More information about this series at http://www.springer.com/series/7412
Preface

Virtual Reality (VR) is a simulation in which computer graphics is used to create a realistic-looking where the feeling of immersion and realistic presence is very high.

Augmented Reality (AR) technology allows for the real-time fusion of computer-generated digital contents with the real world with the aim of enhancing the users’ perception and improve their interaction or assist them during the execution of specific tasks.

Human–Computer Interaction technology (HCI) is a research area concerned with the design, implementation, and evaluation of interactive systems that make more simple and intuitive the interaction between user and computer.

This book contains the contributions to the 4th International Conference on Augmented Reality, Virtual Reality and Computer Graphics (SALENTO AVR 2017) that has held in Ugento (Italy) during June 12–15, 2017. We cordially invite you to visit the SALENTO AVR website (http://www.salentoavr.it) where you can find all relevant information about this event.

SALENTO AVR 2017 intended to bring together researchers, scientists, and practitioners to discuss key issues, approaches, ideas, open problems, innovative applications, and trends on virtual and augmented reality, 3D visualization, and computer graphics in the areas of medicine, cultural heritage, arts, education, entertainment as well as industrial and military sectors.

We are very grateful to the Program Committee and local Organizing Committee members for their support and for the time spent to review and discuss the submitted papers and doing so in a timely and professional manner. We would like to sincerely thank the keynote and tutorial speakers who willingly accepted our invitation and shared their expertise through illuminating talks, helping us to fully meet the conference objectives.

In this edition of SALENTO AVR, we were honored to have the following keynote speakers:

- Mariano Alcainiz, Universitat Politècnica de València, Spain
- Vincenzo Ferrari, Università di Pisa, Italy
- Fabrizio Lamberti, Politecnico di Torino, Italy
- Roberto Scopigno, ISTI-CNR, Pisa, Italy
- Fabrizio Nunnari, German Research Center for Artificial Intelligence (DFKI), Germany

We extend our thanks to the University of Salento for the enthusiastic acceptance to sponsor the conference and to provide support in the organization of the event.

We would also like to thank the EuroVR Association, which has supported the conference since its first edition, by contributing each year to the design of the international Program Committee, proposing the invited keynote speakers, and spreading internationally the announcements of the event.
SALENTO AVR attracted high-quality paper submissions from many countries. We would like to thank the authors of all accepted papers for submitting and presenting their works at the conference and all the conference attendees for making SALENTO AVR an excellent forum on virtual and augmented reality, facilitating the exchange of ideas, fostering new collaborations, and shaping the future of this exciting research field.

For greater readability of the two volumes, the papers are classified into five main parts that include contributions on:

- Virtual Reality
- Augmented and Mixed Reality
- Computer Graphics
- Human–Computer Interaction
- Applications of VR/AR in Medicine
- Applications of VR/AR in Cultural Heritage

We hope the readers will find in these pages interesting material and fruitful ideas for their future work.

June 2017

Lucio Tommaso De Paolis
Patrick Bourdot
Antonio Mongelli
Organization

Conference Chair
Lucio Tommaso De Paolis University of Salento, Italy

Conference Co-chairs
Patrick Bourdot CNRS/LIMSI, University of Paris-Sud, France
Marco Sacco ITIA-CNR, Italy
Paolo Proietti MIMOS, Italy

Honorary Chair
Giovanni Aloisio University of Salento, Italy

Scientific Program Committee
Andrea Abate University of Salerno, Italy
Giuseppe Anastasi University of Pisa, Italy
Selim Balcisoy Sabanci University, Turkey
Vitoantonio Bevilacqua Polytechnic of Bari, Italy
Monica Bordegoni Politecnico di Milano, Italy
Pierre Boulander University of Alberta, Canada
Andres Bustillo University of Burgos, Spain
Massimo Cafaro University of Salento, Italy
Bruno Carpentieri University of Salerno, Italy
Marcello Carrozzino Scuola Superiore Sant’Anna, Italy
Pietro Cipresso IRCCS Istituto Auxologico Italiano, Italy
Amis Cirulis Vidzeme University of Applied Sciences, Latvia
Lucio Colizzi CETMA, Italy
Mario Covarrubias Politecnico di Milano, Italy
Rita Cucchiara University of Modena, Italy
Matteo Dellepiane National Research Council (CNR), Italy
Giorgio De Nunzio University of Salento, Italy
Francisco José Domínguez Mayo University of Seville, Spain
Aldo Franco Dragoni Università Politecnica delle Marche, Italy
Italo Epicoco University of Salento, Italy
Vincenzo Ferrari EndoCAS Center, Italy
Francesco Ferrise Politecnico di Milano, Italy
Emanuele Frontoni Università Politecnica delle Marche, Italy
Francesco Gabellone IBAM ITLab, CNR, Italy
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damianos Gavalas</td>
<td>University of the Aegean, Greece</td>
</tr>
<tr>
<td>Osvaldo Gervasi</td>
<td>University of Perugia, Italy</td>
</tr>
<tr>
<td>Luigi Gallo</td>
<td>ICAR/CNR, Italy</td>
</tr>
<tr>
<td>Viktors Gopejenko</td>
<td>ISMA University, Latvia</td>
</tr>
<tr>
<td>Mirko Grimaldi</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Sara Invitto</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Fabrizio Lamberti</td>
<td>Politecnico di Torino, Italy</td>
</tr>
<tr>
<td>Leo Joksowicz</td>
<td>Hebrew University of Jerusalem, Israel</td>
</tr>
<tr>
<td>Tomas Krilavičius</td>
<td>Vytautas Magnus University, Kaunas, Lithuania</td>
</tr>
<tr>
<td>Salvatore Livatino</td>
<td>University of Hertfordshire, UK</td>
</tr>
<tr>
<td>Silvia Mabel Castro</td>
<td>Universidad Nacional del Sur, Argentina</td>
</tr>
<tr>
<td>Luca Mainetti</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Andrea Martini</td>
<td>CETMA, Italy</td>
</tr>
<tr>
<td>Antonio Mongelli</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Sven Nomm</td>
<td>Tallinn University of Technology, Estonia</td>
</tr>
<tr>
<td>Roberto Paiano</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Andrea Pandurino</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Giorgos Papadourakis</td>
<td>Technological Educational Institute (TEI) of Crete, Greece</td>
</tr>
<tr>
<td>Gianfranco Parlangeli</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Gianluca Paravati</td>
<td>Politecnico di Torino, Italy</td>
</tr>
<tr>
<td>Nikolaos Pellas</td>
<td>University of the Aegean, Greece</td>
</tr>
<tr>
<td>Roberto Pierdicca</td>
<td>Università Politecnica delle Marche, Italy</td>
</tr>
<tr>
<td>Sofia Pescarin</td>
<td>CNR ITABC, Italy</td>
</tr>
<tr>
<td>James Ritchie</td>
<td>Heriot-Watt University, Edinburgh, UK</td>
</tr>
<tr>
<td>Jaume Segura Garcia</td>
<td>Universitat de València, Spain</td>
</tr>
<tr>
<td>Robert Stone</td>
<td>University of Birmingham, UK</td>
</tr>
<tr>
<td>João Manuel R.S. Tavares</td>
<td>Universidade do Porto, Portugal</td>
</tr>
<tr>
<td>Daniel Thalmann</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Nadia Magnenat-Thalmann</td>
<td>University of Geneva, Switzerland</td>
</tr>
<tr>
<td>Carlos M. Travieso-González</td>
<td>Universidad de Las Palmas de Gran Canaria, Spain</td>
</tr>
<tr>
<td>Antonio Emmanuele Uva</td>
<td>Polytechnic of Bari, Italy</td>
</tr>
<tr>
<td>Volker Paelke</td>
<td>Bremen University of Applied Sciences, Germany</td>
</tr>
<tr>
<td>Krzysztof Walczak</td>
<td>Poznan University of Economics and Business, Poland</td>
</tr>
<tr>
<td>Anthony Whitehead</td>
<td>Carleton University, Canada</td>
</tr>
</tbody>
</table>

Local Organizing Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilenia Paladini</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Silke Miss</td>
<td>Virtech, Italy</td>
</tr>
<tr>
<td>Valerio De Luca</td>
<td>University of Salento, Italy</td>
</tr>
<tr>
<td>Pietro Vecchio</td>
<td>University of Salento, Italy</td>
</tr>
</tbody>
</table>
An Introduction to Unity3D, a Game Engine with AR and VR Capabilities
(Tutorial)

Paolo Sernani

Università Politecnica delle Marche, Ancona, Italy

Games, Augmented Reality, and Virtual Reality are capturing the attention of the research community as well as the industry in many application domains with purposes such as education, training, rehabilitation, awareness, visualization, and pure entertainment.

From a technical perspective, scientists, researchers, and practitioners need tools and integrated frameworks that allow them running a fast prototyping as well as an accurate development and production of applications and gaming experiences.

The tutorial presents the Unity3D game engine, describing its main features (cross-platforms applications, cloud build, the asset store, and the wide community of users). Moreover, the tutorial introduces the integration of Unity3D with AR and VR tools.
Keynote Abstracts
The Future Fabrics of Reality: Socio-psychological Aspects of Human Interaction in Advanced Mixed Reality Environments

Mariano Alcañiz
Universitat Politècnica de València, Valencia, Spain

In the last two years, technological tools known as Mixed Reality Interfaces (MRIs) have appeared on the market, which not only allow user interaction with a virtual environment, but also allow the physical objects of the user’s immediate real environment to serve as elements of interaction with the virtual environment. That is, MRIs are perfect tools to introduce into our reality new virtual elements (objects and virtual humans) that will generate a new reality in our brain. Today, MRIs are the most technologically advanced tools that human beings have used to date to improve their reality and generate artificial realities that improve the reality they live. In the last year, there is an unusual interest in MRI in the ICT industry. That means that MRI will be a revolution in human communication mediated by new technologies, as in the moment was the irruption of the mobile phone. Therefore, the central question that motivates the present talk is: what capacity will MRIs have to alter the reality that we are going to live in a few years and hence alter the social communication between humans? To date, only a very basic aspect of MRIs is being investigated, its ability to simulate our current reality. However, the above question calls for a paradigm shift in current MRI research. It is necessary to advance towards this new paradigm by proposing a basic research scheme that will allow to analyse the influence of individual personnel variables and MRI interaction aspects will have on basic aspects of human behaviour, like decision making. In this talk, we present several examples of how MRI can be used for human behaviour tracking and modification, we describe different research projects results and we conclude with a discussion of potential future implications.
Patient safety and the surgical accuracy can be nowadays significantly improved thanks to the availability of patient specific information contained in particular in medical images. AR is considered an ergonomic way to show the patient related information during the procedure, as demonstrated by the hundreds of works published in the last years. To develop useful AR systems for surgery there are many aspects to take into account from a technical, clinical and perceptual point of view. During the talk particular attention will be posed to the using of HMD for surgical navigation describing also current doubts related to the using of this kind of technologies to perform manual tasks under direct view.

AR offers also the possibility to improve surgical training outside the surgical room. Surgical simulation based on AR, mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. In this talk the last advancements in visual and tactile AR for surgical simulation will be showed.
Phygital Play: Where Gaming Intersects Mixed Reality, Robotics and Human-Machine Interaction

Fabrizio Lamberti
Politecnico di Torino, Turin, Italy

Developments in Virtual Reality (VR) and Augmented Reality (AR) technologies are dramatically changing the way we perform many of our everyday activities. One of the fields that is expected to be more profoundly influenced by this technological revolution is entertainment and, especially, gaming. With VR and AR, players will be able to fully immerse in computer-generated environments and become part of them, while gaming elements will be allowed to enter the real word and interact with it in a playful way. The physicality ensured by the possibility to move in open spaces as well as to touch, move and, in a word, feel both real and virtual objects will make gaming more engaging, as it will bring players’ experience to a more primordial level. The “physicalization” of gaming is a process that will encompass a number of other fields. For instance, ways to make players interaction with computers and computer-generated contents ever more concrete, e.g., by exploiting haptic, tangible or hand and body tracking-based interfaces will have to be experimented. Similarly, the contribution of non-technical research fields will have to be taken into account. As a matter of example, according to behavioural studies, robotic elements could be introduced in the playing area, e.g., as players’ avatars, artificial companions, etc. to strengthen the relation between the digital and physical worlds. By leveraging the above considerations, the aim of this talk is to present the activities that are being carried out to create a cloud-based platform supporting a systematic use of VR/AR technologies, robotic components and human-machine interaction paradigms with the aim to further push the transformation of real-world settings in ever more amazing gaming environments.
VR/AR: Success Stories and Opportunities in Cultural Heritage and Digital Humanities

Roberto Scopigno

ISTI-CNR, Pisa, Italy

Virtual and Augmented Reality have already a quite long story and a consolidated status. There are a number of projects and installations specifically developed for presenting or navigating Cultural Heritage (CH) data. But CH or, more broadly, Digital Humanities are domains with specific needs and constraints. Previous projects have selected these domains either to assess new technologies or to provide new tools and navigation experiences. The users in this domain belong to two well differentiated classes: ordinary public (museum visitors, web surfers) or experts (scholars, archaeologists, restorers). The talk will present in a comparative manner some selected previous experiences, aiming at deriving a critical assessment and suggest issues and open questions.
Creating a state-of-the-art virtual character is a job which requires the employment of many professionals—dedicated artists do modeling, texturing, and rigging. However, since few years it is possible to find some software tools allowing nonskilled users to generate fully functional virtual characters quickly. The characters, which feature a compromise between quality and creation speed, are ready to be employed for either movie production or in real-time applications. In this tutorial, I will give an overview of some modern virtual character generators, and I will show how to use them to populate with characters real-time interactive applications.
Contents – Part I

Virtual Reality

Cognitive Control Influences the Sense of Presence in Virtual Environments with Different Immersion Levels 3

Boris B. Velichkovsky, Alexey N. Gusev, Alexander E. Kremlev, and Sergey S. Grigorovich

Defining an Indicator for Navigation Performance Measurement in VE Based on ISO/IEC15939 17

Ahlem Assila, Jeremy Plouzeau, Frédéric Merienne, Aida Erfanian, and Yaoping Hu

A Study of Transitional Virtual Environments 35

Maria Sisto, Nicolas Wenk, Nabil Ouerhani, and Stéphane Gobron

Walk-able and Stereo Virtual Tour based on Spherical Panorama Matrix 50

Yanxiang Zhang and Ziqiang Zhu

Virtual Reality Applied to Industrial Processes 59

Víctor H. Andaluz, Daniel Castillo-Carrón, Roberto J. Miranda, and Juan C. Alulema

Training of Tannery Processes Through Virtual Reality 75

Víctor H. Andaluz, Andrea M. Pazmiño, José A. Pérez, Christian P. Carvajal, Francisco Lozada, Jeferson Lascano, and Jessica Carvajal

Virtual Environments for Motor Fine Skills Rehabilitation with Force Feedback 94

Víctor H. Andaluz, Cartagena Patricio, Naranjo José, Agreda José, and López Shirley

Towards Modeling of Finger Motions in Virtual Reality Environment 106

Sven Nõmm, Aaro Toomela, and Jaroslav Kulikov

Industrial Heritage Seen Through the Lens of a Virtual Reality Experience 116

David Checa, Mario Alaguero, and Andres Bustillo

Multiple NUI Device Approach to Full Body Tracking for Collaborative Virtual Environments 131

Paolo Leoncini, Bogdan Sikorski, Vincenzo Baraniello, Francesco Martone, Carlo Luongo, and Mariano Guida
Contents – Part I

Giovanni Avveduto, Camilla Tanca, Cristian Lorenzini, Franco Tecchia,
Marcello Carrozzino, and Massimo Bergamasco

Robots Coordinated Control for Service Tasks in Virtual Reality Environments .. 164
Esteban X. Castellanos, Carlos García-Sánchez, Wilson Bl. Llanganate,
Víctor H. Andaluz, and Washington X. Quevedo

RRT* GL Based Path Planning for Virtual Aerial Navigation 176
Wilbert G. Aguilar, Stephanie Morales, Hugo Ruiz, and Vanessa Abad

Virtual Reality System for Training in Automotive Mechanics 185
Washington X. Quevedo, Jorge S. Sánchez, Oscar Arteaga,
Marcelo Álvarez V., Víctor D. Zambrano, Carlos R. Sánchez,
and Víctor H. Andaluz

Math Model of UAV Multi Rotor Prototype with Fixed Wing Aerodynamic Structure for a Flight Simulator 199
David Orbea, Jessica Moposita, Wilbert G. Aguilar, Manolo Paredes,
Gustavo León, and Aníbal Jara-Olmedo

Exploiting Factory Telemetry to Support Virtual Reality Simulation in Robotics Cell 212
Vladimir Kuts, Gianfranco E. Modoni, Walter Terkaj, Toivo Tähemaa,
Marco Sacco, and Tauno Otto

A VR-CAD Data Model for Immersive Design: The cRea-VR Proof of Concept 222
Pierre Martin, Stéphane Masfrand, Yujiro Okuya, and Patrick Bourdot

Motion Style Transfer in Correlated Motion Spaces 242
Alex Kilias and Christos Mousas

Pixel Reprojection of 360 Degree Renderings for Small Parallax Effects 253
Joakim Bruslund Haurum, Christian Nygaard Daugbjerg,
Péter Rohoska, Andrea Coifman, Anne Juhler Hansen, and Martin Kraus

Immersiveness of News: How Croatian Students Experienced 360-Video News 263
Mato Brautović, Romana John, and Marko Potrebica

Interactive 3D Symphony in VR Space 270
Yanxiang Zhang, Clayton Elieisar, and Abassin Sourou Fangbemi

Virtual Bodystorming: Utilizing Virtual Reality for Prototyping in Service Design 279
Costas Boletsis, Amelia Karahasanovic, and Annita Fjuk
Capturing Reality for a Billiards Simulation 289
Fuche Wu and Andrew Dellinger

Operating Virtual Panels with Hand Gestures in Immersive VR Games: Experiences with the Leap Motion Controller 299
Yin Zhang and Oscar Meruvia-Pastor

Virtual Reality Toolset for Material Science: NOMAD VR Tools 309
Rubén Jesús García-Hernández and Dieter Kranzlmüller

Measuring the Impact of Low-Cost Short-Term Virtual Reality on the User Experience .. 320
Mario Alaguero, David Checa, and Andres Bustillo

Augmented and Mixed Reality

Malek Alrashidi, Khalid Almohammadi, Michael Gardner, and Victor Callaghan

ARSSET: Augmented Reality Support on SET 356
Andrea Sanna, Fabrizio Lamberti, Francesco De Pace, Roberto Iacoviello, and Paola Sunna

Overcoming Location Inaccuracies in Augmented Reality Navigation 377
Christian A. Wiesner and Gudrun Klinker

The Use of Augmented Reality Glasses for the Application in Industry 4.0 ... 389
Roberto Pierdicca, Emanuele Frontoni, Rama Pollini, Matteo Trani, and Lorenzo Verdini

Augmented Reality Applications for Education: Five Directions for Future Research ... 402
Juan Garzón, Juan Pavón, and Silvia Baldiris

Semantic Exploration of Distributed AR Services 415
Krzysztof Walczak, Rafał Wojciechowski, and Adam Wójtowicz

Automated Marker Augmentation and Path Discovery in Indoor Navigation for Visually Impaired ... 427
Raees Khan ShahSani, Sehat Ullah, and Sami Ur Rahman

Virtual Product Try-On Solution for E-Commerce Using Mobile Augmented Reality .. 438
Anuradha Welivita, Nanduni Nimalsiri, Ruchiranga Wickramasinghe, Upekka Pathirana, and Chandana Gamage
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DyMAR: Introduction to Dynamic Marker Based Augmented Reality Using Smartwatch</td>
<td>448</td>
</tr>
<tr>
<td>Satyaki Roy, Pratiti Sarkar, and Surojit Dey</td>
<td></td>
</tr>
<tr>
<td>The Smartkuber Case Study: Lessons Learned from the Development of an Augmented Reality Serious Game for Cognitive Screening</td>
<td>457</td>
</tr>
<tr>
<td>Costas Boletsis and Simon McCallum</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>473</td>
</tr>
</tbody>
</table>
Contents – Part II

Application of VR/AR in Medicine

Augmented Reality to Enhance the Clinician’s Observation During Assessment of Daily Living Activities .. 3
M. De Cecco, A. Fornaser, P. Tomasin, M. Zanetti, G. Guandalini,
P.G. Ianes, F. Pilla, G. Nollo, M. Valente, and T. Pisoni

Augmented Robotics for Electronic Wheelchair to Enhance Mobility in Domestic Environment .. 22
Luca Maule, Alberto Fornaser, Paolo Tomasin, Mattia Tavernini,
Gabriele Minotto, Mauro Da Lio, and Mariolino De Cecco

Semi-automatic Initial Registration for the iRay System: A User Study 33
Tian Xie, Mohammad M. Islam, Alan B. Lumsden,
and Ioannis A. Kakadiaris

Teaching Materials Using AR and VR for Learning the Usage of Oscilloscope ... 43
Takashi Miyazaki, Yusuke Ohira, Hiroaki Yamamoto, and Masaaki Nishi

An Augmented Reality System for Maxillo-Facial Surgery 53
Francesco Ricciardi, Chiara Copelli, and Lucio T. De Paolis

Augmented Reality and MYO for a Touchless Interaction with Virtual Organs ... 63
Chiara Indraccolo and Lucio T. De Paolis

Architecture of a Virtual Reality and Semantics-Based Framework for the Return to Work of Wheelchair Users 74
Sara Arlati, Daniele Spoladore, Stefano Mottura, Andrea Zangiacomi,
Giancarlo Ferrigno, Rinaldo Sacchetti, and Marco Sacco

Virtual Environments for Cognitive and Physical Training in Elderly with Mild Cognitive Impairment: A Pilot Study 86
Sara Arlati, Andrea Zangiacomi, Luca Greci, Simona Gabriella di Santo,
Flaminia Franchini, and Marco Sacco

Virtual System for Upper Limbs Rehabilitation in Children 107
Edwin Pruna, Andrés Acurio, Jenny Tigse, Ivón Escobar,
Marco Pilatásig, and Pablo Pilatásig
XXIV Contents – Part II

3D Virtual System Through 3 Space Mocap Sensors
for Lower Limb Rehabilitation ... 119
 Edwin Pruna, Marco Pilatásig, Hamilton Angueta, Christian Hernandez,
 Ivón Escobar, Eddie D. Galarza, and Nancy Jacho

Robust Laparoscopic Instruments Tracking Using Colored Strips 129
 Virginia Mamone, Rosanna Maria Viglialoro, Fabrizio Cutolo,
 Filippo Cavallo, Simone Guadagni, and Vincenzo Ferrari

Natural User Interface to Assess Social Skills in Autistic Population 144
 Claudia Faita, Raffaello Brondi, Camilla Tanca, Marcello Carrozzino,
 and Massimo Bergamasco

RRT-Based Path Planning for Virtual Bronchoscopy Simulator 155
 Wilbert G. Aguilar, Vanessa Abad, Hugo Ruiz, Jenner Aguilar,
 and Fabián Aguilar-Castillo

Assistance System for Rehabilitation and Valuation of Motor Skills 166
 Washington X. Quevedo, Jessica S. Ortiz, Paola M. Velasco,
 Jorge S. Sánchez, Marcelo Álvarez V., David Rivas,
 and Víctor H. Andaluz

Robotic Applications in Virtual Environments for Children with Autism . 175
 Christian P. Carvajal, Luis Proaño, José A. Pérez, Santiago Pérez,
 Jessica S. Ortiz, and Víctor H. Andaluz

Realism in Audiovisual Stimuli for Phobias Treatments
Through Virtual Environments .. 188
 Jessica S. Ortiz, Paola M. Velasco, Washington X. Quevedo,
 Marcelo Álvarez V., Jorge S. Sánchez, Christian P. Carvajal,
 Luis F. Cepeda, and Víctor H. Andaluz

Virtual Out-of-Body Experience as a Potential Therapeutic Tool After
Kidney Transplantation .. 202
 Péter Csibri, Róbert Pantea, Átila Tanács, Alexandra Kiss,
 and Gyula Sáry

Patient Specific Virtual and Physical Simulation Platform for Surgical
Minimally-Invasive Cardiothoracic Surgery 211
 Giuseppe Turini, Sara Condino, Sara Sinceri, Izadyar Tamadon,
 Simona Celi, Claudio Quaglia, Michele Murzi, Giorgio Soldani,
 Arianna Menciassi, Vincenzo Ferrari, and Mauro Ferrari

Using of 3D Virtual Reality Electromagnetic Navigation for Challenging
Cannulation in FEVAR Procedure .. 221
 Roberta Piazza, Sara Condino, Aldo Alberti, Davide Giannetti,
 Vincenzo Ferrari, Marco Gesi, and Mauro Ferrari
Contents – Part II

230
A Tailored Serious Game for Preventing Falls of the Elderly
Estelle Courtial, Giuseppe Palestra, and Mohamed Rebiai

243
Application of VR/AR in Cultural Heritage

Finger Recognition as Interaction Media in Augmented Reality
for Historical Buildings in Matsum and Kesawan Regions of Medan City
Mohammad Fadly Syahputra, Ridho K. Siregar, and Romi Fadillah Rahmat

251
An Innovative Real-Time Mobile Augmented Reality Application in Arts
Chutisant Kerdvibulvech

261
Augmented Reality and UAVs in Archaeology: Development
of a Location-Based AR Application
Maria Concetta Botrugno, Giovanni D’Errico, and Lucio Tommaso De Paolis

271
Photogrammetric Approaches for the Virtual Reconstruction
of Damaged Historical Remains
D. Costantino, M.G. Angelini, and V. Baiocchi

282
Web Tool as a Virtual Museum of Ancient Archaeological Ruins in Peru
Eva Savina Malinverni, Roberto Pierdicca, Francesca Colosi, and Roberto Orazi

297
Virtual Reality Meets Intelligence in Large Scale Architecture
Ahmet Kose, Eduard Petlenkov, Aleksei Tepljakov, and Kristina Vassiljeva

310
A Virtual Travel in Leonardo’s Codex of Flight
Marcello Carrozzino, Chiara Evangelista, Claudia Faita, Mihai Duguleana, and Massimo Bergamasco

319
Visualising a Software System as a City Through Virtual Reality
Nicola Capece, Ugo Erra, Simone Romano, and Giuseppe Scanniello

328
Implementation of Player Position Monitoring for Tanjung Pura
Palace Virtual Environment
Mohammad Fadly Syahputra, Muhammad Iqbal Rizki, Siti Fatimah, and Romi Fadillah Rahmat

337
Computer Graphics

Differential G-Buffer Rendering for Mediated Reality Applications
Tobias Schwandt and Wolfgang Broll