ADVANCES IN MOLTEN SLAGS, FLUXES, AND SALTS:
Proceedings of

Sponsored by
Extraction & Processing Division and Materials Processing and Manufacturing Division of The Minerals, Metals & Materials Society (TMS)

Held
May 22–25, 2016
Seattle Grand Hyatt
Seattle, Washington, USA

Edited by
Ramana G. Reddy
Pinakin Chaubal
P. Chris Pistorius
Uday Pal
TABLE of CONTENTS

Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts

Preface ... xxiii
Conference Organizing Committees .. xxv
Proceedings Reviewers .. xxix

Plenary Session

Waste to Value in Steelmaking

Samane Maroufi, Irshad Mansuri, Paul O’Kane, Catherine Skidmore, Zheshi Jin, Andrea Fontana, Magdalena Zaharia, and Veena Sahajwalla

Current Status of Slag Design in Metallurgical Processes

Dong Joon Min and Sung Mo Jung

Refractory Metals Recovery from Industrial Wastes

Tran Van Long, Hironori Murase, Takahiro Miki, Yasushi Sasaki, and Mitsutaka Hino

Industrial Applications: Ferroalloys and Silicon

Softening and Melting of SiO\textsubscript{2}, an Important Parameter for Reactions with Quartz in Si Production

Eli Ringdalen and Merete Tangstad

High Temperature Corrosion Mechanisms of Refractories and Ferro-Alloy Slags

Stefan Luidold, Christine Wenzl, Christoph Wagner, and Christoph Sagadin

Fundamental Investigation of Reduction and Dissolution Behavior of Manganese Ore at High Temperature

Yusuke Fujii, Yoshie Nakai, Yu-ichi Uchida, Naoki Kikuchi, and Yuji Miki

An Investigation on the Formation of Molten Salt Containing Chromium Oxide during Roasting of Chromite Ore with Sodium and Potassium Hydroxides

L. Escudero-Castejon, S. Sanchez-Segado, S. Parirenyatwa, and A. Jha
Effect of the CaO Addition in the Fusion Process of Nickeliferous Laterites for Ferronickel Production
Sandra Díaz Bello, Oscar J. Restrepo, and Álvaro H. Forero P

Defining the Operating Regime and Methodology for the Furnace Method for the Production of Low Carbon Ferrochrome
Heine Weitz and Andrie Garbers-Craig

Optimized Slag Design for Maximum Metal Recovery during the Pyrometallurgical Processing of Polymetallic Deep-Sea Nodules
David Friedmann and Bernd Friedrich

Review of Liquidus Surface and Phase Equilibria in the TiO$_2$-SiO$_2$-Al$_2$O$_3$-MgO-CaO Slag System at PO$_2$ Applicable in Fluxed Titaniferous Magnetite Smelting
Xolisa Goso, Johannes Nell, and Jochen Petersen

Inclusions and Clean Steelmaking

Effect of Ladle Furnace Slag Composition in Si-Mn Killed Steel Transient Inclusion Changes
Stephano P.T. Piva and P. Chris Pistorius

Reduction of Slag and Refractories by Aluminium in Steel and Inclusion Modification
Haoyuan Mu, Bryan A. Webler, and Richard J. Fruehan

Reactivity of Selected Oxide Inclusions with CaO-Al$_2$O$_3$-SiO$_2$-(MgO) Slags

A Study on Calcium Transfer from Slag to Steel and Its Effect on Modification of Alumina and Spinel Inclusions
Deepoo Kumar and P. Chris Pistorius

Effect of Al$_2$O$_3$ Content in Top Slag on Cleanliness of Stainless Steel Fe-13Cr
Qi Wang, Lijun Wang, and Kuochih Chou
Slag and Salt Structure

Understanding of Cr-Containing Slags by Sulphide Capacity and Structural Study ..167
Lijun Wang and Kuo-chih Chou

Structure Studies of Silicate Glasses by Raman Spectroscopy175
Chen Han, Mao Chen, Ron Rasch, Ying Yu, and Baojun Zhao

Relation between Acoustic Properties and Structures on Molten Alkali Silicates ..183
Miyuki Hayashi

Use of Slags, Fluxes and Salts in Recycling

Equilibria of Gold and Silver between Molten Copper and FeO-SiO₂-Al₂O₃ Slag in WEEE Smelting at 1300 °C ...193
Katri Avarmaa, Hugh O’Brien, and Pekka Taskinen

Experimental Study on Smelting of Waste Smartphone PCBs Based on Al₂O₃-FeO-SiO₂ Slag System ...203
Youqi Fan, Yaowu Gu, Qiyong Shi, Songwen Xiao, and Fatian Jiang

Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO₂-Al₂O₃ Slag System211
Ren Guoxing, Xiao Songwen, Xie Meiqiu, Pan Bing, Fan Youqi, Wang Fenggang, and Xia Xing

Crystallization/Freeze Linings

In-Situ Observation of Rare Earth Containing Precipitated Phase Crystallization and Solidification of CaO-SiO₂-Nd₂O₃ and CaO-SiO₂-Nd₂O₃-P₂O₅ Melts ..221
Thu Hoai Le, Mayu Aketagawa, Annelies Malfliet, Bart Blanpain, and Muxing Guo

In-Situ Studies on the Crystallization of CaO-SiO₂-CaF₂-CeO₂ System by a Confocal Laser Scanning Microscope ...229
Zengwu Zhao, Zhuang Ma, Fushun Zhang, Yongzhi Li, Yongli Jin, Xuefeng Zhan, and Baowei Li
Crystallization Kinetics of CaO-SiO$_2$-Al$_2$O$_3$-MgO Slags ...237
Shaghayegh Esfahani and Mansoor Barati

Freeze-Lining Formation from Fayalite-Based Slags245
Liugang Chen, Mixing Guo, Shuigen Huang, Peter Tom Jones,
Bart Blanpain, and Annemie Malfliet

Mold Flux

Root Cause Analysis of Surface Defects in Coils Produced through Thin
Slab Route ..255
Diptak Bhattacharya, Siddhartha Misra, Avinash Kumar,
and Vinay V Mahashabde

Advanced Mold Flux Development for the Casting of High-Al Steels263
Dan Xiao, Wanlin Wang, Boxun Lu, and Xinwang Zhang

A Reaction Model to Simulate Composition Change of Mold Flux during
Continuous Casting of High Al Steel ...271
Min-Su Kim and Youn-Bae Kang

Evaluation of Mold Flux for Continuous Casting of High-Aluminum Steel ...279
Wei Yan, Alexander McLean, Yindong Yang, Weiqing Chen,
and Mansoor Barati

The Structure and the Crystallization Behaviour of the
CaO-SiO$_2$-Al$_2$O$_3$-Based Mold Flux for High-Al Steels Casting291
Jinxing Gao, Guanghua Wen, Ting Huang, and Ping Tang

Fundamental Investigations for the Design of Fluorine Free Mold Powder
Compositions ...299
Irmtraud Marschall, Xiao Yang, and Harald Harmuth

Cold-Finger Measurement of Heat Transfer through Solidified Mold Flux
Layers ..307
Karina Lara Santos Assis and P. Chris Pistorius

Application of Cathodoluminescence in Analyzing Mold Flux Films317
Elizabeth Nolte, Jeffrey D. Smith, Michael Frazee, Neil Sutcliffe,
and Ronald J. O’Malley

Effects of CaF$_2$ on the Radiative Heat Transfer in Mould Fluxes for
Continuous Steel Casting ...327
Masahiro Susa, Yuta Kono, Rie Endo, and Yoshinao Kobayashi
Effect of Na$_2$O on Crystallisation Behaviour and Heat Transfer of Fluorine-Free Mould Fluxes ...335
 Jian Yang, Jianqiang Zhang, Yasushi Sasaki, Oleg Ostrovski,
 Chen Zhang, Dexiang Cai, and Yoshiaki Kashiwaya

Effect of Carbon Pickup on the Slab with Slag Pool Thickness in Ultra-Low Carbon Steel ...343
 Min-Seok Park and Shin Yoo

Techniques for Controlling Heat Transfer in the Mould-Strand Gap in Order to Use Fluoride Free Mould Powder for Continuous Casting of Peritectic Steel Grades ...349
 Adam Hunt and Bridget Stewart

Reduction of Iron Oxides in Mould Fluxes with Additions of CaSi$_2$357
 Min Wang, Rie Endo, Yoshinao Kobayashi, Zuoyong Dou,
 and Masahiro Susa

Physical Properties: Viscosity

Viscosity Measurement at the International Conferences on Molten Slags and Fluxes from 1980 to the Present ...369
 Steven Wright and Wan-Yi Kim

A Structure-Based Viscosity Model and Database for Multicomponent Oxide Melts ...397
 Guixuan Wu, Sören Seebold, Elena Zayhenskikh, Klaus Hack,
 and Michael Müller

Thermo-Physical-Chemical Properties of Blast Furnace Slag Bearing High TiO$_2$...405
 Chenguang Bai, Zhiming Yan, Shengping Li, Pingsheng Lai,
 Chen Shan, Xuewei Lv, and Guibao Qiu

The Effect of TiO$_2$ on the Liquidus Zone and Apparent Viscosity of SiO$_2$-CaO-8wt.%MgO-14wt.%Al$_2$O$_3$ System ..415
 Zhiming Yan, Xuewei Lv, Jie Zhang, and Jian Xu

Electrorheology of Ti-Bearing Slag with Different Composition of TiC at 1723 K ...423
 Tao Jiang, Hongrui Yue, Xiangxin Xue, and Peining Duan
Study on Apparent Viscosity of Foaming Slag - Cold Model and High Temperature Experiments ...431
 Johan Martinsson, Björn Glaser, and Du Sichen

Effect of Al₂O₃ and SiO₂ Addition on the Viscosity of BOF Slag439
 Zhuangzhuang Liu, Lieven Pandelaers, Peter Tom Jones,
 Bart Blanpain, and Muxing Guo

Viscoelastic Properties of Calcium Silicate Based Mold Fluxes at 1623 K447

Viscosity Property and Raman Spectroscopy of FeO-SiO₂-V₂O₃-TiO₂-Cr₂O₃ Slags ... 455
 Weijun Huang, Min Chen, Xiang Shen, Yu Shan, Meile He,
 and Nan Wang

Physical Properties: Thermal Properties and Electrical Conductivity

Techniques for Measuring Solubility and Electrical Conductivity in Molten Salts ...465
 Shizhao Su, Thomas Villalon Jr., Uday Pal, and Adam Powell

A New Method for Apparent Thermal Conductivity Measurement of Mould Flux ... 477
 Mu Li, Rie Endo, Li Ju Wang, and Masahiro Susa

Controlling Heat Transfer through Mold Flux Film by Scattering Effects485
 Dae-Woo Yoon, Jung-Wook Cho, and Seon-Hyo Kim

Diffusion Coefficients and Structural Parameters of Molten Slags493
 Samane Maroufi, Shahriar Amini, Sharif Jahanshahi,
 and Oleg Ostrovski

The Cationic Effect on Properties and Structure of CaO-MgO-SiO₂ Melts501
 Yong-Uk Han and Dong Joon Min

Effects of Structure on the Thermodynamic and Transport Properties of Na₂O-CaO-SiO₂-FeO-Fe₂O₃ Melts ...511
 Lesley J. Beyers, Geoffrey A. Brooks, Bart Blanpain,
 and Frederik Verhaeghe
Thermal Conductivity of Borosilicate Melt ...519
Tsuyoshi Nishi, Junpei Ojima, Yoshitaka Kuroda, Hiromichi Ohta,
Sohei Sukenaga, Hiroyuki Shibata, and Hidenori Kawashima

Melting Point and Heat Capacity of MgCl$_2$ + Mg Salts525
Yuxiang Peng and Ramana G. Reddy

Interfacial Phenomena

Does Interfacial Tension Play the Most Important Role in Slag-Metal
Reactions? An Important Aspect in Process Optimization535
Du Sichen and Jesse F. White

Control of Molten CaO – Al$_2$O$_3$ Oxide Jets with Focus on Thermophysical
Property Measurements and Some Limitations547
Luckman Muhmood, Mirco Wegener, Shouyi Sun, and Alex Deev

Slag Surface Tension Measurements with Constrained Sessile Drops557
Marc A. Duchesne and Robin W. Hughes

Interactions between Liquid CaO–SiO$_2$ Slags and Graphite Substrates565
Jesse F. White, Jaewoo Lee, Oscar Hessling, and Björn Glaser

Initial Wetting and Spreading Phenomena of Slags on Refractory
Ceramics ..573
Yongsug Chung, Tae Hee Yoon, and Kyuyong Lee

Modelling and Experimental Studies of Diffusivity of Sulfur and Its
Relevance in Observing Surface Oscillations at the Slag Metal Interface
through X-ray Imaging ..581
Luckman Muhmood, Nurni N Viswanathan,
and Seshadri Seetharaman

SPH Analysis of Interfacial Flow of the Two Immiscible Melts589
Shungo Natsui, Ryota Nashimoto, Tatsuya Kikuchi,
and Ryosuke O. Suzuki

Surface Properties of Molten Fluoride-Based Salts597
Thomas Villalón Jr., Shizhao Su, and Uday Pal

Foaming Index of CaO –SiO$_2$–FeO –MgO Slag System607
Youngjoo Park and Dong Joon Min
Modeling Slag and Salt Properties

Development of Slag Management System ...619
 Kyei-Sing Kwong and James P. Bennett

Gaseous Fuel Production Using Waste Slags - Going beyond Heat Recovery ...627
 Jinichiro Nakano, James Bennett, and Anna Nakano

Efficient Storage and Recall of Slag Thermochemical Properties for Use in Multiphysics Models ...635
 Johannes H. Zietsman

Industrial Applications: Non-Ferrous

Production of Cobalt and Copper Alloys from Copper Slags via Reduction Smelting in DC Arc Furnace ...647
 Onuralp Yücel

Slag Reduction Kinetics of Copper Slags from Primary Copper Production ...657
 Boyd Davis, Trevor Lebel, Roberto Parada, and Roberto Parra

Fluxing Strategies for the Direct to Blister Smelting of High Silica and Low Iron Copper Concentrates ...667
 Michael Somerville, Chunlin Chen, Gerardo R.F. Alvear F., and Stanko Nikolic

Behavior of Selenium in Copper Smelting Slag ..677
 Bhavin Desai, Vilas Tathavadkar, Somnath Basu, and Kaushik Vakil

Selective Precipitation of Magnetite in Copper Slag by Controlled Molten Oxidation ...687
 Yong Fan, Etsuro Shibata, Atsushi Iizuka, and Takashi Nakamura

Thermodynamics: Iron and Steel

Applications of ArcelorMittal Thermodynamic Computation Tools to Steel Production ...697
 Jean Lehmann
Phase Equilibria Study of the CaO-“Fe$_2$O$_3$”-SiO$_2$ System in Air to Support Iron Sintering Process Optimisation ...707
 Peter C. Hayes, Jiang Chen, and Evgueni Jak

Understanding Sulfide Capacity of Molten Aluminosilicates via Structural Information from ‘Raman’ and ‘NMR’ Spectroscopic Methodologies715
 Joo Hyun Park

Thermodynamic Properties of the CaO-AlO$_1$-Ω-Ce$_{2\Omega}$-M System7 23
 Ryo Kitano and Kazuki Morita

Distribution Behavior of Cr between CaO-SiO$_2$-Al$_2$O$_3$ (-MgO) Slag and Fe-Cr (-Si/Al) Metal Phase ...731
 Yanling Zhang, Xinlei Jia, Tuo Wu, Qiuhan Li, and Zhancheng Guo

Thermodynamics of ‘ESR’ Slag for Producing Nickel Alloys745
 Jun-Gil Yang and Joo Hyun Park

Production Using Molten Salts

Recycling Titanium and Its Alloys by Utilizing Molten Salt751
 Toru H. Okabe and Yu-ki Taninouchi

Electrochemical Upgrading of Iron-Rich Titanium Ores761
 Farzin Fatollahi-Fard and Petrus Christiaan Pistorius

Investigations for the Recycle of Pyroprocessed Uranium771
 B.R. Westphal, J.C. Price, E.E. Chambers, and M.N. Patterson

Zero-Direct-Carbon-Emission Aluminum Production by Solid Oxide Membrane-Based Electrolysis Process ...781
 Shizhao Su, Uday Pal, and Xiaofei Guan

Alumina Concentration Gradients in Aluminium Reduction Cells791
 Pascal Lavoie and Mark P. Taylor

Approach of the Molten Salt Chemistry for Aluminium Production: High Temperature NMR Measurements, Molecular Dynamics and DFT Calculations ..799
 Kelly Machado, Didier Zanghi, Vincent Sarou-Kanian, Sylvain Cadars, Mario Burbano, Mathieu Salanne, and Catherine Bessada
Electrochemical Study of Colbalt in Urea and Choline Chloride 807
Min Li, Zhongning Shi, Zhaowen Wang, and Ramana G. Reddy

The Current Efficiency for Aluminium Deposition from Molten Fluoride Electrolytes with Dissolved Alumina ... 817
Geir Martin Haarberg

Recycling and Reuse of Slag and Dust

Dissolution Mechanisms of Nutrient Elements from Steelmaking Slag into Seawater ... 829
Hiroyuki Matsuura, Qian Zhou, Fuminori Katabe, Likun Zang, Guohua Zhang, and Fumitaka Tsukihashi

Effects of Three Types of Iron and Steel Slag on Fresh and Hardened Properties of Ordinary Portland Cement ... 837
Seyed Vahid Hosseini, Shahnavae Eilbeigi, and Mohammad Reza Nilforoushan

Modification of BOF Slag for Cement Manufacturing 847

Reaction between Synthesized Calcium Aluminates and Cr₂O₃ in Air and CO₂ ... 855
Shengqiang Song and Andrie Garbers-Craig

Immobilization of Hexavalent Chromium in Stainless Steelmaking Slag 865
Ryo Inoue, Yoshiya Sato, Yasushi Takasaki, and Atsushi Shibayama

Smelting Reduction of Bottom Ash in Presence of Liquid Steel Bath for Recovery of Aluminium ... 873
A.K. Mandal and O.P. Sinha

A Review of Slag Chemistry in Lead Recycling .. 879
Doug Schriner, Patrick Taylor, and Joseph Grogan

Characterization and Recovery of Valuables from Waste Copper Smelting Slag .. 889
Sarfo Prince, Jamie Young, Guojun Ma, and Courtney Young
Development of Secondary Antimony Oxides from Metallurgical Slags for the Application in Plastic Products

Florian Binz and Bernd Friedrich

Improving the Dissolution of Phosphorus from $2\text{CaO} \cdot \text{SiO}_2-3\text{CaO} \cdot \text{P}_2\text{O}_5$ Solid Solution in Aqueous Solutions

Chuan-ming Du, Xu Gao, Sun-joong Kim, Shigeru Ueda, and Shin-ya Kitamura

Thermodynamics: Non-Ferrous Production

Chromium Distribution between Liquid Slag and Matte Phases

R Hurman Eric

Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator

Kenta Onodera, Airi Nakamura, Shinya Hakamada, Masahito Watanabe, and Florian Kargl

Solubility of CaO and Al$_2$O$_3$ in Metallic Copper Saturated Molten Phase

Joseph Hamuyuni and Pekka Taskinen

Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems

Evgueni Jak, Taufiq Hidayat, Denis Shishin, Ata Fallah Mehrjardi, Jiang Chen, Sergei Decterov, and Peter Hayes

Experimental Study of Slag/Matte/Metal/Tridymite Four Phase Equilibria and Minor Elements Distribution in "Cu-Fe-Si-S-O" System by Quantitative Microanalysis Techniques

Jeff (Jiang) Chen, Charlotte Allen, Peter C. Hayes, and Evgueni Jak

Experimental Determination of the Liquidus Surface (1473 K) in Cu-ZnO-SiO$_2$-O System at Various Oxygen Partial Pressures

Longgong Xia, Zhihong Liu, and Pekka Antero Taskinen

Liquidus Measurement of Te-O-Na$_2$O-SiO$_2$ System between 1000 and 1200 °C in Equilibrium with Air

Imam Santoso and Pekka Taskinen
Industrial Applications: Steel

Kinetics of Phosphorus Mass Transfer and the Interfacial Oxygen Potential for Bloated Metal Droplets during Oxygen Steelmaking 989
 Kezhuan Gu, Neslihan Dogan, and Kenneth S. Coley

Physical Modelling of the Effect of Slag and Top-Blowing on Mixing in the AOD Process ..999
 Tim Haas, Ville-Valtteri Visuri, Aki Kärnä, Erik Isohookana, Petri Sulasalmi, Rauf Hürman Eric, Herbert Pfeifer, and Timo Fabritius

3D CFD Modeling of the LMF System: Desulfurization Kinetics1009
 Qing Cao, April Pitts, Daojie Zhang, Laurentiu Nastac, and Robert Williams

Slag Formation – Thermodynamic and Kinetic Aspects and Mechanisms1017
 Lauri Holappa and Yılmaz Kaçar

Effects of Various Slag Systems on Metal/Slag Separation of CCA and Slag Composition on Desulfurization and Dephosphorization of Iron Nugget ...1025
 Ji-Ook Park and Sung-Mo Jung

Use of Al-killed Ladle Furnace Slag in Si-killed Steel Process to Reduce Lime Consumption, Improve Slag Fluidity ...1031
 Narottam Behera, Ahmad Raddadi, Shahreer Ahmad, Neeraj Tewari, and Othman Zeghaibi

Refractories

Influence of Physical Properties of Slag and Operational Parameters on Slag Splashing Process in an Oxygen Convertor1043
 Paula Maria Gomes Cunha Leão, Eliana Ferreira Rodrigues, Carlos Antonio da Silva, Itavahn Alves da Silva, and Varadarajan Seshadri

Corrosion Mechanisms in Refractory Castables by Liquid Oxides1053
 L. Tadeo Ibarra, A.M. Guzmán, D.I. Martínez, and G. Alan Castillo

Viscous Behavior of Alumina and Titania in Amphoteric Slags and Their Influence on Refractory Corrosion ...1063
 Frank Kaußen and Bernd Friedrich

xvi
Phase Chemistry Study of the Interactions between Slag and Refractory in Coppermaking Processes ...1071
Ata Fallah Mehrjardi, Peter C. Hayes, Turarbek Azekenov, Leonid Ushkov, and Evgueni Jak

The Study of Molten Liquid - Refractory Interactions – It Is All about the Phase(s) ..1077
Andrie Garbers-Craig

Effect of Slag Impregnation on Macroscopic Deformation of Bauxite-based Material ...1093
Antoine Coulon, Emmanuel De Bilbao, Rudy Michel, Marie-Laure Bouchetou, Séverine Brassamin, Camille Gazeau, Didier Zanghi, and Jacques Poirer

Corrosion Resistances of Cr-Free Refractories to Copper Smelting Slags ..1101
Mao Chen, Junhong Chen, and Baojun Zhao

Gasification Slag and the Mechanisms by Which Phosphorus Additions Reduce Slag Wear and Corrosion in High Cr$_2$O$_3$ Refractories1109
James Bennett, Anna Nakano, Jinichiro Nakano, and Hugh Thomas

Additional Technical Papers

A High Temperature Double Knudsen Cell Mass Spectrometry Study of Gas Species Evolved from Coal-Petcoke Mixed Feedstock Slags1119
Jinichiro Nakano, Takashi Nagai, James Bennett, Anna Nakano, and Kazuki Morita

An Assessment of Slag Eye Formation Using Mathematical and Physical Modeling ..1127
Augusto Pereira de Sá, Filipe de Menezes Torres, Carlos Antonio da Silva, Itavahn Alves da Silva, and Varadarajan Seshadri

An Effect of Phosphorus Gas Generated in Slagging Gasifiers on Pt-Rh Sensor Degradation ..1135
Anna Nakano, Jinichiro Nakano, and James Bennett

An Experimental Study of Viscosity in FeO-SiO$_2$-V$_2$O$_3$-TiO$_2$ System1143
Shiyuan Liu, Lijun Wang, and Kuo-chih Chou
Capturing and Condensation of SiO Gas from Industrial Si Furnace1153
Ksiazek Michal, Grådahl Svend, Røtevant, Eirik Andersen, and Wittgens Bernd

Corrosion Testing of Zirconia, Beryllia and Magnesia Ceramics in Molten
Alkali Metal Carbonates at 900°C ... 1161
Valery Kaplan and Igor Lubomirsky

Density, Viscosity, Vapor Pressure and Thermal Conductivity of MgCl₂
+ Mg Salts ..1169
Yuxiang Peng and Ramana G. Reddy

Development of “Slag-Remaining+Double-Slag” BOF Steelmaking
Technology in Shougang Co. ...1177
Haibo Li, Yanchun Lu, Guosen Zhu, and Xinhua Wang

Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification
Microstructure and Mineralogy ... 1185
Chunwei Liu, Muxing Guo, Lieven Pandelaers, Bart Blanpain, and Shuigen Huang

Effect of Slag Prepared with Different Cooling Methods on Cleanliness
of Bearing Steel GCr15 ...1191
Dong-ping Zhan, Yang-peng Zhang, Lei Tang, Kun Fan, Zhou-hua Jiang, and Hui-shu Zhang

Effect of Zr Inhibitor on Corrosion of Haynes 230 and NS-163 Alloys in
FLiNaK ..1199
Yuxiang Peng and Ramana G. Reddy

Experimental Study of Gas/Slag/Matte/Spinel Equilibria and Minor
Elements Partitioning in the Cu-Fe-O-S-Si System ..1207
Taufiq Hidayat, Ata F Mehrjardi, Peter C Hayes, and Evgueni Jak

Experimental Study of Liquidus of the “FeO”-SiO₂-PbO Slags in
Equilibrium with Air and with Metallic Lead ..1221
Maksym Shevchenko, Taufiq Hidayat, Peter C Hayes, and Evgueni Jak

Formation of Copper Sulfide Precipitate in Solid Iron1229
Kentaro Urata and Yoshinao Kobayashi
Yongqi Sun, Zuotai Zhang, and Seetharaman Sridhar

Interfacial Phenomena and Thermophysical Properties of Molten Steel and Oxides ..1245
Masahito Watanabe, Kenta Onodera, Shoya Ueno, Takao Tsukada, Toshihiro Tanaka, Haruka Tamaru, and Takehiko Ishikawa

Investigation of Molten Salt Phase Formation during Alkali Roasting of Titaniferous Minerals with Sodium and Potassium Hydroxide1253
S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, and A. Jha

Precipitation Behavior of Titanium Bearing Blast Furnace Slag1261
Meilong Hu, Zhengfeng Qu, Xuewei Lv, and Yunhua Gan

Production of Ceramic Balls by High Temperature Atomization of Mine Wastes ..1271
Hyunsik Park, Minchul Ha, Dong-hyo Yang, Jeong-soo Sohn, and Joohyun Park

Properties of Bayer Red Mud Based Flux and Its Application in the Steelmaking Process ...1277
Yanling Zhang, Fengshan Li, and Ruimin Wang

Reduction Behavior of Assmang and Comilog Ore in the SiMn Process1285
Pyunghwa Peace Kim, Joakim Holtan, and Merete Tangstad

Regeneration of WC-Co Nanopowders via Sodiothermic Reduction in Molten Salts ...1293
Na Wang, Xue-Mei Liu, Li-Hua Chai, Jinyu Wu, and Xuyang Shen

Rheological Behavior of Fayalite Based Secondary Copper Smelter Slag in Iron Saturation ...1301
Huayue Shi, Liugang Chen, Annelies Malfliet, Tom Peter Jones, Bart Blanpain, and Muxing Guo

Silicon and Manganese Partition between Slag and Metal Phases and Their Activities Pertinent to Ferromanganese and Siliconomanganese Production1309
Hakan Cengizler and R Hurman Eric
Stability of Fluorine-Free Mould Fluxes SiO₂-CaO-Al₂O₃-B₂O₃-Na₂O for Steel Continuous Casting ...1319
 Lin Wang, Jianqiang Zhang, Yasushi Sasaki, Oleg Ostrovski,
 Chen Zhang, and Dexiang Cai

Study of MnO Activity in CaO-SiO₂-MnO-Al₂O₃-MgO Slags1327
 Jun Tao, Dongdong Guo, Baijun Yan, and Longmei Wang

Study on Electrical Conductivity of CaO-SiO₂-Al₂O₃-FeO, Slags1335
 Guo-Hua Zhang, Jun-Hao Liu, and Kuo-Chih Chou

The Distribution Rules of Element and Compound of Cobalt/Iron/Copper
in the Converter Slag of Copper Smelting Process1343
 Hongxu Li, Ke Du, Shi Sun, Jiaqi Fan, and Chao Li

The Management of Lead Concentrate Acquisition in “Trepca”1351
 Ahmet Haxhiaj, Maoming Fan, and Bajram Haxhiaj

The Mineral Constitution and Leachability Characteristics of Dusts from
Different Lead Smelting Furnace ...1359
 Hongxu Li, Yang Xie, Chao Li, Zhaobo Liu,
 and Mengmeng Huang

The Wetting Behavior of CrMnNi Steel on Mg-PSZ as a Function of
Phosphorous, Sulphur and Titanium Content ...1371
 Tobias Dubberstein, Hans-Peter Heller, Claudia Wenzel,
 and Christos G. Aneziris

Thermodynamic Modelling of Liquid Slag-Matte-Metal Equilibria
Applied to the Simulation of the Peirce-Smith Converter1379
 Denis Shishin, Taufiq Hidayat, Sergei Decterov, and Evgueni Jak

Thermodynamics of the 2CaO·SiO₂·3CaO·P₂O₅ Solid Solution at
Steelmaking Temperature ...1389
 Hiroyuki Matsuura, Ming Zhong, Xu Gao,
 and Fumitaka Tsukihashi

Understanding Phase Equilibria in Slags Containing Vanadium1397
 Jinichiro Nakano, Marc Duchesne, James Bennett, Anna Nakano,
 Robin Hughes, and In-Ho Jung

xx
PREFACE

The Tenth International Conference on Molten Slags, Fluxes and Salts (MOLTEN16) was held in Seattle, Washington, USA from May 22–25, 2016 and organized by TMS (The Minerals, Metals & Materials Society). The conference purpose was to provide an opportunity for scientists and engineers to share their new research findings, innovations, and industrial technological developments. The conference also aligns quite well with the TMS strategic goal to sustain and grow the core innovation in process engineering and to develop novel materials. The organizers are pleased to conclude that the set strategic goals were met and a very high-quality technical program with the participation of expert researchers in the field was held.

The conference was focused on ferrous and non-ferrous metallurgy where ionic melts, slags, fluxes, or salts play important roles in industrial growth and economy worldwide. Technical topics included are: thermodynamic properties and phase diagrams and kinetics of slags, fluxes, and salts; physical properties of slags, fluxes, and salts; structural studies of slags; interfacial and process phenomena involving foaming, bubble formation, and drainage; slag recycling, refractory erosion/corrosion, and freeze linings; and recycling and utilization of metallurgical slags and models and their applications in process improvement and optimization. These topics are of interest for not only traditional ferrous and non-ferrous metal industrial processes but also for new and upcoming technologies.
The program consisted of parallel sessions for all three days of technical programming. The conference included 185 oral presentations and 65 poster presentations. Plenary and invited talks in specialized topics were presented. Thirty nations participated in this conference. The distribution of submitted abstracts by nation is shown in the pie chart on the previous page.

We would like to thank all speakers and attendees for their valuable time in making presentations and actively participating in the symposium. We specially thank all the committee members and session chairs for their help in making this symposium successful.

We would like to express our sincere appreciation to the TMS leadership and staff for their support and dedication. All services in support of the conference, including but not limited to marketing, logistical management, timeline management, website design and development, web-based registration system, abstract collection, conference proceedings production and manufacturing provided by TMS staff is very much appreciated. We thank Louise Wallach, Senior Manager, Events, Education, and Exhibits for organizing the several social programs for all participants and their companions. We particularly thank Trudi Dunlap, Programming Manager, for her undivided attention to details in organizing the sessions and publication of conference proceedings.

Sincerely,

Ramana Reddy, Conference Chair
The University of Alabama

Pinakin Chaubal, Co-chair
ArcelorMittal USA, Global R&D

P. Chris Pistorius, Co-chair
Carnegie Mellon University

Uday Pal, Co-chair
Boston University
CONFERENCE ORGANIZING COMMITTEES

CONFERENCE ORGANIZERS
Ramana Reddy, Conference Chair, The University of Alabama, USA
Pinakin Chaubal, ArcelorMittal, USA
P. Chris Pistorius, Carnegie Mellon University, USA
Uday Pal, Boston University, USA

HONORARY ADVISORY COMMITTEE MEMBERS
Rob Boom, Delft University of Technology, Netherlands
Kuo-Chih Chou, University of Science and Technology of China, China
Richard J. Fruehan, Carnegie Mellon University, USA
Mitsutaka Hino, Kobe Steel Ltd., Japan
Lauri Holappa, Helsinki University of Technology, Finland
Hurman Eric, Wits University, South Africa
Sharif Jahanshahi, Metal-Logical Solutions, Australia
Ken C. Mills, Imperial College London, United Kingdom
Mario Sanchez, Universidad Andres Bello, Chile
Seshadri Seetharaman, KTH Royal Institute of Technology, Sweden

TECHNICAL ADVISORY COMMITTEE
Sunday Abraham, SSAB Americas, USA
Antoine Allanore, Massachusetts Institute of Technology, USA
Chen Guang Bai, Chongqing University, China
Wagner Viana Bielefeldt, Federal University of Rio Grande do Sul, Brazil
André Luiz Vasconcellos da Costa e Silva, Federal University Fluminense, Brazil
Neslihan Dogan, McMaster University, Canada
Jonkion Font, Codelco, Chile
Andrie Garbers-Craig, University of Pretoria, South Africa
Merete Tangstad,
Norwegian University of Science and Technology, Norway

Gabriella Tranell,
Norwegian University of Science and Technology, Norway

Prabhat K. Tripathy,
Idaho National Laboratory, USA

Maurits Van Camp,
Umicore Research, Belgium

Somnath Basu,
Indian Institute of Technology, India

Cong Wang,
Northeastern University, China

Bryan Webler,
Carnegie Mellon University, USA

Onuralp Yucel,
Istanbul Technical University, Turkey

Jiayun Zhang,
University of Science and Technology Beijing, China

Jieyu Zhang,
Shanghai University, China

Mingming Zhang,
ArcelorMittal, USA

Wen Hai Zhang,
Jiangxi University of Science and Technology, China

Johan Zietsman,
University of Pretoria, South Africa

INTERNATIONAL ADVISORY COMMITTEE

Gerardo R.F. Alvear,
Xstrata Technology, Australia

N. Bharath Ballal,
Indian Institute of Technology, India

Mansoor Barati,
University of Toronto, Canada

Bo Björkman,
Luleå University of Technology, Sweden

Bart Blanpain,
Katholieke Universiteit Leuven, Belgium

Patrice Chartrand,
École Polytechnique de Montréal, Canada

Ken Coley,
McMaster University, Canada

André Luiz Vasconcellos da Costa e Silva,
Federal University Fluminense, Brazil

Rian Dippenaar,
University of Wollongong, Australia

Sichen Du,
KTH Royal Institute of Technology, Sweden

I.J. Geldenhuyys,
Mintek, South Africa

Zhancheng Guo,
University of Science and Technology Beijing, China

Geir Martin Haarberg,
Norwegian University of Science and Technology, Norway

xxvii
Peter Hayes,
The University of Queensland,
Australia

Juan Patricio Ibañez,
Technical University Santa María,
Chile

Evgueni Jak,
The University of Queensland,
Australia

Pär Jönsson,
KTH Royal Institute of Technology,
Sweden

In-Ho Jung,
McGill University, Canada

Shinya Kitamura,
Tohoku University, Japan

Florian Kongoli,
Flogen Technologies Inc., Canada

Jakob Lamut,
University of Ljubljana, Slovenia

Xionggang Lu,
Shanghai Science and Technology
Institute, China

Marcelo Breda Mourao,
University of São Paulo, Brazil

Joo Hyun Park,
Hanyang University, Korea

Veena Sahajwalla,
University of New South Wales,
Australia

Yasushi Sasaki,
Pohang University of Science and Technology, Korea

Piotr Scheller,
Freiberg University of Mining and
Technology, Germany

Sridhar Seetharaman,
University of Warwick, United
Kingdom

Evgeniy Selivanov,
Ural Division of the Russian Academy
of Sciences, Russia

Volodymyr Shatokha,
National Metallurgical Academy of
Ukraine, Ukraine

H.Y. Sohn,
University of Utah, USA

Valentina Stolyarova,
Saint Petersburg State University,
Russia

Toshihiro Tanaka,
Osaka University, Japan

Pekka Taskinen,
Aalto University, Finland

Patrick Taylor,
Colorado School of Mines, USA

Xi-Dong Wang,
Peking University, China

Lifeng Zhang,
University of Science and Technology
Beijing, China

Živan Živković,
University of Belgrade, Russia
PROCEEDINGS REVIEWERS

André Luiz Vasconcellos da Costa e Silva, Federal University Fluminense, Brazil

Andrie Garbers-Craig, University of Pretoria, South Africa

Antoine Allanore, Massachusetts Institute of Technology, USA

Arthur D. Pelton, École Polytechnique de Montréal, Canada

Björn Glaser, KTH Royal Institute of Technology, Sweden

Bo Björkman, Luleå University of Technology, Sweden

Bryan Webler, Carnegie Mellon University, USA

Chenguang Bai, Chongqing University, China

Eli Ringdal, Umeå, Sweden

Evgueni Jak, The University of Queensland, Australia

Gabriella Tranell, Norwegian University of Science and Technology, Norway

Geir Martin Haarberg, Norwegian University of Science and Technology, Norway

Gerardo R.F. Alvear, Xstrata Technology, Australia

Gudrun Saevarsdottir, Reykjavik University, Iceland

Guy Fredrickson, Idaho National Laboratory

I.J. Geldenhuyys, Mintek, South Africa

In-Ho Jung, McGill University, Canada

Jakob Lamut, University of Ljubljana, Slovenia

Jinichiro Nakano, National Energy Technology Laboratory Albany, USA

Johan Zietsman, University of Pretoria, South Africa

Jonkion Font, Codelco, Chile

Joohyun Park, Hanyang University, Korea

Judith Gomez, National Renewable Energy Laboratory, USA

Marcelo Breda Mourao, University of São Paulo, Brazil

Mark E. Schlesinger, Missouri University of Science and Technology, USA

Maurits Van Camp, Umicore Research, Belgium

Merete Tangstad, Norwegian University of Science and Technology, Norway