Lecture Notes in Networks and Systems

Volume 6

Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
The series “Lecture Notes in Networks and Systems” publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Advisory Board

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas—UNICAMP, São Paulo, Brazil
e-mail: gomide@dca.fee.unicamp.br

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey
e-mail: okyay.kaynak@boun.edu.tr

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA and Institute of Automation, Chinese Academy of Sciences, Bejing, China
e-mail: derong@uic.edu

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada and Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
e-mail: wpedrycz@ualberta.ca

Marios M. Polycarpou, KIOS Research Center for Intelligent Systems and Networks, Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
e-mail: mpolycar@ucy.ac.cy

Imre J. Rudas, Óbuda University, Budapest Hungary
e-mail: rudas@uni-obuda.hu

Jun Wang, Department of Computer Science, City University of Hong Kong Kowloon, Hong Kong
e-mail: jwang.cs@cityu.edu.hk

More information about this series at http://www.springer.com/series/15179
Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016)
Preface

The field of nonlinear science has evolved from being a valuable theoretical and computational tool to study dynamic behavior in space and time to a critical component to model, design and fabricate actual devices that exploit the inherently nonlinear features of many natural phenomena. A common theme among researchers working in the field is the fundamental principle that makes nonlinear systems highly sensitive to perturbations when they occur near the onset of a bifurcation.

This behavior is universal among many nonlinear phenomena, in particular, among the sensory system of biological systems. If properly understood and manipulated, it can lead to significant enhancements in systems response and biologically inspired novel devices. Bridging the gap between theory and actual realizations of biologically inspired devices can only be accomplished by bringing together researchers working in theoretical methods in nonlinear science with those performing experimental works.

Since 2005, we have held a series of meetings to bring together researchers across various disciplines working on theory and experiments in nonlinear science with the overall aim of advancing the development and design of novel devices.

The first meeting was 2005 Device Applications of Nonlinear Dynamics (DANOLD) meeting, held in Catania, Italy. Then in 2007 ICAND, the research community met again in Poipu Beach, Koloa (Kauai), Hawaii, USA. More recently, the 2010 ICAND meeting was held in Alberta, Canada, at the luxurious Fairmont Chateau in Lake Louise. 2012 ICAND was held in Seattle, Washington, USA.

And 2016 in Denver, Colorado. The focus for 2016 ICAND was equally divided between theory and implementation of theoretical ideas into actual devices and systems.

The organizers extend their sincerest thanks to the principal sponsors of the meeting: Army Research Office (Washington, DC), Office of Naval Research (Washington, DC), Office of Naval Research-Global (Tokyo), San Diego State University (College of Sciences), and SPAWAR Systems Center Pacific. A special mention to Dr. Michael Shlesinger from the Office of Naval Research for his
support and insight to hold such a diverse meeting. We would also like to thank all
the personnel who spent many hours making this meeting a success. Finally, we
thank Springer for their production of the elegant proceedings.

San Diego, USA

Visarath In
Patrick Longhini
Antonio Palacios
Contents

Invariant Tori in a Network of Two Spin-Torque Nano Oscillators
James Turtle, Antonio Palacios, Patrick Longhini and Visarath In

Random Perturbations of a Three-Machine Power System Network
Vishal Chikkerur, Nishanth Lingala, Hoong C. Yeong, N. Sri Namachchivaya and Peter W. Sauer

A Solvable Chaotic Oscillator with Multiple Set Points
Marko S. Milosljevic, Jonathan N. Blakely and Ned J. Corron

A 4 MHz Chaotic Oscillator Based on a Jerk System
R. Chase Harrison, Benjamin K. Rhea, Frank T. Werner and Robert N. Dean

Multistability in Nanosystems
Ying-Cheng Lai

Spectral Scaling Analysis of RR Lyrae Stars in OGLE-IV Galactic Bulge Fields
Vivek Kohar, John F. Lindner, Behnam Kia and William L. Ditto

Network of Coupled Oscillators for Precision Timing
Pietro-Luciano Buono, Bernard Chan, Jocirei Ferreira, Patrick Longhini, Antonio Palacios, Steven Reeves and Visarath In

Ultrafast Nonlinear Dynamics in Mesoscopic Oscillators
Chee Wei Wong, Shu-Wei Huang and Jiagui Wu

Present and the Future of Chaos Computing
Behnam Kia, Vivek Kohar and William Ditto

Computing Below the Expected Energy Limits
Luca Gammaitoni, Igor Neri and Miquel López-Suárez
Reducing Microwave Absorption with Chaotic Microwaves 119
Juehang Qin and A. Hubler

Design of High-Frequency High-Efficiency Converters by Applying Bifurcation Analysis Techniques 127
Hiroo Sekiya

Attractor Density Clustering 139
T.L. Carroll and J.M. Byers

Nonlinear Dynamics from Infinite Impulse Response Matched Filters 151
Ned J. Corron and Jonathan N. Blakely

Chaotic Oscillators for Wideband Radar Signal Processing 161
Chandra S. Pappu and Benjamin C. Flores

Spike Based Information Processing in Spiking Neural Networks 177
Sadique Sheik

Measures from Nonlinear Dynamics Reflect Glucose Current Sensor Degradation 189
Eric Mauritzen, Arnold Mandell, David Tallman and Bruce Buckingham

Dynamics of Biomimetic Electronic Artificial Neural Networks 195
Harold M. Hastings, Oscar I. Hernandez, Lucy Jiang, Boqiao Lai, Lindsey Tensen and June Yang

Application of a Stabilizing Method Using Periodic Threshold to Current-Controlled DC/DC Converters 209
Hiroyuki Asahara and Takuji Kousaka

Asynchronous Bifurcation Processor: Fundamental Concepts and Application Examples 217
Hiroyuki Torikai,Kentaro Takeda and Taiki Naka

Parametric System Identification of Resonant Nonlinear Micro/Nanosystems 231
Andrew B. Sabater

Robustness of Injection-Locked Oscillators to CMOS Process Tolerances 245
Najme Ebrahimi and James Buckwalter

On the Spectral Dynamics of Noise-Seeded Modulation Instability in Optical Fibers 265
P.I. Fierens, S.M. Hernandez, J. Bonetti and D.F. Grosz

Transverse Modes of Coupled Nonlinear Oscillator Arrays 277
Niketh Nair, Erik Bochove and Yehuda Braiman
The Simplicial Characterisation of TS Networks: Theory and Applications ... 289
Neelima Gupte, N. Nirmal Thyagu and Malayaja Chutani

Numerical Bifurcation Analysis on a System of Coupled Crystal Oscillators .. 297
Steven Reeves, Antonio Palacios, Patrick Longhini and Visarath In

Non-linear Convolutional Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery 309
Iryna Dzieciuch, Daniel Gebhardt, Chris Barngrover and Keyur Parikh