The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes:

- to be a compact and modern up-to-date source of reference on a well-defined topic
- to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas
- to be a source of advanced teaching material for specialized seminars, courses and schools

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com

More information about this series at http://www.springer.com/series/5304
Holographic Entanglement Entropy
Acknowledgments

We have been extremely fortunate to benefit from the wisdom and deep physical intuition of our wonderful collaborators Veronika Hubeny and Shinsei Ryu, who played a pivotal role in helping us develop the basic picture relating quantum entanglement and holography. The importance of their role in shaping the story of holography entanglement entropy cannot be overstated.

We have also enjoyed many excellent collaborations in our explorations over the past decade on this subject: thanks to Tatsuo Azeyanagi, Jyotirmoy Bhattacharya, Pawel Caputa, Sumit Das, Mitsuthoshi Fujita, Xi Dong, Simon Gentle, Kanato Goto, Thomas Hartman, Felix Haehl, Song He, Matthew Headrick, Albion Lawrence, Aitor Lewkowycz, Don Marolf, Masamichi Miyaji, Ali Mollabashi, K. Narayan, Tatsuma Nishioka, Masahiro Nozaki, Tokiro Numasawa, Noriaki Ogawa, Eric Perlmutter, Max Rota, Noburo Shiba, Joan Simon, Andrius Stikonas, Moshe Rozali, Sandip Trivedi, Erik Tonni, Henry Maxfield, Tomonori Ugajin, Alexandre Vincart-Emard, Kento Watanabe, Xueda Wen, and Anson Wong for many fun discussions and for helping us understand various aspects of the story we are about to relate. A special thanks to Max Rota for his useful comments on a draft of this manuscript.

We would especially like to single out the influence of Horacio Casini, Matt Headrick, Don Marolf, Rob Myers, and Mark Van Raamsdonk whose perspicacious insights have contributed immensely to our understanding of entanglement and holography.
Contents

1 Introduction ... 1

Part I Quantum Entanglement

2 Entanglement in QFT .. 7
 2.1 Entanglement in Lattice Systems 7
 2.2 Continuum QFTs .. 11
 2.3 Path Integrals and Replica 14
 2.4 General Properties of Entanglement Entropy 21
 2.4.1 UV and IR Properties 21
 2.4.2 Entropy Inequalities 23
 2.5 Relative Entropy .. 24

3 Entanglement Entropy in CFT\textsubscript{2} 27
 3.1 A Single-Interval in CFT\textsubscript{2} 28
 3.2 Disconnected Regions, Multiple Intervals 31

Part II Holography and Entanglement

4 Holographic Entanglement Entropy 35
 4.1 A Lightning Introduction to Holography 35
 4.2 The Gravitational Setup .. 37
 4.3 The Holographic Entanglement Entropy 43

5 Deriving Holographic Entanglement Proposals 49
 5.1 Deriving the RT Proposal 50
 5.1.1 Kinematics .. 52
 5.1.2 Dynamics ... 54
 5.1.3 The On-Shell Action 55
 5.2 Deriving the HRT Prescription 57
 5.3 Higher Derivative Gravity 61
 5.4 Implications of the Bulk Replica Construction 62
6 Properties of Holographic Entanglement Entropy .. 65
 6.1 An Extremal Surface Primer .. 65
 6.1.1 Near-Boundary Geometry and Energy-Momentum Tensor 66
 6.1.2 Extremal Surface Determination .. 68
 6.2 Holographic UV and IR Properties .. 86
 6.3 Holographic Entropy Inequalities .. 88

Part III Entanglement and Quantum Dynamics

7 Quantum Quenches and Entanglement ... 99
 7.1 Global Quantum Quenches in CFTs ... 100
 7.2 Boundary States in CFT2 ... 101
 7.3 Time Evolution of Entanglement Entropy ... 104
 7.4 Eternal Black Holes and Quantum Entanglement ... 107
 7.5 Holographic Quantum Quenches ... 111
 7.5.1 Vaidya-AdS and Global Quench .. 112
 7.5.2 Holographic Boundary States ... 114
 7.5.3 Entanglement Tsunami ... 120

8 Entanglement in Excited States ... 125
 8.1 First Law of Entanglement Entropy ... 125
 8.1.1 A Holographic First Law ... 125
 8.1.2 Relative Entropy and the Entanglement First Law 128
 8.2 Entanglement Dynamics in Locally Excited States ... 129
 8.3 A Free Field Computation ... 132
 8.4 Local Excitations in Holography ... 135
 8.4.1 Massive Particle Excitation ... 135
 8.4.2 Operator Deformations ... 140

9 Holographic Many-Body Systems ... 145
 9.1 Fermi Surfaces and Entanglement ... 146
 9.2 Fermi Surfaces in Holography ... 149
 9.3 Gravity Duals of Hyperscaling Violation ... 153

10 Entanglement and Renormalization ... 155
 10.1 Central Charges and the Renormalization Group ... 156
 10.2 Entropic c-Functions ... 158
 10.2.1 The c-Theorem in $d = 2$.. 158
 10.2.2 The F-Theorem in $d = 3$.. 161
 10.2.3 $d > 3$ Dimensions ... 164

Part IV Quantum Gravity

11 Prelude: Entanglement Builds Geometry ... 167
12 Entanglement at Large Central Charge 171
12.1 Universality Features of CFT Entanglement 172
12.2 CFT\textsubscript{2} at Large \(c\) .. 174
 12.2.1 Entanglement Phase Transitions 177
 12.2.2 Excited State Entanglement 179
 12.2.3 Local Quenches .. 181
13 Geometry from Entanglement .. 185
13.1 Criteria for Geometric Duals .. 187
 13.1.1 Sufficient Criteria for QFTs to Have a
 Semiclassical Gravitational Dual 188
 13.1.2 Field Theory Constraints on Geometry 189
 13.1.3 Constraints on Field Theory States to Admit
 Geometric Dual .. 193
13.2 The Dual of a Density Matrix .. 194
 13.2.1 Local Bulk Operators in Holography 194
 13.2.2 Subregion-Subregion Duality 201
13.3 Holography and Quantum Error Correction 206
13.4 Entanglement and Gravity ... 210
 13.4.1 Linearized Gravity from Entanglement 212
 13.4.2 The First Law of Black Hole Mechanics 214
 13.4.3 Canonical Energy and Relative Entropy 218
 13.4.4 Relative Entropy Constraints 219
14 AdS/CFT and Tensor Networks 221
14.1 Tensor Networks .. 221
14.2 MERA .. 224
14.3 AdS/CFT and Tensor Networks 226
14.4 Continuous MERA .. 228
 14.4.1 cMERA for Free Scalar Fields 230
 14.4.2 cMERA for Excited States in Free Scalar
 Field Theories ... 232

References ... 235