Cable-Driven Parallel Robots

Proceedings of the Third International Conference on Cable-Driven Parallel Robots
Preface

This book is a compendium of the articles presented at the Third International Conference on Cable-Driven Parallel Robots, also known by its diminutive CableCon2017, held at Université Laval, Quebec City, Canada. The first two conferences of this series were both held in Germany, respectively, in Stuttgart, in 2012, and in Duisburg, in 2014. It is therefore the first time that the conference leaves the European continent, which we hope will be an occasion to foster new links with researchers from the Americas.

Some readers may be left wondering as to the nature of the cable-driven parallel robots mentioned in the conference title. In general, these parallel robots are made of a rigid mobile platform attached to a fixed frame by several cables acting in parallel, their lengths being controlled by servo-actuated winches. These robots and their variants are the topic of CableCon2017. In the past decade, cable-driven parallel robots have attracted a renewed interest from the research community and from industry. This may be seen from the number of researchers who took part in the first editions of CableCon, but also from scientific literature and from the various industrial projects that were undertaken during these years. This interest stems from several advantages that are widely recognised to favour cable-driven parallel robots over others: large workspace, low cost, good dynamic properties, reconfigurability, portability, and compatibility with vision systems.

Yet, as much as these advantages are enticing, several issues have hindered the development of effective cable-driven parallel robots. Some of these issues have been the subject of significant progress, e.g. workspace determination, cable tension resolution, and winch design. Others still pose important challenges to researchers, despite remarkable efforts to solve them, e.g. forward displacement analysis, vibration control, accuracy, interferences. Moreover, cable-driven parallel robots remain unknown or have only been partially tested in several applications where they promise great leaps in efficiency.

In this context, we believe that CableCon2017 can provide a stimulating forum for the exchange of ideas, of potential applications, and of key challenges that remain to be addressed, just as were the first two editions of the conference. We deem the articles included in this book to be of excellent quality, which allows us to
foresee fruitful presentations and discussions. The articles are distributed into four themes: modelling; displacement and workspace analysis; trajectory planning and control; design and applications. Under these themes, one should find all the main engineering challenges that need to be resolved to allow cable-driven parallel robots to reach their full potential. We hope that this conference can be useful in taking one more step towards this goal.

Finally, we would like to express our gratitude to all the authors for their valuable contributions and to all the reviewers and scientific committee members for their expertise and selfless efforts in maintaining the standards of the conference.

May 2017

Tobias Bruckmann
Philippe Cardou
Clément Gosselin
Andreas Pott
Organization

Program Chairs

Clément Gosselin Université Laval, Canada
Philippe Cardou Université Laval, Canada

Program Committee

Sunil Agrawal Columbia University, USA
Marc Arsenault Laurentian University, Canada
Tobias Bruckmann Universität Duisburg-Essen, Germany
Philippe Cardou Université Laval, Canada
Stéphane Caro CNRS - LS2N, France
Clément Gosselin Université Laval, Canada
Marc Gouttefarde CNRS - LIRMM, France
Jean-Pierre Merlet Inria, France
Leila Notash Queen’s University, Canada
Andreas Pott Fraunhofer IPA, Germany
Dieter Schramm Universität Duisburg-Essen, Germany
Contents

Modelling

Modelling of Flexible Cable-Driven Parallel Robots
Using a Rayleigh-Ritz Approach .. 3
Harsh Atul Godbole, Ryan James Caverly, and James Richard Forbes

Assumed-Mode-Based Dynamic Model for Cable Robots
with Non-straight Cables .. 15
Jorge Ivan Ayala Cuevas, Édouard Laroche, and Olivier Piccin

Manipulator Deflection for Optimum Tension of Cable-Driven
Robots with Parameter Variations ... 26
Leila Notash

Sensitivity Analysis of the Elasto-Geometrical Model of Cable-Driven
Parallel Robots ... 37
Sana Baklouti, Stéphane Caro, and Eric Courteille

CASPR-ROS: A Generalised Cable Robot Software in ROS
for Hardware ... 50
Jonathan Eden, Chen Song, Ying Tan, Denny Oetomo, and Darwin Lau

A Polymer Cable Creep Modeling for a Cable-Driven Parallel
Robot in a Heavy Payload Application 62
Jinlong Piao, XueJun Jin, Eunpyo Choi, Jong-Oh Park, Chang-Sei Kim,
and Jinwoo Jung

Bending Fatigue Strength and Lifetime of Fiber Ropes 73
Martin Wehr, Andreas Pott, and Karl-Heinz Wehking

Bending Cycles and Cable Properties of Polymer Fiber Cables
for Fully Constrained Cable-Driven Parallel Robots 85
Valentin Schmidt and Andreas Pott
Displacement and Workspace Analysis

A New Approach to the Direct Geometrico-Static Problem of Cable Suspended Robots Using Kinematic Mapping 97
Manfred Husty, Josef Schadlbauer, and Paul Zsombor-Murray

Determination of the Cable Span and Cable Deflection of Cable-Driven Parallel Robots ... 106
Andreas Pott

Geometric Determination of the Cable-Cylinder Interference Regions in the Workspace of a Cable-Driven Parallel Robot 117
Antoine Martin, Stéphane Caro, and Philippe Cardou

Twist Feasibility Analysis of Cable-Driven Parallel Robots 128
Saman Lessanibahri, Marc Gouttefarde, Stéphane Caro, and Philippe Cardou

Initial Length and Pose Calibration for Cable-Driven Parallel Robots with Relative Length Feedback 140
Darwin Lau

Static Analysis and Dimensional Optimization of a Cable-Driven Parallel Robot ... 152
Matthew Newman, Arthur Zygielbaum, and Benjamin Terry

Improving the Forward Kinematics of Cable-Driven Parallel Robots Through Cable Angle Sensors 167
Xavier Garant, Alexandre Campeau-Lecours, Philippe Cardou, and Clément Gosselin

Direct Kinematics of CDPR with Extra Cable Orientation Sensors: The 2 and 3 Cables Case with Perfect Measurement and Ideal or Elastic Cables .. 180
Jean-Pierre Merlet

Trajectory Planning and Control

Randomized Kinodynamic Planning for Cable-Suspended Parallel Robots .. 195
Ricard Bordalba, Josep M. Porta, and Lluís Ros

Rest-to-Rest Trajectory Planning for Planar Underactuated Cable-Driven Parallel Robots ... 207
Edoardo Idá, Alessandro Berti, Tobias Bruckmann, and Marco Carricato

Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots 219
Giovanni Mottola, Clément Gosselin, and Marco Carricato
Dynamic Transition Trajectory Planning of Three-DOF Cable-Suspended Parallel Robots .. 231
Xiaoling Jiang and Clément Gosselin

Transverse Vibration Control in Planar Cable-Driven Robotic Manipulators ... 243
Mitchell Rushton and Amir Khajepour

Application of a Differentiator-Based Adaptive Super-Twisting Controller for a Redundant Cable-Driven Parallel Robot 254
Christian Schenk, Carlo Masone, Andreas Pott, and Heinrich H. Bülthoff

Tension Distribution Algorithm for Planar Mobile Cable-Driven Parallel Robots .. 268
Tahir Rasheed, Philip Long, David Marquez-Gamez, and Stéphane Caro

Improvement of Cable Tension Observability Through a New Cable Driving Unit Design .. 280
Mathieu Rognant and Eric Courteille

A Fast Algorithm for Wrench Exertion Capability Computation 292
Giovanni Boschetti, Chiara Passarini, Alberto Trevisani, and Damiano Zanotto

Design and Applications

Design and Analysis of a Novel Cable-Driven Haptic Master Device for Planar Grasping .. 307
Kashmira S. Jadhao, Patrice Lambert, Tobias Bruckmann, and Just L. Herder

On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables 319
Dinh-Son Vu, Eric Barnett, Anne-Marie Zaccarin, and Clément Gosselin

On Improving Stiffness of Cable Robots ... 331
Carl A. Nelson

Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot .. 340
Zhaokun Zhang, Zhufeng Shao, Liping Wang, and Albert J. Shih

On the Improvements of a Cable-Driven Parallel Robot for Achieving Additive Manufacturing for Construction 353
Jean-Baptiste Izard, Alexandre Dubor, Pierre-Elie Hervé, Edouard Cabay, David Culla, Mariola Rodriguez, and Mikel Barrado
Concept Studies of Automated Construction Using Cable-Driven Parallel Robots 364
Tobias Bruckmann, Christopher Reichert, Michael Meik, Patrik Lemmen, Arnim Spengler, Hannah Mattern, and Markus König

Inverse Kinematics for a Novel Rehabilitation Robot for Lower Limbs .. 376
Abdelhak Badi, Maarouf Saad, Guy Gauthier, and Philippe Archambault

On the Design of a Novel Cable-Driven Parallel Robot Capable of Large Rotation About One Axis 390
Alexis Fortin-Côté, Céline Faure, Laurent Bouyer, Bradford J. McFadyen, Catherine Mercier, Michaël Bonenfant, Denis Laurendeau, Philippe Cardou, and Clément Gosselin

Preliminary Running and Performance Test of the Huge Cable Robot of FAST Telescope 402
Hui Li, Jinghai Sun, Gaofeng Pan, and Qingge Yang

Author Index .. 415