand, G. Dufour, and F. Laflamme

Gas-Solid Flow Applications for Powder Handling in Aluminum Smelters Processes .. 747
 P. Vasconcelos, and A. Mesquita

Operational Experience of Advanced Alumina Handling Technology in a Russian Smelter 753
 J. Paepcke, A. Hilck, and S. Marshalko

Environment I

Reduction in HF Emission through Improvement in Operational Practices ... 763
 H. Devadiga, A. Banjah, M. AlJallaf, A. Al Zarouni, K. Al Aswad, A. Kumar, G. Meintjes, S. Gowda, and M. Khan

Trace Element Concentration in Particulates from Pot Exhaust and Depositions in Fume Treatment Facilities 769
 H. Gaertner, A. Ratvik, and T. Aarhaug

The Study and Applications of Modern Potline Fume Treatment Plant (FTP) ... 775
 D. Xiang, L. Weining, L. Xun, D. Qiyi, and Y. Xiaobing

F>C: Combined Treatment of Pot Gases and Anode Baking Furnace Fumes ... 781
 B. Hureiki, C. Lim, A. Periers, E. Bouhabila, G. Girault, M. Leduc, and S. Delenclos

Compact Filter Design for Gas Treatment Centers .. 787
 P. Verbraak, P. Klut, T. Turco, E. Dupon, and E. Engel
An Innovative Compact Heat Exchanger Solution for Aluminium Off-Gas Cooling and Heat Recovery 793
E. Bouhabila, E. Naess, V. Einenjord, and K. Kristjansson

Latest Filter Developments Increasing Existing Aluminium Smelter Gas Treatment Centre Capacity and Reducing Emissions .. 799
M. Neate, and B. Currell

Reduced Ventilation of Upper Part of Aluminum Smelting Pot: Potential Benefits, Drawbacks, and Design Modifications .. 805
R. Zhao, L. Gosselin, M. Fafard, and D. Ziegler

Latest Developments in Potroom Building Ventilation CFD Modelling ... 811
N. Menet, G. Girault, N. Monnet, C. Turpin, and L. Soulhac

Potline Operation II: Equipment

Solutions to Address Arc Welding Problems in an Operating Potline .. 819

Replacement of Damaged Electrical Insulators on Live Cross-Over Busbars inside a Tunnel: A Methodology Based on Risk Assessment and Numerical Simulation .. 823

A Thermal-Mechanical Approach for the Design of Busbars Details .. 829
A. Schneider, O. Charette, D. Richard, and C. Turcotte

Study of Technology and Equipment on Magnetic Induction Intensity Weaken for Aluminum Reduction Cells Welding in the Condition of Pot Line Current ... 837
Z. Wang, B. Cao, T. Yang, J. Huang, and M. Li

Potline Shutdown and Restart Secured Solutions .. 843
A. Hequet

Effect of Watering and Non-Watering Cooling Rates on the Mechanical Properties of an Aluminum Smelter’s Potshell ... 845
A. Brimmo, M. Hassan, M. Ibrahiem, and Y. Shatilla

Mathematical Model of Cooling of a Stopped Pot and Its Validation .. 851
M. Hassan, A. Brimmo, M. Ibrahiem, and Y. Shatilla

Environment II: PFCs

A Study of Low Voltage PFC Emissions at Dubal .. 859
A. Zarouni, M. Reverdy, A. Al Zarouni, and K. Venkatasubramaniam

Continuous PFC Emissions Measured on Individual 400kA Cells .. 865
D. Wong, and J. Marks

PFC and Carbon Dioxide Emissions from an Australian Aluminium Smelter Using Time-Integrated Stack Sampling and GC-MS, GC-FID Analysis .. 871
P. Fraser, P. Steele, and M. Cooksey

Investigation on Formation Mechanism of Non-Anode Effect Related PFC Emissions from Aluminum Reduction Cells .. 877
X. Chen, W. Li, Y. Zhang, S. Qiu, and C. Bayliss
On the Mechanism Behind Low Voltage PFC Emissions ... 883
J. Thonstad, S. Rolseth, and R. Keller

Frequency Response Analysis of Anode Current Signals as a Diagnostic Aid for Detecting Approaching Anode Effects in Aluminum Smelting Cells ... 887
C. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B. Welch

Reduction Strategies for PFC Emissions from Chinese Smelters.. 893
W. Li, X. Chen, S. Qiu, B. Zhang, and C. Bayliss

Off-gas Analysis of Laboratory-Scale Electrolysis Experiments with Anodes of Various Compositions 899
O. Kjos, T. Aarhaug, E. Skybakmoen, A. Solheim, and H. Gudbrandsen

Hydrolysis of Carbonyl Sulfide (COS) on Smelting Grade Alumina .. 905
A. Mikhonin, N. Dando, and M. Gershenzon

Cell Fundamentals, Phenomena and Alternatives I (2012)

A Thermodynamic Approach to the Corrosion of the Cathode Refractory Lining in Aluminium Electrolysis Cell: Modelling of the Al₂O₃-Na₂O-SiO₂-AlF₃-NaF-SiF₄ System ... 911
G. Lambotte, and P. Chartrand

Effect of Current Density and Phosphorus Impurities on the Current Efficiency for Aluminum Deposition in Cryolite-Alumina Melts in a Laboratory Cell .. 917
R. Meirbekova, G. Saevarsdottir, G. Haarberg, and J. Armoo

Cast Shop for Aluminum Production

Aluminum Cast Shop I

Very High Purity Ingot - An Endangered Species? ... 925
S. Lindsay

The Challenge of Effectively Utilizing Trace Elements/Impurities in a Varying Raw Materials Market 929
G. Jha, S. Ningileri, X. Li, and R. Bowers

Energy Control in Primary Aluminium Casthouse Furnaces .. 935
I. Johansen, and S. Stromhaug

Metal Contamination Associated with Dross Processing .. 941
R. Peterson

Aluminum Cast Shop II

Ultrasonic Degassing and Processing of Aluminum ... 949
V. Rundquist, and K. Manchiraju

Kinetics of Ultrasonic Degassing of Aluminum Alloys .. 957
N. Alba-Baena, and D. Eskin

Removal of Inclusions in Molten Aluminum by Flux Injection under Counter-Gravity .. 963
J. Zeng, and H. Gu
Advanced Compact Filtration (ACF): An Efficient and Flexible Filtration Process ... 967
F. Breton, P. Waite, and P. Robichaud

Electromagnetic Priming of Ceramic Foam Filters (CFF) for Liquid Aluminium Filtration ... 973
R. Fritzsch, M. Kennedy, J. Bakken, and R. Aune

Plant Scale Investigation of Liquid Aluminum Filtration by Al₂O₃ and SiC Ceramic Foam Filters ... 981
S. Bao, M. Syvertsen, A. Nordmark, A. Kvithyld, T. Engh, and M. Tangstad

Casting Practices Influencing Inclusion Distributions in Billets .. 987
G. Razaz, and T. Carlberg

Oxidation of Commercial Purity Aluminium Melts: An Experimental Study .. 993
S. Bonner, J. Taylor, J. Yao, and M. Rhamdhani

Aluminum Cast Shop III

Optimisation of Grain Refinement ... 1001
R. Vainik, J. Courtenay, and B. Saglam

Grain Refiner for Al-Si Alloys .. 1009
H. Nadendla, M. Nowak, and L. Bolzoni

Production of Al-Ti-B Grain Refining Master Alloys from B₂O₃ and K₂TiF₆ by Microwave Irradiation ... 1013
S. Zhou

Effects of Yb Additions on Refinement of Eutectic Si in Al-5Si Alloys .. 1017
J. Li, and P. Schumacher

Influence of Vanadium on the Microstructure of A356 Foundry Alloy .. 1023
T. Ludwig, P. Schaffer, and L. Arnborg

Aluminum Cast Shop IV

Influence of Die and Casting Temperatures and Titanium and Strontium Contents on the Technological Properties of Die-Cast A356 in the As-Cast and T6 Condition .. 1031
S. Fischer, V. Groten, J. Brachmann, C. Fix, T. Vossel, and A. Bührig-Polaczek

Horizontal Single Belt Strip Casting (HSBC) of Al-Mg-Sc-Zr Alloys .. 1037
M. Celikin, D. Li, L. Calzado, M. Isac, and R. Guthrie

Electrode Technology for Aluminium Production

Anode Raw Materials

Review of Different Techniques to Study the Interaction Between Coke and Pitch in Anode Manufacturing 1045

Observations on the Coke Air Reactivity Test ... 1051
K. Neyrey, L. Edwards, and J. Marino

Impurity Removal from Petroleum Coke .. 1057
A. Gagnon, N. Backhouse, H. Darmstadt, E. Ryan, L. Dyer, and D. Dixon

xvi
Calcined Coke Round Robin 19 and the Precision of Bulk Density Tests .. 1063
 M. Lubin, L. Edwards, and L. Lossius

A Method for the Rapid Characterisation of Petroleum Coke Microstructure Using Polarised Light
Microscopy .. 1069
 A. Innus, A. Jomphe, and H. Darmstadt

Improvements of Vibrated Bulk Density Analysis at VM-CBA and Petrocoque S.A... 1075
 J. Pardo, E. daSilva, P. da Silva, and A. Nantes

Influence of GPC Properties on the CPC Quality ... 1079
 J. Zhao, Q. Zhao, Q. Zhao, L. Yu, and P. Yu

Quality of Calcined Petroleum Coke and Its Influence on Aluminium Smelting .. 1085
 J. Subero

Paste Plant Operations

A Green Anode Plant Performance Analysis Tool Fully Embedded in the Plant Control System 1091
 X. Genin, and P. Calo

Measures to Prevent Baked Anode Density Drop When Using High Porosity Cokes 1097
 V. Piffer, C. Woo, F. Niceas, R. Bacelar, J. Araujo, and L. Paulino

New Green Anode Plant at EMAL - Start-Up and Operation in the First 2 Years .. 1101
 R. Akhtar, R. Gemein, and M. Beilstein

Improving Baked Anode Density and Air Permeability through Process Optimization and Coke Blending......... 1105
 B. Ndjom, M. Malik, A. AlMarzouqi, T. Sahu, and S. Rabba

Development of an Analytical Dynamic Model of a Vibro-Compactor Used in Carbon Anode Production 1111
 F. Rebaïne, M. Bouazara, D. Marceau, D. Kocaefe, and B. Morais

Driving Cost Reduction and Carbon Plant Productivity Improvement through Theory of Constraints and
Planned Maintenance Capability ... 1117
 K. Sinclair, and B. Sadler

Optimum Vibration Time for Green Anode Production ... 1123
 S. Gao, C. Bao, S. Zhang, H. Wang, J. Woo, and E. Cutshall

Comparison of Mixing Process Methods in Prebaked Anode Production .. 1127
 S. Yi, G. Huai, Z. Shanhong, L. Chaodong, and X. Haifei

Bake Furnace Design and Operation

Hydro Aluminium’s Historical Evolution of Closed Type Anode Baking Furnace Technology 1133
 M. Tkac, A. Ruud, I. Holden, and H. Linga

Use of Mathematical Modelling to Study the Behavior of a Horizontal Anode Baking Furnace 1139
 Y. Kocaefe, N. Oumarou, M. Baieteche, D. Kocaefe, B. Morais, and M. Gagnon

Study on Anode Baking Parameters in Open-Top and Closed-Type Ring Furnaces ... 1145
 B. Baharvand, M. Siahouei, M. Batoei, and S. Sadeghi

Energy Efficiency Improvement in Anode Baking Furnaces .. 1151
Anode Quality and Performance

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode Baking Process Improvement at ALRO</td>
<td>1155</td>
</tr>
<tr>
<td>P. Mahieu, N. Fiot, A. Trillat, O. Balu, and C. Stanescu</td>
<td></td>
</tr>
<tr>
<td>Operational and Environmental Benefits on the New Baking Furnace at Boyne Smelter by Use of an Advanced Firing Technology</td>
<td>1163</td>
</tr>
<tr>
<td>A. Himmelreich, D. Maiwald, D. DiLisa, G. Cordon, and S. Moodley</td>
<td></td>
</tr>
<tr>
<td>Laser Mapping of Carbon Bake Furnaces</td>
<td>1169</td>
</tr>
<tr>
<td>A. Tews, M. Bosse, R. Zlot, P. Flick, and M. Noonan</td>
<td></td>
</tr>
</tbody>
</table>

Cathode Materials and Wear

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Scale Anodes for Raw Material Evaluation and Process Improvement</td>
<td>1177</td>
</tr>
<tr>
<td>Relationships between Coke Properties and Anode Properties - Round Robin 19</td>
<td>1183</td>
</tr>
<tr>
<td>L. Lossius, M. Lubin, L. Edwards, and J. Wyss</td>
<td></td>
</tr>
<tr>
<td>Application of the Artificial Neural Network (ANN) in Predicting Anode Properties</td>
<td>1189</td>
</tr>
<tr>
<td>D. Bhattacharyay, D. Kocae, Y. Kocae, B. Morais, and M. Gagnon</td>
<td></td>
</tr>
<tr>
<td>A Model for Predicting the Electrical Resistivity of Baked Anodes</td>
<td>1195</td>
</tr>
<tr>
<td>D. Bhattacharyay, D. Kocae, Y. Kocae, B. Morais, and M. Gagnon</td>
<td></td>
</tr>
<tr>
<td>The Role of Electrode Quality in Metal Purity</td>
<td>1201</td>
</tr>
<tr>
<td>S. Lindsay</td>
<td></td>
</tr>
<tr>
<td>Electrochemical Characterization of Carbon Anode Performance</td>
<td>1207</td>
</tr>
<tr>
<td>High Capacity Thermobalance Anode Reactivity Testing</td>
<td>1213</td>
</tr>
<tr>
<td>N. Janssen, J. Baker, F. Cannova, and B. Sadler</td>
<td></td>
</tr>
<tr>
<td>Diagnosing Changes in Baked Anode Properties using a Multivariate Data-driven Approach</td>
<td>1219</td>
</tr>
<tr>
<td>J. Lauzon-Gauthier, C. Duchesne, and J. Tessier</td>
<td></td>
</tr>
<tr>
<td>Evolution of the Thermo-Mechanical Properties of Ramming Paste from Ambient to Operating Temperature in Hall-Héroult Cell</td>
<td>1227</td>
</tr>
<tr>
<td>S. Tremblay, L. St-Georges, L. Kiss, L. Hacini, B. Allard, and D. Marceau</td>
<td></td>
</tr>
<tr>
<td>New Compaction Method for the Production of Large Ramming Paste Samples for 3D Mechanical Characterization</td>
<td>1233</td>
</tr>
<tr>
<td>P. St-Arnaud, D. Picard, M. Noël, H. Alamdari, D. Ziegler, and M. Fafard</td>
<td></td>
</tr>
<tr>
<td>Technology for Manufacturing Cathodes Used in Aluminum Reduction in China</td>
<td>1239</td>
</tr>
<tr>
<td>H. Yang, F. Liu, S. Cai, and X. Yang</td>
<td></td>
</tr>
<tr>
<td>The Effect Of Cryolite on the Formation of Aluminum Carbide at the Carbon Aluminum Interface</td>
<td>1245</td>
</tr>
<tr>
<td>B. Novak, K. Tschöpe, A. Ratvik, and T. Grande</td>
<td></td>
</tr>
<tr>
<td>Critical Reflections on Laboratory Wear Tests for Ranking Commercial Cathode Materials in Aluminium Cells</td>
<td>1251</td>
</tr>
<tr>
<td>K. Tschöpe, A. Store, E. Skybakmoen, A. Solheim, T. Grande, and A. Ratvik</td>
<td></td>
</tr>
</tbody>
</table>
Inert Anodes, Cell Materials and Alternative Processes

Mechanically Alloyed Cu-Ni-Fe-Y Material as Inert Anode for Al Production .. 1277
V. Ouvarov-Bancalero, D. Guay, and L. Roue

Cold Spray Deposition of Mechanically Alloyed Cu-Ni-Fe Material for Application as Inert Anodes for
Aluminum Production ... 1283

Initial 1000A Aluminum Electrolysis Testing in Potassium Cryolite-Based Electrolyte ... 1289
J. Hryn, O. Tkacheva, and J. Spangenberger

Electrochemical Behavior of Cermet Anodes in Na$_3$AlF$_6$-K$_3$AlF$_6$-Based Low-Melting Electrolytes for Aluminum
Electrolysis .. 1295
G. Wang, and X. Sun

Production of Aluminum Sulfide through Carbosulfidation Utilising H$_2$S .. 1299
N. Huda, M. Rhamdhani, B. Brooks, B. Monaghan, and L. Prentice

Microstructural Evolution of Cast Iron Used for Cathode Rodding in Aluminum Electrolysis Cell 1305
A. Hekmat-Ardakan, G. Soucy, and L. Rivoaland

Preparing Al-Sc-Zr Alloys in Aluminum Electrolysis Process.. 1311
Y. Qian, J. Xue, Q. Liu, and J. Zhu

CBF Environmental & Anode Electrical Connections

Fume Treatment Systems Based on RTO Technology for Carbon Baking Furnaces ... 1317
M. Hagen, and B. Schricker

A. Sorhuus, S. Ose, and G. Wedde

Successful Start-Up of the Fume Treatment Centre at Boyne Smelter Carbon Bake Furnace #4 1329
J. Higley, G. Cordon, P. Klut, R. Oliana, E. Dupon, T. Turco, and E. Engel

Thermo-Electro-Mechanical Characterization of Anode Interfaces at Operating Conditions 1335
H. Fortin, M. Martin, N. Kandev, G. Gauvin, D. Ziegler, and M. Fafard

A Fully Coupled Thermal-Electrical-Mechanical Transient FEA Model for a 3D Anode Assembly 1341
D. Gunasegaram, and D. Molenaar

Experimental and Numerical Investigation of Voltage Drop in Anode Assemblies .. 1347
E. Jeddi, D. Marceau, L. Kiss, L. St-Georges, D. Laroche, and L. Hacini

xix
Optimization of the Anode-Stub Contact: Effect of Casting Temperature, Contact Stress, Temperature and Surface Roughness ... 1353

B. Oye, A. Store, E. Haugland, and J. Hop

Experimental Investigation of Factors Affecting the Electrical Performance of the Stub to Carbon Connection ... 1359

D. Molenaar, T. Kilpatrick, and A. Montalto

Author Index .. 1365

Subject Index ... 1371
PREFACE

It is my honour to welcome you to the 142nd TMS Annual Meeting and Exhibition at San Antonio, Texas and to present the *Light Metals 2013* proceedings. As always, *Light Metals 2013* is the collective output of the huge intellectual efforts by Authors, Session Chairs, Subject and Symposium Organisers, and TMS Support Staff. We owe these colleagues our sincere thanks.

We are meeting with the aluminium smelting industry continuing to face difficult times, with ongoing oversupply and metal prices generally declining through 2012. Enduring post GFC instabilities in a number of economies around the world mean that right now the light at the end of the tunnel is not easy to see.

During tough times, the typical response of companies is to “tighten the belt” to conserve cash, which unfortunately leads to lower attendance at meetings such as this. I firmly believe that participation at the TMS Annual Meeting, with its inherent technical interchange opportunities, should not be seen as a cost to be cut, but rather as an investment to be made. As a Graduate at the Comalco Research Centre, a request to attend my first TMS meeting in 1987 was approved on the basis that I find plant improvements that deliver net savings more than ten times the attendance cost. The considerable cost of travel to the United States meant this was not a trivial task. I can say, however that this target was easily exceeded for the first, and all subsequent TMS meetings I attended as a Comalco employee. The target was also exceeded for all the TMS meetings attended by others that I approved travel for, as they had the same task. The ideas that will give you this return on investment are to be found in the papers in this volume, Author presentations, informal discussions over coffee, visiting the Exhibition, and very importantly, from the contacts made that can last a career.

In addition to economic issues, and the sustainability and energy concerns that are inherent parts of our business, we now face a further challenge. The changing quality of raw materials, most notably petroleum coke for anodes, is increasing Casthouse metal impurities. A special Keynote Presentation session is devoted to this topic during the meeting. Les Edwards has done an excellent job of organising this session to cover the issues from raw materials and process impacts through to metal quality considerations. I believe impurities are a growing concern that will require serious attention right across our industry and urge you to attend the Keynote session and engage with the issues. The contribution of Steve Lindsay to this topic deserves special recognition as he is making a Keynote Presentation as well as presenting papers related to impurities in four of the Aluminum Committee sponsored symposia.

On behalf of the organisers of the Light Metals 2013 conference and proceedings, I would like to thank the TMS staff for their support and ability to deliver on our requests. I would also like to thank Steve Lindsay and Carlos Suarez (Past and current Chair of the Aluminum Committee) for their support. My deepest gratitude go to the Authors for their efforts, and the Subject Organizers who have done most of the work: Pat Clement, Les Edwards, Mark Cooksey, Gyan Jha, Kai Karhausen, Zhengdong Long, Subodh Das, William Golumbfskie, and Tongguang Zhai.

To end on a positive note, I am sure that you will find that *Light Metals 2013* maintains the position of this series as the preeminent source of developments in aluminum process knowledge and as such can help us through the difficult current times.

Barry A. Sadler
EDITOR'S BIOGRAPHY

BARRY A. SADLER
LIGHT METALS 2013 EDITOR

Barry Sadler has been involved in the aluminium industry for more than 30 years in a range of positions, but always with a focus on anode carbon technology. He has a Ph.D. in Metallurgy, and commenced his career in 1982 at the Comalco Research Centre (CRC) in Melbourne, Australia. Barry established the Carbon Technology Group at CRC before moving to Comalco’s New Zealand Aluminium Smelter (NZAS) as Carbon Plant Manager in 1989. After more than seven years at NZAS, and following a stint as the General Manager of Organisational Effectiveness for Hamersley Iron, Barry was appointed as a Corporate Technical General Manager at Comalco Aluminium’s headquarters in Brisbane, Australia. Barry resigned from Rio Tinto/Comalco in 2002 to successfully set up “Net Carbon Consulting Pty Ltd”. As a consultant, he provides advice, training, and support to clients on improving carbon plant performance and process technology, always maintaining a strong focus on the practical application of statistical thinking and methods to process management. Barry has authored or co-authored over 25 technical papers, is a regular lecturer on anode technology at post-graduate courses run by the University of Auckland, and has been an invited speaker at a range of conferences and meetings. He has been an active member of TMS for 25 years as a presenter, session chair, subject organiser, and member of the Aluminum Committee.
ALUMINUM KEYNOTE: IMPURITIES IN THE ALUMINUM SUPPLY CHAIN AND ELECTRODE TECHNOLOGY FOR ALUMINUM PRODUCTION

Les Edwards is Vice President of Technical Services at Rain CII Carbon based in Houston, Texas. He has been with Rain CII since 1998 and is responsible for customer technical support, R&D activities, laboratory services, and quality management. Les has been a regular contributor to TMS meetings over the last 20 years as an author, presenter, and session chair. Les was Program Organizer of the Carbon Technology sessions at the 2001 TMS meeting. Prior to joining Rain CII Carbon, he spent 11 years working in the aluminum industry in Australia, based at the Comalco Research Center in Melbourne. Les holds a B.S. from the University of Western Australia and an M.B.A. from Tulane University in New Orleans.

ALUMINA AND BAUXITE

Pat Clement graduated from the Colorado School of Mines with B.S. and M.S. in Metallurgical Engineering. He originally joined ASARCO Inc. as a Research Engineer working in various non-ferrous metals. After leaving ASARCO he worked for Brush Wellman in the powder fabrication of Beryllium components. Pat began working in the alumina industry in 1994 when he joined Ormet at their alumina facility in Burnside, Louisiana, eventually becoming Technical Manager for the facility. He is currently a Technical Specialist for Alcoa at their Point Comfort Operations Alumina Refinery.

ALUMINUM ALLOYS: FABRICATION, CHARACTERIZATION AND APPLICATIONS

Zhengdong Long is an Alloy Development Engineer at Kaiser Aluminum in Spokane, Washington, United States. He has been active for over a decade in the area of physical and mechanical metallurgy of aluminum alloy and superalloys. Dr. Long's diverse experience includes casting, thermo-mechanical processing, mechanical properties, corrosion behaviors as well as casting and rolling process modeling. He specializes in microstructure characterization and mechanical behavior of metallic materials. His principle research interests are in the development of industrial processes for manufacturing. He has two patents to his credit and more than 30 published papers. He received his doctorate in Materials Science and Engineering from Central Iron and Steel Research and Institute in Beijing, China, in 2000.
ALUMINIUM PROCESSING

Kai F. Karhausen is department manager for process technology at the central Rolled Products R&D of Hydro Aluminium in Bonn, Germany. Dr. Karhausen earned his doctorate at the RWTH Aachen and worked in the industrial aluminum research for 15 years both in Norway and Germany. His principal work is focused on the modeling and optimization of materials behavior in industrial production processes. Dr. Karhausen has issued 75 scientific presentations and publications. In 2003 he was awarded the Georg-Sachs-Preis of the German Materials Society (DGM) for important achievements in the field of integrated modeling of metal forming and materials behavior.

ALUMINUM REDUCTION TECHNOLOGY

Mark Cooksey is Program Leader - Process Integration at CSIRO Process Science and Engineering, where he leads a group of approximately 90 engineers, physicists, chemists, and technical staff to develop step-change technologies for the resource processing industries. He is also responsible for the aluminium smelting project portfolio at CSIRO. Mark’s career began in 1997 as a Research Engineer at Comalco Research Centre, initially working on the development of improved aluminium alloys and aluminium casting processes. After becoming a Senior Research Engineer in 2000, he gradually moved toward aluminium smelting research. He also worked for GE Plastics as a Production Technologist in 2003. Mark joined CSIRO in 2004 as a project leader for multiple research projects in aluminium and magnesium production. In 2008 he was appointed Group Leader - Process Engineering, managing approximately 30 engineers and technical staff. While at CSIRO, Mark has completed a Ph.D. in Chemical and Materials Engineering, developing a technique to directly measure ohmic resistance in aluminium reduction cells.

CAST SHOP FOR ALUMINUM PRODUCTION

Gyan Jha has spent 31 years in the aluminum sheet and packaging business. Currently CTO for Tri-Arrows Aluminum, Gyan has extensive experience in all aspects rigid container sheet processing and the manufacturing of aluminum for packaging. Gyan’s work experience includes 25 years at Tri-Arrows Aluminum (formerly ARCO Aluminum).
ALUMINUM COMMITTEE

2012-2013

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td>Carlos Enrique Suarez, Sr.</td>
<td>Alcoa Inc.</td>
<td>Al Khobar, Saudi Arabia</td>
</tr>
<tr>
<td>Vice Chairperson</td>
<td>Barry A. Sadler</td>
<td>Net Carbon Consulting Pty. Ltd.</td>
<td>Victoria, Australia</td>
</tr>
<tr>
<td>Past Chairperson</td>
<td>Stephen J. Lindsay</td>
<td>Alcoa Inc.</td>
<td>Tennessee, USA</td>
</tr>
<tr>
<td>Light Metals Division Chairperson</td>
<td>John N. Hryn</td>
<td>Argonne National Laboratory</td>
<td>Illinois, USA</td>
</tr>
<tr>
<td>JOM Advisor</td>
<td>Alton T. Tabereaux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secretary</td>
<td>Alan David Tomsett</td>
<td>Pacific Aluminium</td>
<td>Queensland, Australia</td>
</tr>
<tr>
<td>Member-at-Large</td>
<td>Robert F. Baxter</td>
<td>Bechtel Corporation</td>
<td>London, Great Britain</td>
</tr>
<tr>
<td>Member-at-Large</td>
<td>Naixiang Feng</td>
<td>Northeastern University</td>
<td>Shen Yang, China</td>
</tr>
<tr>
<td>Member-at-Large</td>
<td>Ender Suvaci</td>
<td>Anadolu University</td>
<td>Eskisehir, Turkey</td>
</tr>
</tbody>
</table>

MEMBERS THROUGH 2013

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre LeBrun</td>
<td>Constellium CRV</td>
<td>France</td>
</tr>
<tr>
<td>Everett C. Phillips</td>
<td>Nalco Company</td>
<td>USA</td>
</tr>
<tr>
<td>Gilles Dufour</td>
<td>Alcoa Canada</td>
<td>Canada</td>
</tr>
</tbody>
</table>
MEMBERS THROUGH 2014

Ketil A. Rye
Alcoa Mosjøen
Mosjøen, Norway

Charles Mark Read
Bechtel Corporation
Quebec, Canada

John F. Grandfield
Grandfield Technology Pty. Ltd.
Victoria, Australia

MEMBERS THROUGH 2015

Geoffrey Paul Bearne
Rio Tinto Alcan
Voreppe, France

James B. Metson
University of Auckland
Auckland, New Zealand

Geoffrey A. Brooks
Swinburne University of Technology
Hawthorn, Australia

Abdulla Habib Ahmed
Aluminum AG
Bahrain

MEMBERS THROUGH 2016

John Johnson
Johnson's Consulting Group
Krasnoyarsk, Russia

Benny E. Raahauge
Fl Smidth Minerals
Copenhagen, Denmark

Olivier Martin
Rio Tinto Alcan
Saint Jean, France

Trond Furu
Hydro
Oslo, Norway

Morten Sorlie
Alcoa Norway
Kristiansand, Norway