Studies in Systems, Decision and Control

Volume 86

Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control- quickly, up to date and with a high quality. The intent is to cover the theory, applications, and perspectives on the state of the art and future developments relevant to systems, decision making, control, complex processes and related areas, as embedded in the fields of engineering, computer science, physics, economics, social and life sciences, as well as the paradigms and methodologies behind them. The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/13304
Maurizio d’Amato · Tom Kauko
Editors

Advances in Automated Valuation Modeling
AVM After the Non-Agency Mortgage Crisis

Springer
Foreword

The recent financial crisis has lead researchers to argue that existing valuation methods or the application of these techniques are inadequate to cope with the complexities of today’s property market. This latest contribution from d’Amato, Kauko and guest authors presents new research examining current practice and providing examples of new methods and adaptations to improve the reliability of valuation and mass appraisal techniques. As such, it is a valuable addition to the literature on automated valuation and mass appraisal.

The book is divided into five parts with contributions from several experts in this field who focus on the different aspects associated with the application and development of real estate appraisal methods. Part I focuses on the emerging problems associated with property valuation. d’Amato and Kauko examine the theoretical background and application of property valuation and find that academic research still appears to focus on the integration of financial and property markets. The continued use of models based on the concept of a perpetually increasing income could, they argue, lead to a repeat of the errors which caused the 2008 global property crash. The role of automated valuation methods (AVM) in the 2008 financial crisis is discussed by Mooya who concludes that the use of AVMs are highly dependent on the both the assessor’s understanding of a specific market and the inclusion of additional data to capture the market context.

In Part II, case studies from Italy, Germany and Turkey provide examples of AVM in practice and the impact of banking reform measures in emerging markets. Eilers and Kunert carry out an analysis of REITs in Turkey following the introduction Basel III. Analysing the performance of Turkish direct real estate investment compared with that of real estate investment companies (REICs) based on three assess classes (residential, office and retail), they found that REICs did not perform as well as direct real estate investments and had become a ‘developer’s vehicle’ for construction companies and contractors.

The problems associated with calculating value when data is sparse is addressed by d’Amato, Cvorovich and Amoruso who explore the potential use of the Short Tab Market Comparison Approach as a method to statistically define the
relationship between property prices and their characteristics where there is little
data available. Moving away from the standard approach to AVM, Ciuna and Salvo
propose an automatic procedure based on the Market Comparison Approach to
define equations related to a specific market place rather than treating all markets as
homogenous. Ciuna, De Ruggiero and Salvo address the use of the Income
Approach, as recommended by the International Valuation Standards, in situations
where there is a lack of comparable data. They propose calculating the capitalisation
rate with an automated valuation model which is based on a real estate database
built through a computerised geocoding automatic procedure rather than a capitalisation rate which is generally extracted from a different segment of the market.

Part III looks at the methodological challenges of using AVM. Del Giudice and
De Paola undertake a spatial analysis of the residential rental market in central
Naples with geadditive models based on a penalised spline function in order to
improve upon the usual Kriging techniques. They find that this approach is reliable,
efficient and flexible and as such useful in modelling realistically complex
situations.

Locational attributes are also the focus for the study by Curto, Fregonara and
Semeraro who introduce a new approach to measure the relative improvement in
price and asset liquidity prediction when the location is known. The use of different
AVMs is examined by d’Amato and Amoruso in two case studies to explore first,
the relationship between DCF inputs and outputs and second, the use of Locational
Value Response Surface Modelling. More complex specifications of locational
characteristics are investigated by Bidanset, Lombard, Davies, McCord and
McCluskey who examine the impact of Kernel and Bandwidth specification of
gerographically weighted regression on the equity and uniformity of mass appraisal
models.

The ability of AVM models to cope with diverse market conditions is explored
by Kesken and Dunning who found that multilevel AVM is an ideal tool to cal-
culate the effect of earthquakes on the housing market in Istanbul; a location with
frequent seismic activity. Kesken and Dunning suggest that, appraisers working in
segmented markets with natural disasters should consider the methodological
advantages of using multilevel models to estimate value impacts in these locations.
The appropriateness of using multilevel mass appraisal models approaches was also
examined by Ciuna, Salvo and Simonotti in their appraisal of residential apartments
in Palermo, Italy.

Part IV considers two different AVM approaches. First, the use of fuzzy logic is
proposed by González to overcome the problems associated with defining market
segments, where boundary lines for each location or sub-market are often blurred.
Second, the main issue for many researchers and assessors is the lack or unavail-
ability of data. D’Amato and Renigier-Bilozor found that where data is scarce the
issue of calculating a single point estimate can be overcome using rough set theory.

In Part V, consideration is given to reducing inaccuracies in valuations.
Although property valuation has been often been called an ‘art’ and not a ‘science’,
this sentiment, arguably, reflects the assessors application of the available tech-
niques rather than the valuation methods and underlying concepts themselves.
McCluskey and Borst focus on the way in which comparables are selected and weighted to reflect the subject property. They state that, with advances in research the subjectivity associated with comparable selection and the determination of variable weightings can be minimised and therefore the sales comparison approach can now be viewed as a more scientific approach, rather than one based on the knowledge and expertise of the assessor. Appraiser bias is also addressed by Lausberg and Dust who discuss the problems associated with anchoring heuristics, where appraisers anchor to reference points; such as a previous valuation and make adjustments to it to reach their estimate. They state that, while many studies have acknowledged the importance of the anchoring effect in appraisals, the accuracy of the valuation can be increased through the use of improved valuation software which includes a decision support tool.

The breadth of research presented here provides a sound basis for the next step in the evolution of AVM with exciting examples of new techniques to improve on the current valuation methods adopted by assessors.

Dr. Sally Sims
Oxford Brookes University
To extract key dimensions from a complex set of micro-level market data requires the use of high-quality data cross-sections and a robust modelling tool. Such tools have been developed within a realm known as mass appraisal: systematic economic valuation of groups of properties using standardised procedures largely based on the multiple regression analysis (MRA). Hitherto mass appraisal has been mostly restricted to taxation, although mortgage lending is fast becoming another widespread application area. In a more generic sense, mass appraisal offers an untapped possibility to link the property value with various characteristics of the building, plot and its vicinity, as well as social and functional features of the neighbourhood and local area. Ideally the data should cover differences in socio-economic aspect and differences in environmental aspects such as pollution. At present, valid property value data is easy to find in some countries and difficult (or even impossible) to find in others.

Following the experience of our edited book Mass appraisal methods—an international perspective for property valuers RICS Series, Blackwells, Oxford, 2008, a number of our colleagues who read it proposed a sequel focusing our attention on a concept known as automated valuation method/model (AVM, Automated Valuation Methodology). The present book picks on this request and poses some questions about AVM methodology. For this reason we have raised a number of issues: in particular, on the current methodological framework of AVM, about the main problems encountering AVM applications, and what we realistically could do to improve AVMs so as to make our financial—and by implication, social—world safer. This line of research seeks to contribute to the current debate on AVMs especially after the crisis of 2007–2008. After this extensive and tragic economic crisis we are entitled to have our doubts and we are also increasingly concerned about the social responsibility of AVM for the stability of our economies. As a consequence our field of research now has an opportunity to contribute, in an effective way, to improve the stability of our financial system. AVMs may be helpful in several fields. They can, for example, be used in the collateral estimation, in the valuation of real estate portfolios. According to Basel II agreement and EU Directive 2006/48/CE, banks should provide periodic automatic valuation to appraise properties for which acquisition has
been financed in the mortgage lending process. In this valuation activity for mortgage lending purposes statistical and mathematical modelling may be used in combination with valuation.

When we examine strategic issues within mass appraisal AVMs are relevant due to their huge financial—and as a consequence also socio-economic—significance. How to avoid—or at least mitigate—a new financial crisis stemming from real estate market bubbles? So this is about socio-economic sustainability. The crisis showed that AVM can work in a normal situation with rising and stable prices, but not in a more abnormal one with falling prices. Since then a debate is emerging, but it is still not sufficiently developed in terms of conclusions between any connection between data, methods and the financial consequences.

To remind the initiated readers—and to demonstrate the point for the uninitiated ones—in our prior book on mass appraisal we followed a line of argumentation based in what we discovered was a contemporary problem—the difficulty of promoting development in the valuation paradigm. Since then, however times have changed, towards more favourable attitudes among the real estate research community, more people being involved, higher level of technical and methodological expertise, more and better datasets, greater R&D activity and data management responsibility of the private sector, the development of ICT and hardware, and not least, the new reality imposed on us by the massive global market meltdown (with consequences thereof) from 2007–2008 onwards. Because of these changes, the focus of our present book is rather different than what was the case documented in the prior book, almost a decade ago. In the present book each chapter makes a cut into the problem area we begun theorising in the previous book, rather than following a suggested line of argumentation—or vision—that would be common for all contributions. In the present compilation of papers the approach remains the same as in the prior one: we need to explore the unknown. This time we have not focussed on a competition amongst the results obtained applying different AVM methods as in the prior work. It is instead about an assemblance of different issues at stake, including best practices, real-life constrains, administrative procedures, software capabilities, expert competences, modelling frameworks, background theories and more.

When reading these books a detail in terminology is worth noting. Namely, in some instances the term computer-assisted mass appraisal (CAMA) is used instead of the term AVM. It is to observe that these two terms are not synonyms: AVM is about financial aims and mathematical procedures whereas CAMA pertains to any administrative end applications; however, plenty of overlap between these two realms exist as many methods can be used for both. At a technical level, the main difference between a CAMA estimate of value and the one produced by the AVM is the effective date of the appraised value estimate. CAMA systems value all properties in a jurisdiction as of a statutory valuation date such as January 1st of each year. On the other hand, AVMs usually are designed to produce a value estimate that coincides with the sale date of the property.

In USA the use of CAMA started in the 1970s and has since then spread around the world. During the last two decades CAMA has developed in an impressive way.
Here it is to note that, in 1999, the Appraisal Standard Board replaced the term ‘estimate of value’ with the ‘opinion of value’ in the USPAP. A clear distinction was made between two important and distinct definitions. The opinion of value regards the final results of an in person valuation and the estimate of value has been indicated as the final results of an AVM. It is worth noting that some institutions consider AVM assisted valuation more reliable than valuation in person.

Lastly, we would like to pay respect to the personal aspirations of all those colleagues, who have helped us develop our research agenda during the past 10–15 years period. To provide a brief summary, a group of academics with broadly similar interests (i.e. appraisal, valuation and market analysis) started working in two meeting organised by the OTB research Institute of Delft University of Technology, the Netherlands—this was in 2006 and 2007. For this reason we usually call this group the Delft group, even if frequent communications among many members of this group already existed a few years before that (the absolute starting point being the ERES meeting in Alicante in 2001). Then we continued with extending this network. Several authors joined our group after a large meeting arranged in Rome in 2010. While the list of authors in this book already gives an idea of this consistence, the whole group of people involved is too large to list here, and to mention only a few names would not be fair to those left out. Here is an exception, however: in this vein we have dedicated this book to the memory of Prof. Koloman Ivanicka Jr. of STU Bratislava, a passionate researcher and a joyful friend of ours.

Bari, Italy
Headington, Oxford, UK
July 2016

Maurizio d’Amato
Tom Kauko
Contents

Part I AVM, Valuation and Non-Agency Mortgage Crises: AVM, Mortgage Crises and Valuation in Person

A Brief Outline of AVM Models and Standards Evolutions 3
Maurizio d’Amato

Appraisal Methods and the Non-Agency Mortgage Crisis 23
Maurizio d’Amato and Tom Kauko

Automated Valuation Models and Economic Theory 33
Manya M. Mooya

Part II AVM, Valuation and Non-Agency Mortgage Crises: Experiences in AVM

Automated Valuation Models for the Granting of Mortgage Loans in Germany 61
Franz Eilers and Andreas Kunert

An Estimative Model of Automated Valuation Method in Italy 85
Marina Ciuna, Francesca Salvo and Marco Simonetti

Emerging Markets Under Basel III: Can Moral Hazard Lead to Systematic Risk and Fragility? Analysis of REIT’s in Turkey 113
Kerem Yavuz Arslanlı and Dilek Pekdemir

An Application of Short Tab MCA to Podgorica 139
Maurizio d’Amato, Vladimir Cvorovich and Paola Amoruso

Part III AVM Methodological Challenges: Dealing with the Spatial Issue

Spatial Analysis of Residential Real Estate Rental Market with Geoadditive Models 155
Vincenzo Del Giudice and Pierfrancesco De Paola
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Spatial Analysis for the Real Estate Market Applications</td>
<td>163</td>
</tr>
<tr>
<td>Rocco Curto, Elena Fregonara and Patrizia Semeraro</td>
<td></td>
</tr>
<tr>
<td>Location Value Response Surface Model as Automated Valuation Methodology a Case in Bari</td>
<td>181</td>
</tr>
<tr>
<td>Maurizio d’Amato</td>
<td></td>
</tr>
<tr>
<td>Further Evaluating the Impact of Kernel and Bandwidth Specifications of Geographically Weighted Regression on the Equity and Uniformity of Mass Appraisal Models</td>
<td>191</td>
</tr>
<tr>
<td>Paul E. Bidanset, John R. Lombard, Peadar Davis, Michael McCord and William J. McCluskey</td>
<td></td>
</tr>
<tr>
<td>Dealing with Spatial Modelling in Minsk</td>
<td>201</td>
</tr>
<tr>
<td>Maurizio d’Amato, Nikolaj Siniak and Paola Amoruso</td>
<td></td>
</tr>
<tr>
<td>Using Multi Level Modeling Techniques as an AVM Tool: Isolating the Effects of Earthquake Risk from Other Price Determinants</td>
<td>209</td>
</tr>
<tr>
<td>Richard Dunning, Berna Keskin and Craig Watkins</td>
<td></td>
</tr>
<tr>
<td>The Multilevel Model in the Computer-Generated Appraisal:</td>
<td>225</td>
</tr>
<tr>
<td>A Case in Palermo</td>
<td></td>
</tr>
<tr>
<td>Marina Ciuna, Francesca Salvo and Marco Simonotti</td>
<td></td>
</tr>
<tr>
<td>Part IV AVM Methodological Challenges: Non Deterministic Modelling</td>
<td></td>
</tr>
<tr>
<td>Automated Valuation Methods in Real Estate</td>
<td>265</td>
</tr>
<tr>
<td>Marco Aurélio Stumpf González</td>
<td></td>
</tr>
<tr>
<td>An Application of RST as Automated Valuation Methodology to Commercial Properties. A Case in Bari</td>
<td>279</td>
</tr>
<tr>
<td>Maurizio d’Amato and Malgorzata Renigier-Biłozor</td>
<td></td>
</tr>
<tr>
<td>Part V AVM Methodological Challenges: Inputs and Models</td>
<td></td>
</tr>
<tr>
<td>The Theory and Practice of Comparable Selection in Real Estate Valuation</td>
<td>307</td>
</tr>
<tr>
<td>William J. McCluskey and Richard A. Borst</td>
<td></td>
</tr>
<tr>
<td>Reducing the Appraisal Bias in Manual Valuations with Decision Support Systems</td>
<td>331</td>
</tr>
<tr>
<td>Carsten Lausberg and Anja Dust</td>
<td></td>
</tr>
<tr>
<td>An Application of Regressed Discounted Cash Flow as an Automated Valuation Method: A Case in Bari</td>
<td>345</td>
</tr>
<tr>
<td>Maurizio d’Amato and Yener Coskun</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Automatic Research of the Capitalization Rate for the Residential</td>
<td>361</td>
</tr>
<tr>
<td>Automated Valuation: An Experimental Study in Cosenza (Italy)</td>
<td></td>
</tr>
<tr>
<td>Marina Ciuna, Manuela De Ruggiero, Francesca Salvo and Marco Simonotti</td>
<td></td>
</tr>
<tr>
<td>Automated Procedures Based on Market Comparison Approach in Italy</td>
<td>381</td>
</tr>
<tr>
<td>Marina Ciuna, Manuela De Ruggiero, Francesca Salvo and Marco Simonotti</td>
<td></td>
</tr>
<tr>
<td>Short Tab Market Comparison Approach. An Application to the</td>
<td>401</td>
</tr>
<tr>
<td>Residential Real Estate Market in Bari</td>
<td></td>
</tr>
<tr>
<td>Maurizio d’Amato, Vladimir Cvorovich and Paola Amoruso</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>411</td>
</tr>
<tr>
<td>Glossary</td>
<td>415</td>
</tr>
</tbody>
</table>
Editors and Contributors

About the Editors

Maurizio d’Amato is Associate Professor at DICATECh, Technical University Politecnico di Bari, Italy, since 2006 where he teaches real estate investment and valuation. He completed his undergraduate work in economics at the University of Bari and worked for several banks (Bank of Rome, Bank of Salento, Micos—Mediobanca) in real estate finance before entering the doctoral programme in Planning, specialising in Valuation methods, at the Politecnico di Bari. After completing this programme, he served as a contract professor in Real Estate Valuation for several years. During this time he received research grants from the Italian Council of Research (CNR) for projects undertaken at the University of Florida in 1997, 1998 and at the University of Alicante Spain in September 2000. He received the faculty appointment of Researcher at the Politecnico di Bari in 1999. He has been Scientific Director of the Real Estate Center of Italian Association of Real Estate Counselor (AICI). He has been also professor or Real Estate Finance at University of Rome III, Real Estate Appraisal at SAA School of Business Administration University of Turin and Real Estate Appraisal at online University UNINETTUNO. He was appointed Fellow Member of Royal Institution Chartered Surveyors in June 2004 and Recognised European Valuer in May 2012.

Tom Kauko has been Associate Professor in Urban Geography at the Norwegian University of Science and Technology (NTNU) since 2006. His research interests cover housing market analysis; evaluation of planning and urban regeneration; locational quality in housing consumption; institutional, evolutionary and behavioural property research, and alternative property valuation techniques. In 1994 he obtained his M.Sc. in Land Surveying at Helsinki University of Technology (HUT), with a major in Real Estate Economics and Valuation. During 1995–1996, he worked as a planner for the research department of National Land Survey of Finland in Helsinki (Maanmittauslaitos). During 1996–1997 he participated in a course in physical planning at the Centre for Urban and Regional Research of HUT (YTK). He subsequently moved to Utrecht University, Faculty of Geographical
Sciences, where he completed his dissertation in June 2002. From 2001 to 2006, he worked as a researcher at OTB, Delft University of Technology, where he still has visitor’s affiliation.

Contributors

Kerem Yavuz Arslanh is currently employed at Istanbul Technical University Institute of Social Sciences. He has been worked at ITU Urban and Environmental Planning and Research Centre 2002–2012. His dissertation is titled “Spatially Weighted House Price Index Model for Istanbul Metropolitan Area”. He was visiting researcher at University of Alicante Institute of International Economics in 2010 and Cass Business School Department of Finance in 2011. He started lecturing, “Real Estate Finance” and “Urban Transformations and Real Estate Sector”, at İ.T.Ü. Real Estate Development Master Programme since 2012. He has academic articles in international/national journals and several conference papers in international conferences. He has been a member of the board of directors of the European Real Estate Society (ERES), the leading real estate research and education organisation in Europe.

Paul E. Bidanset is a current Ph.D. candidate in Ulster University’s School of the Built Environment, completing his dissertation under the supervision of Dr. Billy McCluskey and Dr. Peadar Davis. He is the Real Estate CAMA Modeler for the City of Norfolk, VA, Office of the Real Estate Assessor. He received his M.A. in Economics from Old Dominion University in 2013 and his B.S. in Economics from James Madison University in 2009. He is a member of the editorial review board for the Journal of Property Tax assessment and Administration, and serves on the International Association of Assessing Officers (IAAO) Research Subcommittee. On the subject of spatial automated valuation models and their impact on property tax equity, he has presented research at conferences around the world.

Richard A. Borst has been engaged in managing the design, development and implementation of computer-based real property information systems since 1973. He was president of North America’s largest mass appraisal firm while at the same time maintaining his contributions to the technical aspects of mass appraisal systems. His technical background is evidenced in a number of published articles and conference presentations. He introduced artificial neural networks to the assessment community in 1990. He was appointed to a 3-year term in 1997 as a Visiting Research Fellow at the University of Ulster, Belfast, Northern Ireland. During this tenure he collaborated with members of the faculty at the University performing research in the fields of valuation modelling and the application of location effects in the model structuring and calibration process. He obtained a Doctor of Technology from the University of Ulster, Northern Ireland, a Master of Science in Industrial Engineering from the State University of New York at Buffalo and a Bachelor of Engineering Science, with honours, from the Cleveland State University.
Marina Ciuna is a Civil Engineer. 2002 and earned a Ph.D. on Transport Technique and Organisation. Since 2008, she has been Assistant Professor of Real Estate Appraisal—Faculty of Engineering, University of Palermo; and Contract Professor in Economy and real estate evaluation—Faculty of Engineering, University of Palermo. Since 2006, she has been Contract Professor in Real Estate Appraisal—Faculty of Architecture, University of Palermo; and a member of the Società Italiana di Estimo e Valutazione (SIEV). Since 2008, she has been Component of the Scientific Committee of the Independent Real Estate Valuers Association E-valuation (Istituto di Estimo e Valutazioni). She is the author of scientific contributions on real estate valuations and damages of environmental resources evaluations; she develops studies on methodologies of the real estate evaluation (Real estate market data monitoring); market-oriented procedures evaluation and quantitative analysis applications, and mass appraisal methodologies.

Yener Coskun have both government experience, as senior specialist, and academic background. He has been working for Capital Markets Board of Turkey since 1995 by specifically focusing on investment banking and capital market activities. At the academic side, his research areas are real estate, housing finance, mortgage markets, real estate appraisal, and capital markets. Yener spent 10 months at Wharton School, University of Pennsylvania, as a visiting scholar in 2002–2003 and awarded Ph.D. in 2013 at Ankara University (Turkey) The Graduate School of Natural and Applied Sciences, Real Estate Development Department. Dr. Coskun has MRICS designation since 2010 and various local professional designations related to capital markets and real estate appraisal. He has two published books and several journal articles on capital markets, real estate and housing finance. Yener is consultative member of RICS Sustainability Task Force Europe since 2012/July and has acted as the chair for European Real Estate Society (ERES) Ph.D. Student Committee in 2010/June–2013/July. As visiting lecturer, Dr. Coskun has been serving both University of Sarajevo (for Facility Management & Housing Market Courses in the M.Sc. in Applied Finance & Property programme at the School of Economics and Business) and also Izmir University of Economics (for the Real Estate Finance and Financial Markets Course) since 2012.

Rocco Curto is Director of the Department of Architecture and Design, Politecnico di Torino. Since 1999, he has been Full Professor in Property Valuation. He is Dean of the II Faculty of Architecture, Politecnico di Torino (2006–2012). He is Scientific Coordinator of “Territorio Italia”, the scientific magazine of the Territorial Agency, Italian Ministry of Economy and Finance. In addition, he is Director of the Master’s course in “Real Estate: Territorial Planning and Property Market” (1999–2012) and Director of the Master’s course in “Management of Cultural and Environmental Heritage”. He is responsible for the Turin Real Estate Observatory. He is President Second Level Specialisation Course in Architecture (restoration and enhancement) and Three-Year Graduate Course in History and Conservation of Architectural and Environmental Heritage, Politecnico di Torino (2000–2006). His research topics include property market; application of statistical techniques (forecasting and probability), mass appraisals; functional and territorial
segmentation of the property market; economic-financial evaluation of projects and plans; enhancement and management of historical and architectural heritage; analysis of real estate investments; reform of the land register and revision of the cadastral rent.

Pierfrancesco De Paola is Engineer and Ph.D. in Conservation of Architectural and Environmental Heritage (Mediterranean University of Reggio Calabria, Curriculum in Economic Evaluation of Conservation Projects, S.S.D. ICAR22/Estimo), Adjunct Professor on Economics and Real Estate Appraisal in the Course of Study on Architecture and Building Engineering at the University of Basilicata, former Research Fellow in Quantity Surveying at the Faculty of Engineering of the University of Calabria, Collaborator and Teaching Assistant in the Professorship of Real Estate Appraisal Basic Sciences School for University of Naples Federico II, former Professor in the Master for the “Management of Community Programmes: Real Estate” at the School of Business Administration of the University of Turin, already Professor of Academic Course “Quantitative Methods and Statistics for Urban Regeneration” within the International Doctorate Program in “Urban Regeneration and Economic Development”, sponsored by the European Program Marie Curie Action and established by Mediterranean University of Reggio Calabria, University of Rome La Sapienza, the Aalto University (Finland), the Salford University (UK), the Northeastern University of Boston (Massachusetts, USA) and San Diego State University (California, USA). Since 2005 he has held activities of educational cooperation in the various training courses related, first at the Faculty of Engineering of the University of Calabria and currently at the Polytechnic and Basic Sciences School of the University of Naples Federico II. He is author and co-author of research and scientific and professional publications in the sectors of Real Estate Appraisal and Economic Evaluation of Investment Projects.

Manuela De Ruggiero is a Civil Engineer and earned is Ph.D. in Environmental Technologies and Planning. Since 2007, she has assisted the teacher of Real Estate Appraisal—Department of Civil Engineering (DIC), University of Calabria. Since 2011, she has been a teacher of Real Estate Appraisal—Department of Mathematical Sciences and Physics, University of Calabria. She is author of scientific contributions on real estate valuations, and she does her studies on methodologies of the real estate evaluation and use of geographic information system in real estate applications.

Vincenzo Del Giudice has graduated in civil engineering at the University of Naples. He is Full Professor of the Chair of Economy and Estimate in the Polytechnic and Basic Sciences School at the University of Naples Federico II. He is Lecturer of the Course in Forensic Estimate at the Master in Forensic Engineering (University of Naples Federico II). He has taught specialisation course Advanced Finance. Ist. San Paolo di Torino—Institute for Research and Educational Activities (IPE). He was formerly Full Professor of the Chair of Economy and Estimate in the Faculty of Engineering of the University of Calabria. He has already been Professor
of Estimate, Economics and Estimate Environmental and Economic Evaluation of Projects in the Faculty of Engineering at the University of Salerno, which was part of the Integrated Academic Senate. He previously taught the course “Perfecting in Analysis, Evaluation and Planning of the Landscape” (Department of Territorial Planning—UNICAL, according to the Escuela Técnica Superior de Arquitectura del Vallés of Politécnica de Cataluña and in collaboration with the School of Landscape of Montreal and the University of Lisbon—Modern School of Architecture) and taught specialisation course “Design of Protective Operations by Hydrogeological Events”—Department of Ground’s Defense, UNICAL. He is author of numerous scientific publications in the fields Estimate and Projects Economic Evaluation. He is Component of the Studies Center of Real Estate Appraisal and Land Economics (CeSET—Florence), Component in Italian Committee of the European Real Estate Society (ERES), Founding partner of Italian Society of Appraisal and Evaluation(SIEV), Component in the Technical and Scientific Committee “Confindere”, Board Member of Institute for research and educational activities (IPE, non-profit organisation under Presidential Decree no. 374/1981 on the proposal of the Ministry of Education), Board Member of F.O. I.S., Component of the Technical and Scientific Committee TEKNA—Environment, Energy and Technologies.

Richard Dunning is a Research Associate in the Department of Town and Regional Planning at the University of Sheffield. His principal research interest is applying behavioural analysis approaches to the study of housing and real estate markets. Prior to working as a researcher, Richard worked in the real estate industry. Richard has undertaken research for the EU, RICS, the Department for Communities and Local Government, the French Government, the Joseph Rowntree Foundation, Sheffield City Council and Rotherham City Council.

Anja Dust works as a Junior Consultant Valuation for an international real estate service firm in Frankfurt. In her first career she worked for a publishing house in Munich. In 2011 she started to study real estate at Nurtingen-Geislingen University, specialising in real estate valuation. She graduated in August 2014 with a with Bachelor of Science degree. Her bachelor thesis on the anchoring bias in property valuations was awarded the Aareon research prize.

Franz Eilers Head of Real Estate Research, joined vdpResearch, a subsidiary of the Association of German Pfandbrief Banks (vdp) in 2009. From 2000 to 2009, he was heading the real estate market research department in the the central division Valuation and Consulting at HypoVereinsbank, Germany’s then second largest bank. He spent several years working at the institute for urban development and housing of the state of Brandenburg. From 1992 to 1996, he was employed at the research and consulting institute GEWOS in Hamburg. Prior to this position, he spent two years in the economics department of the Commerzbank in Frankfurt. He received his doctorate in Economics from the University of Hamburg.
Elena Fregonara has a degree in Architecture in 1989, Ph.D. in Urban Planning and the Real Estate Market. She is Associate Professor in Real Estate Appraisal and Economic Evaluation of Projects, at Architecture and Design Department, Politecnico di Torino. She is Vice-responsible of Turin Real Estate Market Observatory. She has been a lecturer of many courses, among others: Appraisal and Professional Practice, Economic Evaluation of Projects and Plans, Evaluation of Economic Sustainability of Projects. Member of the scientific committee at Master in “Urban Planning and The Real Estate Market” and at Master in “Management of Cultural and Environmental Heritage”. Her research activity has been focused on: economic evaluation of assets and projects, in private and public context; economic and environmental sustainability; economic feasibility of capital investment in the real estate sector under risk and uncertainty; the real estate market analysis and monitoring of values and dynamics (statistical and econometric models); the Cadastral review, in particular about the definition of equal microzones for Turin municipality.

Marco Aurélio Stumpf González is Professor and Researcher at Civil Engineering Post Graduate Programme at Universidade do Vale do Rio dos Sinos (UNISINOS), where he has been teaching Real Estate Valuation since 1996. His research interests cover housing, sustainable buildings, economics of building renewal, market analysis, taxation of real estate, valuation and financial analysis of real estate, and alternative property valuation techniques (especially fuzzy rules and artificial neural networks models). In 1993 he obtained M.Sc. in Engineering at Universidade Federal do Rio Grande do Sul (UFRGS), with major in Real Estate Valuation. In 1998 he became a Ph.D. candidate at UFRGS (Civil Engineering), and completed his dissertation in 2002.

Berna Keskin is a University Teacher in the Department of Town and Regional Planning at the University of Sheffield. Her research interests focus on understanding the structure of urban housing market and specifically exploring the relative merits of different approaches to capturing neighbourhood segmentation. Following the completion of her Ph.D. in Housing Economics at the University of Sheffield, she has worked on funded projects for the INTERREG NWE Programme, Royal Institution of Chartered Surveyors, Department of Communities and Local Government, Department for Environment, Food & Rural Affairs and Investment Property Forum.

Andreas Kunert Senior Analyst, joined vdpResearch, a subsidiary of the Association of German Pfandbrief Banks (vdp) in 2009. From 2005 to 2009, he worked at HypoVereinsbank, Germany’s then second largest bank, in Collateral Risk Management. Prior to this position, he was a researcher at the University of Essen and the North Rhine-Westphalia Institute for Economic Research (RWI). Andreas holds a Master’s degree in Economics, specialising in econometrics and international economics. At vdpResearch, he focuses on collateral risk management, including measurement of price change in real estate markets, automated
valuation models and classification of real estate market risks. He has developed and is responsible for the residential and commercial German real estate price indices, which are provided by vdp quarterly.

Carsten Lausberg is Professor of Real Estate Banking at Nurtingen-Geislingen University and head of the university’s research institute for real estate information technology. He also works as a management consultant and valuer. He has taught courses at all levels at several universities and private institutions. In teaching, research, and consulting he has specialised on real estate finance, risk management, and portfolio management. Currently his research concentrates on decision support systems for the real estate industry. Dr. Lausberg studied business administration in Germany and the USA. He received a Master of Science (Finance) degree from Texas A&M University and a doctoral degree from Hohenheim University. From 1998 to 2005, he worked for a management consulting firm. In 2008 he became a full professor. He is a member of several academic associations and leads the working group on real estate risk management of the German chapter of the International Real Estate Society.

John R. Lombard joined the Department of Urban Studies and Public Administration at Old Dominion University in June 2002. He teaches graduate courses in research methods, urban and regional development, and urban resource allocation. Prior to his appointment in the department, he held a joint appointment as a research professor and as Vice President for Research and Information Services for the Hampton Roads Economic Development Alliance. Previously, Dr. Lombard was Vice President of Business Development for the Connecticut Economic Resource Center, the statewide marketing operation for economic development. He was responsible for all client-related activities in business recruitment and real estate relations. Prior to his tenure in Connecticut, Dr. Lombard was a consultant and head of research with the New York City firm of Moran, Stahl & Boyer. In addition to consulting assignments with Fortune 500 corporations, Dr. Lombard developed proprietary location measures such as the Labor Market Stress Index and the Underemployment Index. In a joint effort with Fortune Magazine, Dr. Lombard provided all the community research and analysis for the “Best Cities for Business” series. He received his Ph.D. and M.A. degrees from the State University at Buffalo.

William J. McCluskey is Reader in Real Estate and Valuation at the University of Ulster, where he received his Ph.D. in Real Estate Valuation in 1999. He has held various international positions including Visiting Professor of Real Estate at the University of Lodz, Poland, Professor of Property Studies at Lincoln University, Christchurch, New Zealand and is currently Visiting Professor in Real Estate at University of Technology, Malaysia. His main professional and academic interests are in the fields of real estate valuation, developing automated valuation methods and property tax policy. In addition, he has been an invited instructor in real estate at the African Tax Institute and the Lincoln Institute of Land Policy: China Programme. He is a faculty member of the Lincoln Institute of Land Policy and founding board member of the International Property Tax Institute.
Manya M. Mooya is a senior lecturer in Property Studies at the University of Cape Town’s Department of Construction Economics and Management. He has previously taught in the Department of Land Economy of the Copperbelt University in Zambia (1997–2002) and the Department of Land Management at the Polytechnic of Namibia (2002–2006). He teaches property valuation on the undergraduate and postgraduate programmes in the department. His research on property valuation theory has been published in leading international journals and conferences. He is currently writing a research monograph on valuation theory. He holds a Ph.D. in Real Estate from the University of Pretoria, an M.Phil. from the University of Cambridge and a B.Sc. from the Copperbelt University.

Dilek Pekdemir earned her Ph.D. in Urban and Regional Planning and she is actually European Real Estate Society (ERES) Board member and former Vice chair of ERES 2015 22nd Annual Conference in Istanbul. She coordinates the research team of Cushman & Wakefield in Turkey, where she organises data collection, process and production of periodical market reports, market analysis and also client base market research, development and sales strategies, business strategy development reports. Dilek has an advisory and research experience of over 15 years. She has done various market research and consultancy reports for both national and international developers, investors, funds and finance companies. Formerly she worked at DTZ, Pamir & Soyuer Real Estate Advisory Services for eight years in the research department. She also gave lectures in real estate finance and real estate development and valuation in real estate master programmes at various universities. Currently she is a part-time lecturer at I.T.Ü. Real Estate Development Master Programme and gives real estate market analysis lectures.

Malgorzata Renigier (aka Renigier-Bilozor) has been Assistant Professor in the Department of Real Estate Management and Regional Development at the University of Warmia and Mazury, Olsztyn, Poland since 2005. Her major fields of research interest comprise systems of real estate management, value forecasting, nonlinear analysis in modelling of real estate value, influence analysis of stochastic factors on the real estate value, and application of artificial intelligence (AI) in real estate management. In 2000 she obtained her M.Sc. in the faculty of Geodesy and Space Management at the University of Warmia and Mazury. During 2001 she began her doctorate studies at the Department of Real Estate Management and Regional Development at the same university. In 2004 she obtained her Ph.D. in Geodesy and Cartography. In 2006 she received a prize from the Polish Minister for Building and Transport for her Ph.D. dissertation. Since 2006 she has been a member of the board of the Scientific Society of Real Estate. From 2004 to 2007 she has been a co-author of the programme concerning creation of a management system of real estate sources owned by local government, of the committee of scientific research.

Francesca Salvo is an engineer who earned his Ph.D. on Conservation of Architectural and Environmental Heritage. Since 2003, she has been University Researcher on Real Estate Appraisal—Department of Civil Engineering (DICI),
University of Calabria. Since 2000, she has been teaching Economy and Real Estate Evaluation and Real Estate Appraisal at University of Calabria. Since 2006, she has been Ordinary member of the Società Italiana di Estimo e Valutazione (SIEV) and Ordinary member of the Center Studies of Territorial Economy (CeSET) since 2013. She is author of scientific contributions on real estate valuations and damages of environmental resources evaluations; she develops her studies on methodologies of the real estate evaluation (real estate market data monitoring) and market-oriented procedures evaluation and quantitative analysis applications.

Patrizia Semeraro is Assistant Professor of Real Estate Appraisal and Economic Evaluation of Projects since 2011 at Architecture and Design Department, Politecnico di Torino. She is a graduate in Mathematics of University of Turin and holds a Ph.D. in Mathematics at University of Turin. She currently teaches Real Estate Valuations: Theory and Methods at Politecnico di Torino, Market Segmentation at graduate “Management of Cultural and Environmental Heritage” and Mass Appraisal at graduate “Urban Planning and The Real Estate Market” of Politecnico di Torino. She was a research assistant at Politecnico of Turin and at Dipartimento di Matematica Applicata “D. De Castro”, University of Turin. She has taught Statistics at a graduate Master in Economics, Coripe Piemonte-Collegio Carlo Alberto. She has published in international finance and applied mathematics journals including Journal of Theoretical and Applied Finance, Mathematics of Operations Research, Quantitative Finance and Journal of Computational and Applied Mathematics.

Marco Simonotti is Full Professor on Real Estate Appraisal—Faculty of Engineering, University of Palermo. He develops studies on the general methodology in respect of the real estate, regarding mainly the experimental researches on the real estate market and the application of the statistics and appraisal analysis. He is author of an appraisal manual entitled “Bases of appraisal methodology” (Liguori, Naples, 1989), of a text book entitled “The appraisal of properties. With economy principles and appraisal applications” (UTET Libreria, Milan, 1997), of an appraising manual entitled “Manual of real estate appraising” (Geoval, Rome, 2005) compiled according to the international standards and of a book titled “Real Estate Appraising Methods” (Dario Flaccovio, Palerme, 2006). He has studied and introduced in Italy the market comparison approach (1997); he has formulated the critical capitalisation rate (1983), the parameters of the real estate segments (1998), the appraisal analysis standard of the real estate data (2003); he has applied the multiple regression analysis to the real estate properties (1988). He is author of the first one “Code of ethical behavior” of the technical professionals in the sector of the Italian appraising (2000).

Nikolaj Siniak (aka Mikalai) is Associate Professor at the Department of Economy and Management of Enterprises at the Belarusian State Technological University (BSTU), Minsk, where he has been working since 1998. His scientific interests cover economics, valuation and management of real estate, restructuring of enterprises, optimisation of production programmes, and simulation and
formulation of economic problems on economy. At BSTU he obtained the following degrees: Diploma in Mechanical Engineering (1995), Ph.D. in Economical science (1998), and Diploma of Associate Professor in Economics (2005). He has developed grounding methods for a furniture factory production programme, the concept of real estate valuation for enterprises, and real estate market analysis. He has more than 70 publications to his credit. His teaching activities comprise the courses ‘Economy of enterprise’ and ‘Methods of branch property valuation’.

Craig Watkins is Director of Research and Innovation for the Faculty of Social Sciences, Co-Director of the Sheffield Urban Institute and Professor of Planning and Housing at the University of Sheffield. Craig has written extensively on the economic structure and operation of housing and commercial property markets, urban development and on the relationship between public policy and markets. He has produced more than 130 research outputs including three books, 12 book chapters and more than 40 peer reviewed journal articles and has undertaken around 50 funded projects (half as Principal Investigator) including research for ESRC, Technology Strategy Board, EU, Joseph Rowntree Foundation, various Central and Local Government departments in the UK, RICS, Investment Property Forum and the Royal Town Planning Institute.
Acronyms

ANR Annual Net Rent
AVM Automated Valuation Model
BIST Borsa İstanbul Stock Exchange
CAPM Capital Asset Price Model
CBD Central Business District
CBTR Central Bank of Turkish Republic—Türkiye Cumhuriyeti Merkez Bankası
CMBT Capital Markets Board—Sermaye Piyasaları Kurulu (SPK)
COD Coefficient of Deviation
CREAS Computerised Real Estate Appraisal System
DCFA or DCF Discounted Cash Flow Analysis
DSS Decision Support Systems
EPRA European Public Real Estate Association
FTSE Financial Times and Stock Exchange
GRM Gross Rent Multiplier
HPM Hedonic Price Model
IAAO International Association of Assessing Officers
INREV European Association for Investors in Non-Listed Real Estate Vehicles
IPD Investment Property Databank
IPO Initial Public Offering
IQR Interquartile Range
IRR Internal Rate of Return
ISE İstanbul Stock Exchange—İstanbul Menkul Kıymetler Borsası (İMKB)
ITD Investment Transaction Database (DTZ)
IVS International Valuation Standards
LAF Location Adjustment Factor
LVRS Location Value Response Surface
MCA Market Comparison Approach
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLV</td>
<td>Multilevel Models</td>
</tr>
<tr>
<td>MOR</td>
<td>Monthly Net Rent</td>
</tr>
<tr>
<td>MPT</td>
<td>Modern Portfolio Theory</td>
</tr>
<tr>
<td>NAREIT</td>
<td>National Association of Real Estate Investment Trusts</td>
</tr>
<tr>
<td>NCREIF</td>
<td>National Council of Real Estate Index Fiduciaries</td>
</tr>
<tr>
<td>NOI</td>
<td>Net Operate Income</td>
</tr>
<tr>
<td>OAR</td>
<td>Overall Capitalisation Rate</td>
</tr>
<tr>
<td>OMI</td>
<td>Osservatorio del Mercato Immobiliare—Italian Land Registry Observatory</td>
</tr>
<tr>
<td>PMI</td>
<td>Property Market Indicators</td>
</tr>
<tr>
<td>REICs</td>
<td>Real Estate Investment Companies—Gayrimenkul Yatırımlar Ortaklıkları (GYO)</td>
</tr>
<tr>
<td>REITs</td>
<td>Real Estate Investment Trusts</td>
</tr>
<tr>
<td>SAR</td>
<td>Spatial Autoregressive Model</td>
</tr>
<tr>
<td>SEM</td>
<td>Spatial Extension Method</td>
</tr>
<tr>
<td>TNHPI</td>
<td>Turkey New Housing Price Index</td>
</tr>
<tr>
<td>TRBOND</td>
<td>Turkish Government Bonds</td>
</tr>
<tr>
<td>VECM</td>
<td>Vector Error Correction Model</td>
</tr>
<tr>
<td>VIC</td>
<td>Value Influence Center</td>
</tr>
<tr>
<td>WACC</td>
<td>Weighted Average Cost of Capital</td>
</tr>
<tr>
<td>X100</td>
<td>ISE 100 index</td>
</tr>
<tr>
<td>XGMYO</td>
<td>REIC sector index</td>
</tr>
</tbody>
</table>
List of Figures

Automated Valuation Models for the Granting of Mortgage Loans in Germany

Figure 1 Depreciated replacement cost approach .. 70
Figure 2 Sales comparison approach. Data sources as evidence for model variables .. 70
Figure 3 Extract from the Guideline Land Value Map for Berlin Dated 1 January 2014. Notes \(\frac{480}{\text{WO}_\text{A}} \) — Guideline land value €480/m\(^2\) for residential building land with a typical plot ratio (Geschossfläche—GFZ) of 4.0. The plot ratio defines the ratio between the total gross external area of all complete floors in the building on a site and the total site area. 1613—Identification number of the individual guideline land value zone (e.g. by using the automated purchase price collection (AKS) for Berlin). SF—Special Use Zones, which are used as, for example, allotments, cemeteries, sports facilities and airports. [] — Guideline land value zone boundary .. 71
Figure 4 Indicative value and market value and mortgage lending value calculations .. 78

Emerging Markets Under Basel III: Can Moral Hazard Lead to Systematic Risk and Fragility? Analysis of REIT’s in Turkey

Figure 1 Historical background of Turkish REICs .. 115
Figure 2 Turkish REICs development (data compiled from CMBT) 116
Figure 3 Historical return of direct real estate and REIC 125
Figure 4 Box-plot graph of retail, office and residential REICs and direct real estate returns ... 127
An Application of Short Tab MCA to Podgorica

Figure 1 Price and square meter relation, marginal price and medium price of internal area .. 143

Spatial Analysis of Residential Real Estate Rental Market with Geoadditive Models

Figure 1 Values of the predictions obtained for variables “man” and “lev” .. 160
Figure 2 Spatial distribution of rents values per unit, knots placement and location of housing units. 161

Spatial Analysis of Residential Real Estate Rental Market with Geoadditive Models

Figure 1 Turin Microzones. .. 172
Figure 2 Spatial distribution of data .. 174

Location Value Response Surface Model as Automated Valuation Methodology a Case in Bari

Figure 1 Contour plot of market basket value carrassi san pasquale area using a linear variogram. .. 185

Further Evaluating the Impact of Kernel and Bandwidth Specifications of Geographically Weighted Regression on the Equity and Uniformity of Mass Appraisal Models

Figure 1 Kernel functions .. 193
Figure 2 Weight distribution of kernel functions .. 194
Figure 3 Appraisal-to-sale price ratio maps by model a model 1—gaussian adaptive b model 2—gaussian fixed c model 3—exponential adaptive d model 4—exponential fixed ... 197

Dealing with Spatial Modelling in Minsk

Figure 1 Spatial distribution of 290 sample of properties transactions in Minsk .. 204

Using Multi Level Modeling Techniques as an AVM Tool: Isolating the Effects of Earthquake Risk from Other Price Determinants

Figure 1 Istanbul’s housing submarkets .. 214

The Multilevel Model in the Computer-Generated Appraisal: A Case in Palermo

Figure 1 Confidental intervals for residues of the third level-constant (CON) ... 250
Figure 2 Confidental intervals for residues of the third level-commercial area (COM) .. 251
A Brief Outline of AVM Models and Standards Evolutions
Table 1 The Phases of the Application of an AVM model (IAAO 2003) 10
Table 2 Main Variables to be included in an Automated Valuation Model (RICS 2013). 13
Table 3 Uses of AVM (RICS 2013) .. 13
Table 4 Main Documents Published by Rating Agencies on AVM 15
Table 5 Different form of hybrid valuation (EMF-EAA). 15

Automated Valuation Models for the Granting of Mortgage Loans in Germany
Table 1 A few statistics on market size of the German residential property market. 65
Table 2 Methods used for the valuation of residential property in Germany 65
Table 3 Key variables for the three valuation methods 72
Table 4 Indicative value input data 79
Table 5 Principal input data for market value and mortgage lending value calculations 81

Emerging Markets Under Basel III: Can Moral Hazard Lead to Systematic Risk and Fragility? Analysis of REIT’s in Turkey
Table 1 Asset allocation of Turkish REICs. 117
Table 2 Data source and measurement 121
Table 3 Classification of REICs ... 123
Table 4 Direct real estate and REIC return and standard deviation. 124
Table 5 Descriptive analysis result of REICs 126
Table 6 Descriptive analysis result of direct real estate. 128
Table 7 Correlations of retail REICs returns to direct retail returns 129
Table 8 Correlations of office REICs returns to direct office returns 2002–2012 ... 129
Table 9 Correlations of residential REICs returns to direct returns 2010–2012 ... 129
Table 10 The Sharpe ratio for direct real estate by asset types 130
Table 11 The Sharpe ratio for direct real estate and REICs by property types ... 130
Table 12 Turkish REICs characteristics ... 131
Table 13 Market capitalization and NAV, 2012Q3 (CMBT) 134

An Application of Short Tab MCA to Podgorica

Table 1 A first small sample of four real estate transactions in Podgorica ... 141
Table 2 A second small sample of three real estate transactions in Podgorica ... 141
Table 3 Sales summary grid of short table sales comparison approach ... 142
Table 4 Marginal price of internal area .. 142
Table 5 Marginal price of internal area .. 144
Table 6 Determination of marginal prices for comparable A 145
Table 7 Determination of marginal prices for comparable B 146
Table 8 Determination of marginal prices for comparable C 146
Table 9 Determination of marginal prices for comparable D 146
Table 10 Determination of valuation function 146
Table 11 Three observations E, F, and G 147
Table 12 Opinion of value of property E based on the short tab MCA ... 147
Table 13 Property E percentage error between actual price and appraised value ... 147
Table 14 Property F percentage error between actual price and appraised value ... 148
Table 15 Property F percentage error between actual price and appraised value ... 148
Table 16 Property G percentage error between actual price and appraised value ... 148
Table 17 Property G percentage error between actual price and appraised value ... 149

Spatial Analysis of Residential Real Estate Rental Market with Geoadditive Models

Table 1 Variables description .. 159
Table 2 Statistic description of data ... 160
Table 3 Main model results ... 161
A Spatial Analysis for the Real Estate Market Applications

Table 1 Sample Agents descriptive statistics 173
Table 2 Sample RU. Number of dwellings across Microzones 175
Table 3 Sample RU descriptive statistics 176
Table 4 Empirical PRV_A for each sample 176
Table 5 Empirical PRV_A. Central area 177
Table 6 Empirical PRV_A. Semi-central/peripheral area 177
Table 7 Empirical PRV_A. Third heterogeneous area 177
Table 8 Sample agents. Selling time. Empirical PRV_A 177

Location Value Response Surface Model as Automated Valuation

Methodology a Case in Bari

Table 1 Descriptive statistics of the sample 183
Table 2 Description of dependent and independent variables 183
Table 3 Linear MRA model n. 1 location blind 184
Table 4 Linear MRA model n. 2 using 3 fixed neighbour groups 184
Table 5 Value influence centers individuated in the contour map of Fig. 1 ... 186
Table 6 Location value response surface model 187
Table 7 Comparing the three model’s main findings 187

Further Evaluating the Impact of Kernel and Bandwidth

Specifications of Geographically Weighted Regression on the
Equity and Uniformity of Mass Appraisal Models

Table 1 Independent variables ... 195
Table 2 Results by spatial weighting function 196

Dealing with Spatial Modelling in Minsk

Table 1 Variables considered in the AVM model 202
Table 2 Descriptive statistics of the sample 203
Table 3 Results of the linear regression analysis runned on the 290 observations ... 203
Table 4 Results of the cobb douglas regression model runned on the 290 observations ... 204
Table 5 Dummy variable in the log model 205
Table 6 Final result of the cobb douglas model using dummy variables ... 205
Table 7 Final result of mixed autoregressive models 206

Using Multi Level Modeling Techniques as an AVM Tool: Isolating the Effects of Earthquake Risk from Other Price Determinants

Table 1 Descriptive statistics for 2007 and 2012 samples 216
Table 2 Multi level model: fixed effects and model fit statistics 218
Table 3 Multi-level model random effects. 219
Table 4 Impact of earthquake risk on high price 5 neighbourhoods 219
Table 5 Impact of earthquake risk (The top 5 Neighbourhoods with lowest transaction price- 2007 period) 219

The Multilevel Model in the Computer-Generated Appraisal: A Case in Palermo

Table 1 Nomenclator: state of maintenance. 231
Table 2 Frequency characteristics of real estate properties on an ordinal scale and a dichotomous scale 232
Table 3 Market price and total price per district 233
Table 4 Correlation matrix 233
Table 5 Equations of multilevel model for apartments in multi-store buildings per district 242
Table 6 Equations of the multilevel model for apartments in the small block of flats per district 244
Table 7 Multilevel analysis: fixed part 246
Table 8 Residuals of the second level 246
Table 9 Residuals of the second level 247
Table 10 Residuals of the third level: district 248
Table 11 Position ratio of commercial area per district 249
Table 12 Results of the ratio study per district 255

Automated Valuation Methods in Real Estate Market—a Two-Level Fuzzy System

Table 1 Variables and statistical properties for data collected 272
Table 2 Property size in each module 274
Table 3 Scheme for HPM estimated in each module 274
Table 4 Fuzzy estimate by property size 275
Table 5 Fuzzy estimate by distance 276
Table 6 Double fuzzy estimate—by size and distance 276
Table 7 Results to general sample and models from module 5 277

An Application of RST as Automated Valuation Methodology to Commercial Properties. A Case in Bari

Table 1 Decision table of rough set theory integrated with valued tolerance relation (rule sample) 287
Table 2 Decision table of rough set theory integrated with valued tolerance relation (appraising sample) 287
Table 3 k threshold 287
Table 4 Comparison table 288
Table 5 Valued tolerance table Rj 293
Table 6 Membership table 294
Table 7 Lower approximability table 295
Table 8 The rules 296
Table 9 Property to be appraised 297
Table 10 Rule generation process for the property n. 1 298
Table 11 Rule generated for all the 5 properties to appraise 298
Table 12 COD result of RST as automated valuation model 299

The Theory and Practice of Comparable Selection in Real Estate Valuation

Table 1 Chronology of research into comparable selection 312
Table 2 Comparable weights calculation 316
Table 3 Descriptive statistics—Beijing 317
Table 4 Descriptive statistics—Scarsdale 319
Table 5 MRA model for Beijing data 323
Table 6 MRA model for Scarsdale data 323
Table 7 Beijing results ... 324
Table 8 Moran’s I—Beijing 325
Table 9 Scarsdale results .. 326
Table 10 Moran’s I—Scarsdale 327

Reducing the Appraisal Bias in Manual Valuations with Decision Support Systems

Table 1 Number of participants in the sub-samples 338
Table 2 Adjustments of market values 339
Table 3 Variation measures 339
Table 4 Significance test .. 340

An Application of Regressed Discounted Cash Flow as an Automated Valuation Method: A Case in Bari

Table 1 A sample of 14 DCF inputs in Bari 350
Table 2 Descriptive statistics of the sample 350
Table 3 Variables of the model 350
Table 4 Adjustment for asking price 351
Table 5 Pearson correlation coefficient 352
Table 6 Log calculation .. 352
Table 7 Standardized variables 352
Table 8 Regressed DCF as valuation of discount rate 353
Table 9 Regressed DCF as valuation of DR: empirical results 356
Table 10 Regressed DCF model A as valuation of risk premium 357
Table 11 Risk premium and discount rate 357

Automatic Research of the Capitalization Rate for the Residential Automated Valuation: An Experimental Study in Cosenza (Italy)

Table 1 Subdivision of the territory as indicated by the land registry (OMI) 368
Table 2 Number of data, unit average price 374
Table 3 Managing costs .. 374
Table 4 Area data sample. .. 375
Table 5 Function of price .. 376
Table 6 Function of income .. 376
Table 7 Results .. 377
Table 8 Capitalization rate for area OMI 377

Automated Procedures Based on Market Comparison Approach in Italy

Table 1 Adjustment vector (€) ... 391
Table 2 Subdivision of the territory as indicated by the Land Registry (OMI) .. 395

Short Tab Market Comparison Approach. An Application to the Residential Real Estate Market in Bari

Table 1 Short Tab MCA .. 404
Table 2 Commercial ratio and price index 404
Table 3 VfA determination .. 405
Table 4 VfB determination .. 405
Table 5 VfC determination .. 405
Table 6 Quantifying locational variable and proximity 406
Table 7 Valuation short tab .. 407
Table 8 Marginal cost application to characteristics of real estate properties to estimate ... 407
Table 9 Interval estimation of Short Tab MCA final results 408
Table 10 The interval valuation .. 409