Springer Theses

Recognizing Outstanding Ph.D. Research
Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student’s supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790
Lina Jaurigue

Passively Mode-Locked Semiconductor Lasers

Dynamics and Stochastic Properties in the Presence of Optical Feedback

Doctoral Thesis accepted by
Technical University, Berlin, Germany

Springer
Supervisors’ Foreword

Nowadays, many innovations are related to advances in photonics and optical data communication. Also, in medicine, the implementation of optical technologies for microscopical data recording is emerging and devices are required that can be used as optical clocks. For many of these applications, regular optical pulse trains with short pulses and high repetition frequencies are needed. One way to produce this pulsating laser light is to use the technique of mode-locking. Here, a saturable absorber element is introduced to synchronize the longitudinal modes within the laser resonator. This phase synchronization leads to pulsations of the total emitted light output.

In this thesis, mode-locked semiconductor lasers with optical self-feedback are investigated. Those integrated multisection devices can be epitaxially grown on a chip; they are very small, relatively cheap, easy to fabricate and thus highly demanded by the industry. They can be operated by using electric contacts and emit regular pulse trains with repetition frequencies in the GHz regime and sub-ps pulse widths. To capture the dynamics of these devices, a complex modeling approach is required. It has to describe the internal gain dynamics as well as perturbation effects of reflected light while still allowing for reasonable computational times. Here, a delay differential equation approach for the evolution of the electric field within the device is used which balances between the more complex traveling wave approaches and simple rate equation models.

The focus of the thesis is on the analytic understanding of the different complex dynamics emerging within the mode-locked laser output. It resolves one major drawback of semiconductor-based devices: the relatively large timing jitter. Due to significant spontaneous emission, the pulses emitted by these integrated lasers show a large irregularity of the pulse positions, called timing jitter. Different ways to reduce the timing jitter are discussed, and analytic results with predictive power for other devices are presented. The first chapters give an overview on the dynamic regimes obtained by direct integration and path continuation. Strong attention is paid to multistability, which plays a crucial role for the timing jitter. Later, the focus is on the stochastic properties, and extensive simulations are compared to experimental data. The very good agreement proves the validity of the approach.
Moreover, a new theoretical method to efficiently calculate the timing jitter via a semi-analytic approach is developed. Using this method, the characterization of different devices can be done more efficiently than using the time-consuming process of averaging different noise realizations. This allows one to access experimentally relevant delay times within reasonable computational time. Finally, the thesis extends the analysis to a wide class of delay systems including basically all oscillating devices and derives a simple and easy-to-use equation to predict optimal operation conditions for regular pulse trains.

Various theoretical methods are used within the work, i.e., numeric integration of stochastic differential equations to characterize the dynamics, bifurcation analysis with path continuation to predict parameter regions for specific dynamic solutions, as well as semi-analytic calculations to derive analytic dependencies between the system parameters and the emission properties. The thesis presents new and relevant results that are outstanding in their breadth and depth. They are of great importance for the people working in photonics research as a guideline for optimizing existing devices as well as for the nonlinear dynamics community because the results also apply for oscillating systems with delay in general.

Berlin, Germany
April 2017

Eckehard Schöll
Kathy Lüdge
Passively mode-locked semiconductor lasers produce short optical pulses at very high repetition rates. In this thesis, we investigate the influence of time-delayed optical feedback on the dynamics and timing jitter of such a laser.

Using a delay differential equation model, we investigate the dynamics and bifurcations of a passively mode-locked laser. When the laser is operated in the fundamental mode-locking regime, it produces a pulsed output with a repetition rate which is determined by the length of the laser cavity. Adding optical feedback to the laser in this regime, the dynamics depend on resonances between the period and the feedback delay times. Feedback conditions can be selected to tune the repetition rate of the mode-locked pulse train, to induce harmonic mode-locking or to destabilize the periodic mode-locked dynamics, resulting in quasiperiodic or chaotic dynamics. Surrounding each resonantly chosen delay time there is a locking range in which fundamental mode-locking is exhibited. This locking region becomes wider as the delay times are increased, which can lead to a large degree of multistability between solutions locked to different resonances. With feedback from two external cavities, the same dynamics can be exhibited as with single cavity feedback, but the multistability of the fundamentally mode-locked solutions can be lifted if the two external cavities are of different lengths.

In the presence of noise, the regularity of the mode-locked dynamics is significantly reduced, since due to the absence of a restoring force the pulse positions can drift over time. By adding resonant optical feedback, correlations between temporal pulse positions are introduced, which can lead to a significant reduction in the timing jitter. We derive an expression for the timing jitter that shows that this reduction increases with the feedback delay time. However, for long feedback cavities noise-induced modulations of the dynamics also play a role, leading to fluctuations in the pulse positions on timescales of the feedback delay time.

The noise-induced modulations that arise for long feedback delay times can be suppressed by adding a second feedback cavity. We show that a linear stability analysis of the mode-locked laser system allows predictions to be made for the optimal feedback conditions for this effect. This is done by first studying the suppression of noise-induced modulations in a simple oscillatory system, the Stuart-Landau
oscillator, and relating the results for this system to the mode-locked laser system. For the Stuart-Landau oscillator, a simple characteristic equation, which provides the dominant Floquet exponents, can be analytically derived. By comparison with numerical results, we show that the dominant Floquet exponents of the mode-locked laser system can be described by a simple characteristic equation of the same form as that derived for the Stuart-Landau oscillator.

Using this characteristic equation, feedback delay times are found which effectively suppress the noise-induced modulations of the mode-locked pulse train. We show that this leads to a significant improvement in the regularity of the mode-locked laser output, as the suppression of noise-induced modulations reduces fluctuations in the pulse positions on timescales of the feedback delay times, as well as decreasing the variance of the temporal pulse positions on much longer timescales.
Parts of this work have been previously published in

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Kathy Lüdge for providing a supportive and stimulating work environment, and for always being available for discussions. The many discussions we had have helped me gain a deeper understanding of all topics surrounding my thesis. Moreover, I am grateful for all of the proofreading she has done for me over the years.

I am grateful to my co-supervisor Prof. Dr. Eckehard Schöll, Ph.D., for giving me the opportunity to work in his group. Being a member of the extended AG Schöll has allowed me to interact with many distinguished scientists. Furthermore, I would like to especially thank him for his help in the paper submission and revision processes.

I would like to thank the members of AG Lüdge, especially Dr. Benjamin Lingnau, André Röhm, Christoph Redlich, and Roland Aust. In particular, I thank Benjamin for the countless scientific discussions, for the many times he helped me with computer problems, and for proofreading this thesis. I am also grateful to André for all his support.

I would like to thank Prof. Dr. Bernd Krauskopf for the time I spent visiting his group and for helping me with the path continuation.

I would like to thank Dr. Andrei Vladimirov and Dr. Alexander Pimenov for our fruitful collaborative work.

I would like to thank Dr. Stefan Breuer for our theoretical–experimental collaborations and for interesting discussions about the experiments.

I would like to thank Dr. Julien Javaloyes for taking the time to be the external reviewer of my thesis, and for the discussions we have had at conferences.

Finally, I would like to thank Jonnel for all of his love and support.
Contents

1 Introduction .. 1
 1.1 Semiconductor Lasers 2
 1.2 Mode-Locking .. 6
 1.2.1 Passive Mode-Locking 7
 1.2.2 Timing Jitter 8
 1.3 Time-Delayed Feedback 9
 1.4 Outline .. 10
References .. 10

2 Mode-Locked Laser Model. 15
 2.1 Introduction ... 15
 2.2 Derivation of the DDE Model 16
 2.2.1 Dimensionless Formulation of the DDE System 25
 2.2.2 Parameter Values 26
 2.3 Discussion of the DDE Model 27
References .. 29

3 Mode-Locked Laser Dynamics 33
 3.1 Introduction ... 33
 3.1.1 Bifurcations 33
 3.2 Solitary Mode-Locked Laser Dynamics 37
 3.2.1 Lasing Threshold 38
 3.2.2 Continuous Wave Solutions 39
 3.2.3 Mode-Locked Solutions 42
 3.3 Dynamics Induced by Feedback from a Single
 External Cavity 53
 3.3.1 Short Delay 54
 3.3.2 Intermediate Delay 81
 3.3.3 Long Delay 85
 3.3.4 Frequency Pulling and Delay-Induced Multistability . 89
6 Summary and Outlook .. 187
Appendix A: Floquet Theory ... 191
Appendix B: Linearised Mode-Locked Laser System 193
Appendix C: Suppression of Noise-Induced Modulations 195