Railway Ecology
Railway Ecology
Foreword

Eureka! The first book on railway ecology has arrived. This pioneering edited volume, written by an international cast, brings together and synthesizes today’s “state-of-the-science and application.” Building on the diverse European railway network, the approach is global, with work also from North America, South America, and Asia. The ecological effects of railways are central, while the mitigation of effects appears throughout the book.

Rich scientific highlights are compelling: wildlife mortality patterns; effects on biodiversity; the barrier effect; lots on ungulates, bears, bats, songbirds, and waterbirds. But there is also information on plants, elephants, amphibians, kites, gazelles, and many more, e.g., detecting mortality “hotspots,” and rail-side (verge) habitats, as well as case studies worldwide.

Mitigations to minimize impacts emerge as a motif: wildlife crossing approaches; noise reduction; reducing outward noise propagation; alerting wildlife >2 seconds before an expected animal-train collision; reducing avian collisions and electrocution by the elevated net of wires; restricting access; and decreasing vibrations are also discussed in detail.

Many nations are actively adding track, while high-speed trains are spreading… for good reason. Rail transport is more efficient than road traffic at moving people and goods, and there is more fuel efficiency; less greenhouse gas emission; less unhealthful air pollution; less traffic congestion; and less land consumed. Most importantly, it is also safer.

Furthermore, people personally depend on, and are affected by, trains. Trains take commuters to work daily. Every day we depend on long freight trains successfully carrying coal and oil. Many of us ride trains to other cities. Small towns often wither without trains stopping at their stations. Industry and jobs depend on trains bringing heavy resources, such as grain, coal, and minerals. We also buy heavy products, including autos, brought by train from factories. Train noise and their vibrations degrade our neighborhoods near the tracks. Infrequent chemical spills pollute water bodies and neighborhoods. Children wave at the engineer, and gleefully count the wagons/cars of long freight trains.

Railway ecology really differs from road ecology. Thus much wildlife moves along rail corridors. At any location, noise from the trains is usually infrequent, loud,
and at high-and-low frequencies. Wildlife collisions are invisible to passengers. The rail corridor is typically narrow. Its linear and gentle-curve route repeatedly slices through landscape patterns. Persistent herbicides are widely and intensively used. Considerable vibrations alter soil structure and fauna. Little-used rail sidings and short stretches connected to local industries support successional vegetation and animals. Trains go faster, but stopping requires a long time and distance.

Yet road ecology concepts developed in the past three decades apply to many aspects of railway systems. The first major road-ecology conference took place in Orlando, Florida, in 1995, the same year that my book, *Land Mosaics*, appeared, with 12 pages on road ecology, but only about seven sentences and seven references to railway ecology. Two decades later, in *Urban Ecology: Science of Cities*, I wrote four pages with 46 references to railway ecology. Meanwhile, in 1998 we wrote a 24-page *Annual Review of Ecology and Systematics* article on road ecology, followed in 2003 by the first relatively comprehensive book (481 pages and 1,078 references), *Road Ecology: Science and Solutions*, written by 14 co-authors. Twelve years later (2015), R. van der Ree, co-editors, and international leaders in the field produced an updated synthesis, *Handbook of Road Ecology*, with numerous mitigation and planning solutions.

Road ecology became mainstream for both scientists and government in only three decades. The International Conference of Ecology and Transportation (ICOET) and InfraEco Network Europe (IENE) provide a home base for both road ecology and railway ecology. And today railway ecology is on a roll. Many early papers appeared in the 1990s, but the most recent (in the last 5-10 years) show an impressive increase in quality research articles published. This book, *Railway Ecology*, is poised to spark the next growth phase.

Also, the book highlights and suggests many of the ecological research frontiers awaiting us. Think of the role of rail corridors in urban areas, and in intensive agricultural land: distinctive and predominant railway species; heterogeneous rail-side habitats; vegetation and fauna; railyards; freight trains and rails linked to local industries; pollutant distributions from diesel, steam, and electric engines; train noise and wildlife; interactions between the rail corridor and the sequence of adjoining habitats/land uses; species movement and dispersal along railways; the barrier effect and genetic variation on opposite sides of railways; diverse effects on air, soil, and water; railway impacts on populations; and, finally, regional railway networks rather than rail locations or segments.

This book will catalyze new ecological research, new mitigations, and better planning, construction, and maintenance. Better government policies and company practices will evolve.

Railway Ecology is a treasure chest, bulging with insights, many of them previously unseen. Relish the pages ahead, jump into the field, and increase the body of research. Become part of the solution: put the mitigations to work for ecological railways and for our land.

February 2017

Richard T.T. Forman

Harvard University
Preface

Past cotton-grass and moorland boulder
Shovelling white steam over her shoulder,
Snorting noisily as she passes
Silent miles of wind-bent grasses,
Birds turn their heads as she approaches,
Stare from bushes at her blank-faced coaches.

Night Mail, W.H. Audin (1907–1973)

Rationale and Purpose

The transportation of people and goods is a critical part of the economy. However, a judicious choice of the means of transportation can ameliorate the impacts of economic activities on the environment. In this respect, railways can play a major role, as they provide far more cost-effective and energetically efficient ways of transporting passengers and freight than motor vehicles and airplanes. Hence, railways can contribute to the global efforts for curbing the emission of greenhouse gases and thus help achieve the goals set by the Convention on Climate Change, and the recent Paris Agreement to reduce the forecasted rise in global temperatures in the twenty-first century. Calls have thus been made to consider railways as the backbone of sustainable transportation and to increase their share in relation to more polluting modes of transport.1 However, as with many other economic endeavors, railways have environmental impacts ranging from several forms of pollution to

wildlife mortality. Therefore, a careful assessment of railways’ impacts on nature and of mitigation measures is in order.

Trains are not cars, and railway tracks are not roads. These assertions are obvious, but they are often ignored when assessing the potential and actual biodiversity impacts of railways, which are normally equated to those of roads. This is regrettable because roads and railways differ in many respects, which can strongly influence their impacts. For instance, traffic on railways tends to be less intense than on roads, but trains often travel at higher speeds than cars. Roads and railways also have different physical structures, especially in the case of electrified railways, where overhead lines along the rail tracks can represent an additional source of impacts. All these differences are likely to affect wildlife responses to roads and railways, and hence their impacts on, for example, animals’ behavior, mortality, and landscape connectivity.

A quick survey of the literature shows that studies on the biodiversity impacts of railways have greatly lagged behind those of roads. This is probably because the road network is much larger than the railway network, but probably also because the impacts of roads are more easily observed by ecologists and the general public. For instance, the safety and economic costs associated with the risk of collision with a wild or domesticated animal is more easily perceived in a road than in a railway, although the latter are also very significant: an accident with an animal is likely to go unnoticed by passengers in a train, with the remarkable exception of the train driver, but the same will not happen so easily in a car. Even the legal frameworks under which roads and railways operate can be different, conditioning the way the environment in the vicinity can be protected and which mitigation measures can be applied.

All these differences add to a number of specificities that clearly set railways apart from roads, and thus a paradigm shift is needed whereby the impacts of railways on biodiversity are considered on their own. This book aims at contributing to this shift, filling a gap in the literature about the impacts of transportation on biodiversity. We have brought together 44 researchers from 12 countries, from North and South America to Asia and Europe. We aimed at combining—in a single volume—the most relevant information that has been produced on the interactions between railways and wildlife, and to illustrate such interactions with a set of carefully chosen case studies from around the world. We have tried to produce a comprehensive volume that should be of interest to researchers and practitioners alike, including the staff of railway and consultancy companies that deal with the environmental challenges of railway planning, construction, and operation every day.

Although this book addresses several environmental problems raised by railways, we would like its main message to be one of hope. Indeed, while we expect societies to keep looking for more efficient means of transportation, we also expect that efficiency to become ever more synonymous with environmental efficiency, as societies seek to mitigate impacts or even improve biodiversity. We hope that our book can help achieve this goal, contributing to the mitigation of the negative impacts of railways on biodiversity, thereby improving the sustainability and environmental benefits of this mode of transportation.
Organization

We have divided the book into two parts. The first aims at reviewing the main ideas and methods related to the identification, monitoring, and mitigation of railway impacts on biodiversity, with emphasis on wildlife mortality, barrier effects, biological invasions, and the effects of other railway environmental impacts such as noise and chemical pollution. We begin by setting the scene (Chap. 1–Railway Ecology), framing railways in their economic context, and providing several examples of how railways can impact biodiversity. In Chap. 2 (Wildlife Mortality on Railways), Sara Santos and her colleagues provide a comprehensive review of mortality rates on railways, paying particular attention to the sources of bias when estimating mortality rates. In Chap. 3 (Methods for Monitoring and Mitigating Wildlife Mortality on Railways), Filipe Carvalho and his colleagues have further developed the theme of wildlife mortality, focusing on monitoring and mitigation. They discuss the application to railways of mitigation procedures routinely used in road ecology, and provide an overview of wildlife crossing structures and their role in reducing mortality and barrier effects. In Chap. 4 (Railways as Barriers for Wildlife: Current Knowledge and Future Steps), Rafael Barrientos and Luís Borda-de-Água examine the barrier effects of railways, reviewing the evidence and providing an overview on procedures used to quantify barrier effects, with emphasis on genetic methods and individual-based computer simulations. They then discuss mitigation measures and their effectiveness, providing guidelines for monitoring and mitigation. In Chap. 5 (Aliens on the Move: Transportation Networks and Non-native Species), Fernando Ascensão and César Capinha examine the role of railways in the spread of invasive species, showing that land transportation systems have greatly contributed to species introductions with high economic and environmental costs. They discuss measures to decrease the risk of alien species introductions, paying special attention to verges and associated vegetation corridors. In Chap. 6 (Railway Disturbances: Types, Effects on Wildlife and Mitigation Measures), Silva Lucas and her colleagues look at biodiversity impacts caused by railways due to noise, air, soil and water pollution, as well as soil erosion. They conclude that impacts are species-specific, depending largely on species traits, and that impacts can be minimized through improvements in the railway structure and the implementation of mitigation measures.

The second part of the book provides a set of case studies from around the world that illustrate the impacts of railways on wildlife and ways to reduce those impacts. Reflecting the strong interest in the topic of wildlife mortality, four chapters focus on the patterns of mortality resulting from collisions with trains and railway structures, each of which suggests several mitigation measures to reduce such mortality. In Chap. 7 (Bird Collisions in a Railway Crossing a Wetland of International Importance – Sado Estuary, Portugal), Carlos Godinho and colleagues examine the risk of aquatic bird mortality due to railway bridge crossing wetland habitats, by combining data from surveys on carcasses and the observation of bird movements. They have found that this bridge had a low risk for aquatic birds, as
only a few dead birds were found. In addition, less than 1% of 27,000 bird movements observed over 400 hours crossed the area of collision risk. In Chap. 8 (Cross-scale Changes in Bird Behavior around a High-speed Railway: from Landscape Occupation to Infrastructure Use and Collision Risk), Malo and colleagues examine bird mortality on a high-speed railway line crossing a rural landscape in central Spain. They found that the species commonly associated with rural and open spaces tended to avoid the railway, while those that are already associated with man-made structures were attracted by the railway. The latter species were those most exposed to train collisions; indeed, using video cameras in the trains’ cockpits to analyze birds’ responses to incoming trains, they observed that birds become habituated to the presence of trains, a behavior that leads to increased mortality.

Collision with large mammals is also a matter of concern in railway ecology, and this is dealt with in the two following chapters. In Chap. 9 (Relative Risk and Variables Associated with Bear and Ungulate Mortalities Along a Railroad in the Canadian Rocky Mountains), Dorsey and colleagues report the findings from a 21-year data set of train crashes with elk (*Cervus elaphus*), deer (*Odocoileus* spp.), American black bears (*Ursus americanus*) and grizzly bears (*U. arctos*) in Banff and Yoho National Parks, Canada. They found that mortality hotspots were affected by species abundances, train speed and the characteristics of the infrastructure. In Chap. 10 (Railways and Wildlife: a Case Study of Train-Elephant Collisions in Northern West Bengal, India), Roy and Sukumar report on the problems of elephant collision with trains in India, describing the spatial and temporal variations in mortality and relating these to elephant behavior. They found that mortality occur mainly at night and in well-defined hotspots, that males are the most susceptible to train collisions, and that mortality seems to be associated with the periods of elephants raiding of crops.

The next four chapters deal with problems related to habitat loss due to the railway infrastructure and its impacts, and the loss of connectivity due to barrier effects. In Chap. 11 (Assessing Bird Exclusion Effects in a Wetland Crossed by a Railway), Carlos Godinho and colleagues examined the extent to which aquatic birds were excluded from wetland habitats close to a railway bridge. They found that bird densities were similar in areas both close to and far from the bridge, and thus there were no noticeable exclusion effects on the wetland bird community. In Chap. 12 (Evaluating the Impacts of a New Railway on Shorebirds: a Case Study in Central Portugal), Tiago Múrias and colleagues addressed a similar problem, using comprehensive monitoring of data on bird numbers, behavior and breeding during the pre-construction, construction, and post-construction phases of a new railway line. Using a Before-After-Control-Impact (BACI) design, they found that the abundance of breeding and wintering shorebirds was reduced in saltpans close to the railway in the post-construction phase. In Chap. 14 (Fragmentation of Ungulate Habitat and Great Migrations by Railways in Mongolia), Ito and colleagues evaluate the impact of the Ulaanbaatar-Beijing Railway on the great migrations of ungulates in the largest grassland in the world – Mongolia’s Gobi-steppe ecosystem. They found that fencing along the railway represents a source of mortality and
a barrier to ungulate movement that prevent the long-distance movements required to find food during the harsh winters of Mongolia.

The final four chapters describe novel approaches to reduce and mitigate the biodiversity impacts of railways and also some positive impacts of railways on biodiversity. In Chap. 15 (Railway Ecology – Experiences and Examples in the Czech Republic), Keken and Kušta provide an overview of the impacts and management policies of railways in the Czech Republic. They describe the current Czech railway network and the plans for future expansion, discussing several management options for preventing accidents with animals and mitigating other environmental impacts. In Chap. 16 (Ecological Roles of Railway Verges in Anthropogenic Landscapes: a Synthesis of Five Case Studies in Northern France), Vandevelde and Penone focus on railway verges and their potential positive impacts on the environment. They show that verges may provide habitats for grass plants, bats, and orthopteran, as well as functional connectivity to plants, thereby counteracting some of the negative effects of large-scale urbanization. In Chap. 17 (Wildlife Deterrent Methods for Railways – an Experimental Study), Seiler and Olsson discuss management options for reducing ungulate collisions with trains in Sweden. They review trends in ungulate collisions with trains since 1970 and their economic costs, and then introduce and discuss a new crosswalk design with a deterrent system, where animals are encouraged to leave the railway shortly before trains arrive. Finally, in Chap. 18 (Commerce and Conservation in the Crown of the Continent), Waller describes how a partnership between a railway company, the government and public stakeholders allowed the recovery of the grizzly bear (*Ursus arctos*) in Glacier National Park in the U.S. They describe the mortality problem that resulted from grizzly bears feeding on grain spilled from derailed cars and becoming habituated to the presence of trains, and how this was dealt with through the partnership of a range of stakeholders.

In the final Chap. 19, we wrap up the key messages of the book. We briefly consider the future of railway ecology and give several recommendations on how to mitigate their impacts on the environment.

We hope this book inspires scientists and practitioners to develop approaches to make railways increasingly biodiversity-friendly. But we would also like to dedicate this book to those working for railway companies that have done their best to ameliorate the impacts of railways on the environment and made railways one of the most sustainable modes of transportation.
Acknowledgements

We would like to thank Infraestruturas de Portugal, and in particular João Morais Sarmento, Ana Cristina Martins, Cândida Osório de Castro, Graça Garcia and Luisa Vales de Almeida without whom this book would not have been possible. We would also like to thank Sasha Vasconcelos for her willingness to help with our constant questions about English. Finally, we would like to thank Margaret Deignan at Springer for her invaluable help in putting this book together.
Contents

Part I Review

1 Railway Ecology ... 3
 Luís Borda-de-Água, Rafael Barrientos, Pedro Beja
 and Henrique M. Pereira

2 Current Knowledge on Wildlife Mortality in Railways 11
 Sara M. Santos, Filipe Carvalho and António Mira

3 Methods to Monitor and Mitigate Wildlife
 Mortality in Railways ... 23
 Filipe Carvalho, Sara M. Santos, António Mira and Rui Lourenço

4 Railways as Barriers for Wildlife: Current Knowledge 43
 Rafael Barrientos and Luís Borda-de-Água

5 Aliens on the Move: Transportation Networks
 and Non-native Species ... 65
 Fernando Ascensão and César Capinha

6 Railway Disturbances on Wildlife: Types,
 Effects, and Mitigation Measures 81
 Priscila Silva Lucas, Ramon Gomes de Carvalho and Clara Grilo

Part II Case Studies

7 Bird Collisions in a Railway Crossing a Wetland
 of International Importance (Sado Estuary, Portugal) 103
 Carlos Godinho, João T. Marques, Pedro Salgueiro, Luísa Catarino,
 Cândida Osório de Castro, António Mira and Pedro Beja
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Cross-scale Changes in Bird Behavior Around a High Speed Railway:</td>
<td>117</td>
</tr>
<tr>
<td>From Landscape Occupation to Infrastructure Use and Collision Risk</td>
<td></td>
</tr>
<tr>
<td>Juan E. Malo, Eladio L. García de la Morena, Israel Hervás, Cristina</td>
<td></td>
</tr>
<tr>
<td>Mata and Jesús Herranz</td>
<td></td>
</tr>
<tr>
<td>9 Relative Risk and Variables Associated with Bear and Ungulate Mortalities</td>
<td>135</td>
</tr>
<tr>
<td>Along a Railroad in the Canadian Rocky Mountains</td>
<td></td>
</tr>
<tr>
<td>Benjamin P. Dorsey, Anthony Clevenger and Lisa J. Rew</td>
<td></td>
</tr>
<tr>
<td>10 Railways and Wildlife: A Case Study of Train-Elephant Collisions in</td>
<td>157</td>
</tr>
<tr>
<td>Northern West Bengal, India</td>
<td></td>
</tr>
<tr>
<td>Mukti Roy and Raman Sukumar</td>
<td></td>
</tr>
<tr>
<td>11 Assessing Bird Exclusion Effects in a Wetland Crossed by a Railway</td>
<td>179</td>
</tr>
<tr>
<td>(Sado Estuary, Portugal)</td>
<td></td>
</tr>
<tr>
<td>Carlos Godinho, Luisa Catarino, João T. Marques, António Mira and</td>
<td></td>
</tr>
<tr>
<td>Pedro Beja</td>
<td></td>
</tr>
<tr>
<td>12 Evaluating the Impacts of a New Railway on Shorebirds:</td>
<td>197</td>
</tr>
<tr>
<td>A Case Study in Central Portugal (Aveiro Lagoon)</td>
<td></td>
</tr>
<tr>
<td>Tiago Múrias, David Gonçalves and Ricardo Jorge Lopes</td>
<td></td>
</tr>
<tr>
<td>13 Evaluating and Mitigating the Impact of a High-Speed Railway on</td>
<td>215</td>
</tr>
<tr>
<td>Connectivity: A Case Study with an Amphibian Species in France</td>
<td></td>
</tr>
<tr>
<td>Céline Clauzel</td>
<td></td>
</tr>
<tr>
<td>14 Habitat Fragmentation by Railways as a Barrier to Great Migrations</td>
<td>229</td>
</tr>
<tr>
<td>of Ungulates in Mongolia</td>
<td></td>
</tr>
<tr>
<td>Takehiko Y. Ito, Badamjav Lhagvasuren, Atsushi Tsunekawa and Masato</td>
<td></td>
</tr>
<tr>
<td>Shinoda</td>
<td></td>
</tr>
<tr>
<td>15 Railway Ecology—Experiences and Examples in the Czech Republic</td>
<td>247</td>
</tr>
<tr>
<td>Z. Keken and T. Kušta</td>
<td></td>
</tr>
<tr>
<td>16 Ecological Roles of Railway Verges in Anthropogenic Landscapes:</td>
<td>261</td>
</tr>
<tr>
<td>A Synthesis of Five Case Studies in Northern France</td>
<td></td>
</tr>
<tr>
<td>J.-C. Vandevelde and C. Penone</td>
<td></td>
</tr>
<tr>
<td>17 Wildlife Deterrent Methods for Railways—An Experimental Study</td>
<td>277</td>
</tr>
<tr>
<td>Andreas Seiler and Mattias Olsson</td>
<td></td>
</tr>
</tbody>
</table>
Editors and Contributors

About the Editors

Luís Borda-de-Água is a researcher in ecology and conservation biology at CIBIO-InBIO, University of Porto (Portugal) collaborating with the Infraestruturas de Portugal Biodiversity Chair. He took his Ph.D. in ecology at Imperial College, London, UK, having studied before electrical engineering and physics. His background had led him to work mainly on theoretical and computational aspects of ecology. Presently he divides his research activity between studies on global biodiversity patterns and the impacts of linear infrastructures on wildlife.

Rafael Barrientos is a conservation biologist who received his Ph.D. in 2009. He has a background on the impacts of linear infrastructures on wildlife, including road-kills, collision with power lines or the genetics of fragmented populations. He has participated in several management projects, for instance from the Spanish National Parks Autonomous Agency, OAPN. Also, he has participated in purely research projects in Spanish institutions like the Arid Zones Experimental Station, the National Museum of Natural History or the Castilla-La Mancha University. Since 2015 he has a postdoctoral position at the Infraestruturas de Portugal Biodiversity Chair at CIBIO-InBIO, Universidade do Porto (Portugal).

Pedro Beja is a senior researcher in ecology and conservation biology at CIBIO-InBIO, University of Porto (Portugal), where he holds since 2012 the EDP Chair in Biodiversity and leads the ApplEcol—Applied Population and Community Ecology research group. He has over 25 years of professional experience, with work carried out in the public administration, private environmental consultancy, academia, and research institutions. His main research interests are in the area of biodiversity conservation in human-dominated landscapes, including agricultural, forest and freshwater systems. He has published over one hundred scientific papers on a variety of topics related to the conservation and management of biodiversity in Europe, Africa and South America.

Henrique M. Pereira is a leading expert on global biodiversity change. He has worked both as a researcher and as a practitioner, having served as the Director of Peneda-Gerês National Park and as the coordinator of the Portugal Millennium Ecosystem Assessment. Since 2013, he is the Professor of Biodiversity Conservation at iDiv—German Center for Integrative Biodiversity Research of the Martin Luther University Halle-Wittenberg and holds since 2015 the Infraestruturas de Portugal Biodiversity Chair at CIBIO-InBIO, Universidade do Porto (Portugal). He is the Chair of the Biodiversity Observation Network of the Group on Earth Observations and co-chair of the Expert Group on Scenarios and Models from the Intergovernmental Platform on Biodiversity and Ecosystem Services. He has published over one hundred scientific papers and reports on biodiversity issues.
Contributors

Fernando Ascensão CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Rafael Barrientos CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Pedro Beja CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Luís Borda-de-Água CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Pedro Brum Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa, Lisboa, Portugal

César Capinha Global Health and Tropical Medicine Centre (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Lisboa, Portugal

Filipe Carvalho CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal; Department of Zoology and Entomology, School of Biological and Environmental Sciences, University of Fort Hare, Alice, South Africa

Ramon Gomes de Carvalho Centro Brasileiro de Estudos em Ecologia de Estradas, Universidade Federal de Lavras, Lavras, Brazil

Cândida Osório de Castro Direção de Engenharia e Ambiente, Infraestruturas de Portugal, Almada, Portugal

Luísa Catarino LabOr—Laboratory of Ornithology, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Évora, Portugal

Céline Clauzel LADYSS, UMR 7533 CNRS, Sorbonne Paris Cité, University Paris-Diderot, Paris, France; TheMA, CNRS, University Bourgogne Franche-Comté, Besançon Cedex, France

Anthony Clevenger Western Transportation Institute/College of Engineering, Montana State University, Bozeman, MT, USA
Benjamin P. Dorsey Parks Canada, Revelstoke, BC, Canada

Eladio L. García de la Morena SECIM, Servicios Especializados de Consultoría e Investigación Medioambiental, Madrid, Spain

Carlos Godinho LabOr—Laboratory of Ornithology, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal

David Gonçalves CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal

Clara Grilo Centro Brasileiro de Estudos em Ecologia de Estradas, Universidade Federal de Lavras, Lavras, Brazil; Setor Ecologia, Departamento Biologia, Universidade Federal de Lavras, Lavras, Brazil

Jesús Herranz Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain

Israel Hervás Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain

Takehiko Y. Ito Arid Land Research Center, Tottori University, Tottori, Japan

Z. Keken Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic

T. Kušta Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic

Badamjav Lhagvasuren Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

Ricardo Jorge Lopes CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal

Rui Lourenço LabOr—Laboratory of Ornithology, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal

Priscila Silva Lucas Centro Brasileiro de Estudos em Ecologia de Estradas, Universidade Federal de Lavras, Lavras, Brazil

Juan E. Malo Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain

João T. Marques Unidade de Biologia da Conservação, Departamento de Biologia, Universidade de Évora, Évora, Portugal; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal
Cristina Mata Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain

António Mira Unidade de Biologia da Conservação, Departamento de Biologia, Universidade de Évora, Évora, Portugal; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal

Tiago Múrias CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal

Mattias Olsson EnviroPlanning AB, Gothenburg, Sweden

C. Penone Institute of Plant Sciences, University of Bern, Bern, Switzerland

Henrique M. Pereira CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

Lisa J. Rew Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA

Mukti Roy Asian Nature Conservation Foundation, c/o Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India

Pedro Salgueiro Unidade de Biologia da Conservação, Departamento de Biologia, Universidade de Évora, Évora, Portugal; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal

Sara M. Santos CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal

Andreas Seiler Department of Ecology, Swedish University of Agricultural Sciences, SLU, Riddarhyttan, Sweden

Masato Shinoda Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Raman Sukumar Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India

Atsushi Tsunekawa Arid Land Research Center, Tottori University, Tottori, Japan

J.-C. Vandevelde UMR 7204 (MNHN-CNRS-UPMC), Centre d’Ecologie et de Sciences de la Conservation (CESCO), Paris, France

John S. Waller Glacier National Park, West Glacier, MT, USA
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.1</td>
<td>Ideal protocol for mitigating railway barrier effects</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 6.1</td>
<td>Schematic drawing of a railway showing some measures to minimize noise and vibration: rail fastenings; rail dampers; under-sleepers pads and noise barriers (not at scale)</td>
<td>89</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>Spatial responses of wildlife to railway disturbances: the length of the white bars are proportional to the distances up to which the railway has an effect on a given taxon while short and black bars correspond to species occurrence in the railway verges</td>
<td>92</td>
</tr>
<tr>
<td>Fig. 7.1</td>
<td>Location of the Sado estuary in Portugal (a), map of the study area showing the location of the three sections surveyed for bird mortality in the Variante de Alcácer” railway line (b), and detail of the section 1 crossing the Sado river, with the location of the three bird counting points (c)</td>
<td>106</td>
</tr>
<tr>
<td>Fig. 7.2</td>
<td>Photographs illustrating aspects of the study area. Upper panel railway crossing rice fields (São Martinho stream); middle panel bowstring railway bridge crossing the river Sado; lower panel flock of flamingos flying close to the Sado railway bridge</td>
<td>107</td>
</tr>
<tr>
<td>Fig. 7.3</td>
<td>Monthly number of aquatic birds observed crossing the railway bridge over the Sado River, between November 2012 and September 2013. Numbers are presented separately for the three sampling points covering the main habitats available in the area: North (forested areas); Central (river and wetland habitats); South (forest and wetland habitats)</td>
<td>110</td>
</tr>
</tbody>
</table>
Fig. 7.4 Schematic drawing of the bowstring railway bridge across the Sado River, showing the proportion of bird crosses at different heights during one annual cycle (November 2012 to September 2013). The grey section indicates the birds flying at the heights of collision risk with circulating trains . . .

Fig. 8.1 Location of study site along the Madrid-Albacete HSR. Inset image shows a magnified view of the study area (boxed in main image).

Fig. 9.1 Map of the 134 km of the Canadian Pacific Railroad study area that traverses through Banff and Yoho National Parks in the Canadian Rocky Mountains. Each analysis segment (4.86 km) is shown denoted by a small perpendicular bar along the railroad. Segments with high strike risk are labeled for (E) elk, (D) deer, and (B) bears during the 21-year period (1989–2009) along the Canadian Pacific Railroad through Banff and Yoho National Parks.

Fig. 9.2 Grain spill sampling method used on the rail bed. The sampling frame (10×10 cm2), was randomly thrown three times to estimate the mean density of wheat and barley seeds within a 5 m zone.

Fig. 9.3 The number of train strikes (white bars) for a elk, b deer and c bear compared to the expected number of strikes (grey bars a positive value) based on the abundance of wildlife sign along each 4.86 km segment using perpendicular transects; d compares on-track relative abundance for bears to number of strikes. Hotspots are segments with a strike count above the 95% confidence interval (grey dashed line) and high risk segments are those with a risk estimate significantly above 1.0 (black points and error bars). Grey points are risk estimates not significantly different from 1.0 (the number killed was close to the number expected based on wildlife abundance). Segments proceed west to east, where 0 is the first 4.86 km inside the west boundary of Yoho National Park. The Field town site is located at segment 6, the Lake Louise town site corresponds to segment 13 and the Banff town site segment 24.

Fig. 9.4 Annual train strikes for a elk, b deer and c bear along 134 km of the Canadian Pacific Railroad through Banff and Yoho National Parks, 1989–2009.
Fig. 10.1 Temporal variation between 1974 and 2015 in the number of train–elephant collision accidents (No inc) and in the number of elephants killed (ele killed) per 5-year period, in the Siliguri–Alipurduar railway, northern West Bengal, India ... 163

Fig. 10.2 Temporal distribution of train–elephant collisions during the daily cycle in the period 2004 and 2015 (after broad gauge conversion), in the Siliguri–Alipurduar railway, northern West Bengal, India 164

Fig. 10.3 Variation in relation to season in the number of accidents (InC no) and number of elephants killed (Ele No) in collisions with trains during 2004–2015 (after broad gauge conversion) in the Siliguri–Alipurduar railway, northern West Bengal, India ... 165

Fig. 10.4 Monthly variation of railway elephant accidents (REA) between 2004 and 2015 (after broad gauge conversion), in the Siliguri–Alipurduar railway, and in the frequency of crop raiding (FCR) by elephants in villages. Data on crop raiding are based on Sukumar et al. (2003) and Roy (2010) .. 165

Fig. 10.5 Locations of elephant–train accidents in northern West Bengal during 1974–2002 (upper panel, a) when meter gauge was in operation (pink stars indicate locations where accidents occurred) and during 2004–2015 (lower panel, b) after broad gauge conversion (red stars indicate locations where accidents occurred) 167

Fig. 10.6 Maps estimating the spatial variation in the risk of collision of elephants with trains along the railway track in northern West Bengal based on point densities (“Susceptibility Map”; upper panel, a) and kernel densities (lower panel, b) ... 168

Fig. 10.7 Suggestions for realignment of the existing railway track from Siliguri Junction to Alipurduar Junction to reduce the risk of train–elephant collisions in northern West Bengal. #Red line Northern sector railway track (Siliguri Junction–Alipurduar Junction). #Green line Southern sector railway track (New Jalpaiguri–New Alipurduar Junction) that does not pass through any forest. #Pink lines Possible realignment of track (Dalgaon–Falakata (A-1), Madarihat–Falakata (A-2)). #Blue dotted lines Possible realignment of proposed track (Madarihat–Alipurduar Junction (A-3) and Hamlitonganj–Damanpur (A-4)) 173

Fig. 11.1 Map of the study area in the Sado Estuary (Portugal), showing the location of the sectors close (0–500 m) and far (500–1500 m) from the railway, where wetland birds were counted between December 2012 and October 2015. 183
Fig. 11.2 Variation in mean densities (birds/ha) of the most abundant wetland birds counted in sectors close (<500 m) and far (>500 m) from the railway line, in relation to season and level of the tidal cycle .. 186

Fig. 12.1 a Map of the study area in Ria de Aveiro (Portugal), showing the location of the new railway line and the saltpans that were impacted by the construction and functioning of the railway (blue) and the saltpans that were used as control sampling units (green). b Timeline of the different phases, with photos of the same railway viaduct section, also showing one of the impacted saltpans .. 200

Fig. 12.2 Outline of the sampling rationale and parameters collected to test for the impacts of a new railway on shorebirds breeding and wintering in saltpans of Ria de Aveiro (Portugal) 202

Fig. 12.3 Number of nests per week of Black-winged Stilt in impacted and control saltpans of Ria de Aveiro (Portugal), before (2006), during (2008–2009), and after (2011) the construction of a new railway in the study area.. 208

Fig. 12.4 Boxplots showing variation in the number of Black-winged Stilt nests, and nest and fledging success, in impacted and control saltpans of Ria de Aveiro (Portugal), before (2006), during (2008–2009), and after (2011) the construction of a new railway in the study area .. 209

Fig. 13.1 Landscape (a) and ecological network of the tree frog (b) in the Burgundy-Franche-Comté region ... 218

Fig. 13.2 Rate of variation of the PC_{flux} values (%) due to the implementation of the HSR line .. 222

Fig. 13.3 Location of ten new wildlife crossing structures maximizing connectivity. The top left inset shows the curve of the increase in connectivity provided by new amphibian passes. The numbers 1–10 refer to the rank of crossings according to the gain in connectivity they provide.................................. 223

Fig. 14.1 A herd of Mongolian gazelles moving along the Ulaanbaatar–Beijing Railway ... 230

Fig. 14.2 Existing and planned railways in Mongolia and the distributions of the Mongolian gazelle, goitered gazelle, and Asiatic wild ass. Data of the wildlife distribution were downloaded from the IUCN red list website (http://www.iucnredlist.org) ... 230

Fig. 14.3 Locations of two tracked Mongolian gazelles from 2002 to 2003 in Mongolia, and the zones in which the normalized-difference vegetation index (NDVI) was analyzed. Zones W30, W60, and W90 are 0–30, 30–60, and 60–90 km northwest of the railway, respectively, and zones E30, E60,
and E90 are 0–30, 30–60, and 60–90 km southeast of the railway, respectively. The *hatched line* represents the railway (from Ito et al. 2005) ... 235

Fig. 14.4 Underpasses on the Ulaanbaatar–Beijing Railway 236

Fig. 14.5 Average normalized-difference vegetation index (NDVI) in each zone adjacent to the railway from 17 November to 2 December 2002. *Error bars* represent 95% confidence intervals. See Fig. 14.3 for explanation of zone names (from Ito et al. 2005) ... 237

Fig. 14.6 Movements of the tracked Mongolian gazelles: a gazelles captured on the southwestern side of the Ulaanbaatar–Beijing Railway in 2007, and b gazelles captured on the northeastern side from 2003. The tracking continued until 2012 (from Ito et al. 2013a) ... 238

Fig. 14.7 Monthly ratio (mean + SE) of location data within 10 km of the anthropogenic barriers (the railway and the international border fence) to all monthly location data for tracked Mongolian gazelles that used areas within 10 km of the barriers at least once during the tracking periods (n = 16; from Ito et al. 2013a) ... 239

Fig. 14.8 a Study area of a Mongolian gazelle carcass census conducted along the Ulaanbaatar–Beijing Railway in June 2005 and ranges of each zone. *Open squares* are locations of major towns and the start- and end-points of the carcass census. The *hatched line* represents the railway. b Carcass numbers of Mongolian gazelles on the southwestern and northeastern sides of the Ulaanbaatar–Beijing Railway in each zone. We categorized carcasses according to whether we found them outside or inside railway fences (from Ito et al. 2008) ... 240

Fig. 14.9 Carcass of a Mongolian gazelle entangled in a railway fence of the Ulaanbaatar–Beijing Railway. .. 242

Fig. 15.1 Road and railway and wildlife, overview of implication and general way of solution ... 249

Fig. 15.2 Categorization of railways in the Czech Republic (location in Europe in inset) by maximal speed .. 250

Fig. 15.3 Road versus railway infrastructure in the Czech Republic 251

Fig. 16.1 Location of study sites in France (left panel) and in the Paris region (right panel) ... 262

Fig. 16.2 Functional connectivity of railway verges for semi-natural plant species. *Green patches* represent railway verges. *Arrows* represent propagules movement. *Circles with symbols* represent plant communities with highly (black), moderately (dark grey) and poorly (light grey) mobile species 268
Fig. 17.1 Trends in moose and roe deer reportedly killed on roads, on railways and through hunting. Traffic accounts for about 10–15% of all human-caused mortality, and the proportion is increasing. Updated from Seiler et al. (2011) .. 278

Fig. 17.2 Reported wildlife-train collisions in Sweden during 2001–2010. Source Seiler et al. (2011) ... 280

Fig. 17.3 Annual frequencies of reported and positioned train collisions with moose and roe deer per km of railway in Sweden during 2001–2009. From Seiler et al. (2011) ... 282

Fig. 17.4 Upper picture train driver’s view of a fleeing moose shortly before collision. The picture was taken with a video dashcam mounted inside the driver’s cabin. Lower picture the damaged front of the X2000 train engine after the moose collision. Photos Jimmy Nilsson, Swedish Railways. .. 284

Fig. 17.5 Conceptual sketch of an experimental crosswalk: standard exclusion fences lead animals towards an opening of about 50 m in width where movement detectors, thermal cameras and video cameras monitor the presence and behaviour of animals and trigger the warning system when trains approach. Crushed stone or cattle guards will discourage ungulates from entering the fenced area. Human access to the crosswalk is prohibited. Drawing Lars Jäderberg ... 286

Fig. 18.1 The Great Northern Environmental Stewardship Area between West Glacier and East Glacier, Montana, USA ... 295

Fig. 18.2 A westbound Burlington-Northern Santa Fe freight train crossing Marias Pass ... 296

Fig. 18.3 Spilled corn covers the slopes below the tracks during cleanup of a freight train derailment near Marias Pass, Montana, USA ... 298

Fig. 18.4 A Burlington-Northern Santa Fe freight train crosses the Sheep Cr. Trestle ... 299

Fig. 18.5 An avalanche partially buries a snow shed on the Burlington-Northern Santa Fe railroad in the John F. Stevens canyon ... 303

Fig. 18.6 A large cut-and-fill railroad bed completely obstructs a natural drainage in Glacier National Park ... 305
List of Tables

Table 7.1 Summary results of vertebrate mortality detected in the “Variante de Alcácer” railway (southern Portugal), between November 2012 and October 2013 ... 108

Table 7.2 Aquatic bird species observed most frequently crossing the railway bridge over the Sado River, indicating the total number of birds crossing and the number of crosses within the train collision risk zone (between the deck and the catenary lines) ... 111

Table 8.1 Trends in bird densities in the area traversed by the HSR, 2011–2015 .. 122

Table 8.2 Species found making use of railway elements categorized by registered intensity of use ... 123

Table 8.3 Birds’ use of HSR structural elements ... 124

Table 8.4 Species for which it was possible to define flight behavior patterns regarding to the collision risk area of the HSR (i.e. under or between the wires of the catenary) 127

Table 8.5 Flight initiation distance (mean ± SD) of birds facing and approaching high speed trains .. 130

Table 9.1 Description of field collected and GIS derived spatially varying train and railroad design variables and the hypothesized correlation to strike rates .. 144

Table 9.2 Variation between years and railroad segments for (a) elk, (b) deer and (c) bear along the Canadian Pacific Railroad within Banff and Yoho National Parks, 1989–2009 148

Table 9.3 Significant (p < 0.05) parameter estimates explaining train strike rates with elk, deer and bear ... 148

Table 10.1 Number of elephant signs (see text for list) recorded in different sectors along the railway track in northern West Bengal (Siliguri Junction–Alipurdurar Junction; see Fig. 10.7 for locations of stations) .. 162
Table 10.2 Age structure of the elephant population in northern West Bengal (based on Sukumar et al. 2003) and those killed in train–elephant collisions in the Siliguri–Alipurduar railway between 2004 and 2015 ... 164

Table 11.1 Number (N) and area (ha) of habitat types in relation to distance categories (<500 and >500 m) from a railway bridge, which were sampled to estimate the exclusion effects on aquatic birds in the Sado Estuary, Portugal 182

Table 11.2 Summary results of generalized mixed models (GLMM) relating bird species richness and abundances to distance (Dist) to the railway (<500 vs. >500 m) and tidal cycle (low vs. high tide), while controlling for the random effects of sampling month and sector 185

Table 12.1 Summary table of the results of generalized linear mixed models (GLMM) used to evaluate the impact of a railway on breeding and wintering shorebirds in salt pans of Ria de Aveiro (Portugal) ... 206

Table 13.1 Landscape categories and cost values ... 219

Table 16.1 The three roles of railway verges studied on selected taxa 272