Essential Readings in Light Metals

VOLUME 1

Alumina and Bauxite
Essential Readings in Light Metals

VOLUME 1

Alumina and Bauxite

Edited by
Don Donaldson and Benny E. Raahauge
TABLE OF CONTENTS

Preface ... xvii
Lead Editors ... xxi
Editorial Team ... xxiii

Part 1: Bauxite

Section Introduction .. 1

L. Perander

Bauxite - Its Technical and Economical History During the Last Hundred Years ... 3

J. Régnier

Bauxite Mineralogy .. 21

H. Hose

The Classification of Bauxites from the Bayer Plant Standpoint ... 30

V. Hill and R. Robson

Effect of Bauxite Microstructure on Beneficiation and Processing ... 37

K. Solymár, F. Mádai, and D. Papanastassiou

Chinese Bauxite and Its Influences on Alumina Production in China .. 43

G. Songqiong

Impact of Jamaican Bauxite Mineralogy on Plant Operations .. 48

D. Lawson, A. Rijkeboer, L. Andermann Jr., and A. Mooney

Sustainable Bauxite Mining: A Global Perspective ... 54

IAl, BAC, and C. Wagner

Bauxite Mining Sustainability ... 60

P. Atkins, C. Bayliss, and S. Ward

Bauxite Mine Rehabilitation Programs: A Progress Report ... 66

P. Atkins

Cross-Country Bauxite Slurry Transportation ... 70

R. Gandhi, J. Norwood, and Y. Che

Design and Operation of the World's First Long Distance Bauxite Slurry Pipeline ... 75

PSI, R. Gandhi, M. Weston, M. Talavera, CVRD, G. Brittes, and E. Barbosa

Recommended Reading ... 81

Part 2: Bayer Process

Section Introduction ... 83

F. Williams
Bayer Process Design

A Hundred Years of the Bayer Process for Alumina Production ... 85
 F. Habashi

The Alumina Industry Technology Roadmap.. 94
 I. Anich, T. Bagshaw, N. Margolis, and M. Skillingberg

Basic Principles of Bayer Process Design ... 100
 A. Adamson, E. Bloore, and A. Carr

Chemical Reaction Engineering in the Bayer Process .. 118
 D. Thomas and B. Pei

The Effect of Silica, Temperature, Velocity and Particulates on Heat Transfer to Spent Bayer Liquor 124
 A. Duncan, M. Groemping, B. Welch, and H. Muller-Steinhagen

Physical Data

The Effect of Four Common Bayer Liquor Impurities on Alumina Solubility ... 132
 R. Bird, H. Vance, and C. Fuhrman

Autoprecipitation of Gibbsite and Boehmite ... 141
 T. Harato, T. Ishida, and K. Yamada

Equilibrium Composition of Sodium Aluminate Liquors ... 148
 B. McCoy and J. Dewey

Boiling Point Rise of Bayer Plant Liquors ... 155
 J. Dewey

Viscosity, Specific Gravity, and Equilibrium Concentration of Sodium Aluminate Solutions 162
 T. Ikkatai and N. Okada

The Heat of Dissolution of Gibbsite at Bayer Digestion Temperatures ... 170
 J. Langa

Reactions of Iron Minerals in Sodium Aluminate Solutions .. 176
 P. Basu

Identification of Organics in Bayer Liquor .. 184
 G. Lever

Behavior of Radioactive Elements (Uranium and Thorium) in Bayer Process ... 191
 C. Sato, S. Kazama, A. Sakamoto, and K. Hirayanagi

Solubility of Bayer Liquor Impurities in Evaporative Crystallization ... 198
 E. Schiller

Calcium Chemistry

Reaction of Lime in Sodium Aluminate Liquors .. 202
 N. Chaplin

Some Aspects of Calcium Chemistry in the Bayer Process ... 210
 S. Rosenberg, D. Wilson, and C. Heath

Chemistry of Bayer Liquor Causticization .. 217
 R. Young
The Equilibrium Approach to Causticization for Optimizing Liquor Causticity .. 228
 G. Roach

 S. Rosenberg and L. Armstrong

Silica Chemistry

Dissolution Kinetics of Kaolin in Caustic Liquors .. 240
 G. Roach and A. White

Dissolution Rate of Quartz and the Rate of Desilication in the Bayer Liquor ... 247
 T. Oku and K. Yamada

Mathematical Modeling of the Kinetics of Gibbsite Extraction and Kaolinite Dissolution/Desilication in the Bayer Process ... 255
 N. Raghavan and G. Fulford

Autoclave Desilication of Digested Bauxite Slurry in the Flashing Circuit ... 263
 A. Damaskin, A. Suss, A. Panov, I. Paromova, N. Kuznetzova, N. Katkova, O. Shipova, and A. Kuvyrkina

Organic Removal

Characterization of Organics in Bayer Liquor .. 268
 J. Guthrie, P. The, and W. Imbrogno

Review of Bayer Organics-Oxalate Control Processes ... 278
 B. Gnyra and G. Lever

Sizing an Organic Control System for the Bayer Process ... 284
 J. Pulpeiro, L. Fleming, B. Hiscox, J. Fenger, and B. Raahauge

Organic Control Technologies in Bayer Process ... 291
 G. Soucy, J. Larocque, and G. Forté

Removal of HMW Organic Compounds by Partial Wet Oxidation ... 297
 B. Foster and M. Roberson

Removal of Organic Carbon from Bayer Liquor by Wet Oxidation in Tube Digesters .. 304
 W. Arnswald, H. Kaltenberg, and E. Guhl

A Year of Operation of the Solid-Liquid Calcination (SLC) Process .. 309
 J. Pulpeiro, M. Gayol, H. Boily, A. Carruthers, B. Hiscox, J. Fenger, and B. Raahauge

A Thermodynamically Based Model for Oxalate Solubility in Bayer Liquor ... 314
 K. Beckham and S. Grocott

Oxalate Removal by Occlusion in Hydrate .. 320
 V. Esquerre, P. Clerin, and B. Cristol

Recommended Reading ... 325
Part 3: Digestion

Section Introduction ... 329

D. Donaldson

Bayer Digestion and Predigestion Desilication Reactor Design ... 331

J. Kotte

Digester Design Using CFD ... 350

J. Woloshyn, L. Oshinowo, and J. Rosten

Preheaters and Digesters in the Bayer Digestion Process ... 356

G. Songquing and Y. Zhonglin

The Improved Low Temperature Digestion (ILTD) Process: An Economic and Environmentally Sustainable Way of Processing Gibbsite Bauxites ... 362

G. Bánvölgyi and P. Siklósi

New Technology for Digestion of Bauxites ... 371

R. Kelly, M. Edwards, D. Deboer, and P. McIntosh

Boehmitic Reversion in a Double Digestion Process on a Bauxite Containing Trihydrate and Monohydrate ... 377

J. Lamerant and Y. Perret

Mixer Design Optimization for High Solids Contents Media: Methodology and Application to the Pechiney's High Density Predesilication Process ... 381

Robin Industries, F. Bouquet

Mechano-Activated Bauxite Behaviour ... 387

S. Fortin and G. Forté

Processing of Diaspore Bauxites ... 393

G. Wargalla and W. Brandt

On-Line Multivariable Control for Digestion A/C Analysis ... 402

M. Hardin

Recommended Reading ... 409

Part 4: Clarification, Red Mud Washing, and Liquor Filtration

Section Introduction ... 411

T. Laros

Selection of Sedimentation Equipment for the Bayer Process: An Overview of Past and Present Technology ... 413

TMS, T. Laros, and F. Baczek

Effect of Particle Characteristics on the Solids Density of Bayer Mud Slurries ... 417

G. Roach, E. Jamieson, N. Pearson, A. Yu

Red Mud Flocculants Used in the Bayer Process ... 425

F. Ballentine, M. Lewellyn, and S. Moffatt

Development of New Bayer Process Flocculants ... 431

D. Spitzer, A. Rothenberg, H. Heitner, M. Lewellyn, L. Laviolette, T. Foster, and P. Avotins

Effects of Temperature and Method of Solution Preparation on the Performance of a Typical Red Mud Flocculent ... 436

P. Ferland, J. Malito, and E. Phillips

viii
Advanced Filtration Methods for Pregnant Liquor Purification ... 444
 R. Bott, T. Langeloh, and J. Hahn

Impact of Excess Synthetic Flocculent on Security Filtration ... 449
 J. Rousseaux and P. Ferland

Hydroseparators, Hydrocyclones and Classifiers as Applied in the Bayer Process for Degrifting (Desanding) of Digested Bauxite, and for Sand Washing to Recover Soda ... 454
 F. Krause, N. Beaton, and K. Grüner

Development of a Self-Sluicing Pressure Leaf Filter ... 461
 B. Cousineau and J. Lumsden

Comparison of the Rheology of Bauxite Residue Suspensions ... 466
 N. Pashias, D. Boger, J. Summers, and D. Glenister

Pressure Decantation at Gramercy Alumina ... 470
 P. Landry and H. Edwards

The Manufacture of Tricalcium Aluminate ... 476
 L. Andermann Jr. and G. Pollet

Recommended Reading .. 483

Part 5: Precipitation, Classification, and Seed Filtration

Section Introduction ... 485
 C. Misra

Precipitation Technology ... 487
 J. Anjier and M. Roberson

Some Studies in Alumina Trihydrate Precipitation Kinetics ... 492
 W. King

Physical Chemistry Considerations in Aluminum Hydroxide Precipitation ... 499
 M. Chabal

Modeling Bayer Precipitation with Agglomeration ... 509
 D. Iliwski and E. White

Gibbsite Growth History: Revelations of a New Scanning Electron Microscope Technique 516
 G. Roach, J. Cornell, and B. Griffin

Alumina Yield in the Bayer Process ... 522
 R. Hond

Alumina Yield in the Bayer Process – Past, Present and Prospects ... 528
 R. Hond, I. Hiralal, and A. Rijkeboer

Improvements by the New Alusuisse Process for Producing Coarse Aluminum Hydrate in the Bayer Process .. 534
 O. Tschamper

Agitation Effects in Precipitation ... 541
 C. Misra

Hydrodynamics Effect on Precipitation Yield ... 550
 B. Cristol, Y. Perret, and H. Santos-Cottin
Hydrodynamics of Hydrate Slurries in Precipitators: Application to Precipitators Design .. 559
Y. Perret

Alumina Crystallizer Mixing Using CFD .. 563
J. Perron and J. Larocque

Particle Strength of Bayer Hydrate .. 570
J. Anjier and D. Marten

The Effect of Glucoisosaccharinate on the Bayer Precipitation of Alumina Trihydrate .. 576
P. The

Influence of Mineral and Organic Impurities on the Alumina Trihydrate Precipitation Yield in the Bayer Process 582
A. Lectard and F. Nicolas

Factors Affecting Residual Na₂O in Precipitation Products .. 592
J. Sang

Soda Incorporation During Hydrate Precipitation .. 602
C. Vernon, J. Loh, D. Lau, and A. Stanley

A Method for Evaluating Seed Balance Parameters in Alumina Refinery Seed Classifications Systems 608
W. Bounds Jr.

Utilization of Horizontal Belt Filters for Washing Fine Alumina Seed and Kiln Feed Product .. 615
R. Crawford, D. Dahlstrom, and G. Minear

Recommended Reading ... 621

Part 6: Product Hydrate Filtration and Alumina Production by Calcination

Section Introduction .. 623
B. Raahauge

The World's Largest Hydrate Pan Filter: Engineering Improvements and Experiences .. 625
B. Petersen, M. Bach, and R. Arpe

Utilization of Steam Hoods in Horizontal Table Filters ... 630
H. Serres and J. Sorrentino

Conversion of Conventional Rotary Kiln into Effective Sandy Alumina Calciner ... 636
M. Ishihara, T. Hirano, and H. Yajima

Application of Circulating Fluid Bed Calciners in Large-size Alumina Plants ... 641
L. Reh and H. Schmidt

Alumina Calcination in the Fluid-Flash Calciner .. 648
W. Fish

Industrial Prospects and Operational Experience with 32 Mtpd Stationary Alumina Calciner .. 653
B. Raahauge and J. Nickelsen

Experience with 3 X 4500 TPD Gas Suspension Calciners (GSC) for Alumina ... 664
J. Fenger, B. Raahauge, and C. Wind
Alcoa Pressure Calcination Process for Alumina .. 669
 S. Sucech and C. Misra

Recommended Reading ... 675

Part 7: Water, Evaporation, and Energy

Section Introduction... 677
 F. Williams

Alumina Refinery Wastewater Management: When Zero Discharge Just Isn't Feasible... 679
 L. Martin and S. Howard

Wastewater Treatment Methods ... 685
 D. Smith, F. Williams, and S. Moffatt

The Need for Energy Efficiency in Bayer Refining.. 691
 L. Henrickson

Prediction of Heat Exchanger - Heat Transfer Coefficient Decay Due to Fouling ... 697
 G. O'Neill

Heat Transfer in the Bayer Process ... 705
 D. Thomas

Perspective on Bayer Process Energy .. 711
 D. Donaldson

Recommended Reading ... 715

Part 8: Alumina Quality

Section Introduction... 717
 B. Raahauge

Dehydration Products of Gibbsite by Rotary Kiln and Stational Calciner .. 719
 K. Yamada, T. Harato, S. Hamano, and K. Horinouchi

Morphological Analysis of Alumina and Its Trihydrate .. 727
 H. Ilsieh

Factors Affecting the Attrition Strength of Alumina Products .. 740
 J. Sang

The Generation of Fines Due to Heating of Alumina Trihydrate ... 747
 J. Zwicker

Development of Particle Breakdown and Alumina Strength During Calcination ... 757
 S. Wind, C. Jensen-Holm, and B. Raahauge

Measurement of Sandy Alumina Dustiness .. 765
 S. Perra

Alumina Handling Dustiness ... 774
 M. Authier-Martin
The Influence of Alumina Properties on Its Dissolution in Smelting Electrolyte ... 783
A. Bagshaw and B. Welch

The Influence of Physical and Chemical Properties of Alumina on Hydrogen Fluoride Absorption ... 788
J. Coyne, M. Wainwright, M. Brungs, and A. Bagshaw

SGA Requirements in Coming Years .. 793
S. Lindsay

Recommended Reading .. 799

Part 9: Health, Safety, and Plant Maintenance

Section Introduction ... 801
D. Donaldson

Application of Operation Integrity Management in the Alumina Industry .. 803
C. Suarez, D. Welshons, J. Mc Nerney, and J. Webb

Management Methodology for Pressure Equipment ... 808
P. Bletchly

The Design of Pressure Safety Systems in the Alumina Industry .. 817
B. Haneman

Inspection Techniques for Digestion Pressure Relief System ... 823
W. Harrington, G. Harrell, and B. Cohea Jr.

Benefits of the Utilization of Cleaning Liquor in Red Side of CVG-Bauxllum ... 828
R. Galarraga and R. Diaz

MAX HT™ Sodalite Scale Inhibitor: Plant Experience and Impact on the Process .. 832
D. Spitzer, O. Chamberlain, C. Franz, M. Lewellyn, and Q. Dai

Recommended Reading .. 839

Part 10: Process Control/Simulation

Section Introduction ... 841
D. Donaldson

Modern Control Instrumentation and Process Management in Bayer Plants .. 843
P. McIntosh and E. Barker

Process Control in Alumina Refining, Review and Prospects .. 849
J. Riffaud

Development of Automatic Control of Bayer Plant Digestion .. 852
J. Riffaud

Aspen Modeling of the Bayer Process ... 860

Bayer Digester Optimization Studies Using Computer Techniques .. 870
J. Kotte and V. Schleider
Equations for Calculating Recovery of Soluble Values in a Countercurrent Decantation Washing System

H. Scandrett

879

Simulation and Development of Internal Model Control Applications in the Bayer Process

P. Colombé, R. Dablainville, and J. Vacarisas

885

Dynamic Modeling of Yield and Particle Size Distribution in Continuous Bayer Precipitation

J. Stephenson and C. Kapraun

891

Recommended Reading

899

Part 11: Red Mud Disposal and Other Environmental Concerns

Section Introduction

L. Perander

901

Opportunities for Improved Environmental Control in the Alumina Industry

R. Mimna, J. Kildea, E. Phillips, W. Carlson, B. Keiser, and J. Meier

903

Ferrosilt (Red Mud): Geotechnical Properties and Soil Mechanical Considerations

F. Jenny

909

Correlation of Red Mud Consolidation with Its Soil Properties

J. Stinson

915

Mobility in Mud

D. Morin

922

Developments in the Disposal of Residue from the Alumina Refining Industry

D. Cooling

927

Thickened Tailing Disposal in Any Topography

E. Robinsky

933

Solar Drying of Red Mud

J. Chandler

938

Red Mud Stacking

M. Bélanger

944

Proposed Mechanism for the Formation of Dust Horizons on Bauxite Residue Disposal Area

C. Klauber, N. Harwood, R. Hockridge, and C. Middleton

951

Induction of Biological Activity in Bauxite Residue

F. Williams and M. Hamdy

957

The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples

L. Fergusson

965

Recommended Reading

973
Part 12: Alternative Processes and Raw Materials

Section Introduction ... 975
 L. Perander

Alumina Production by the Pedersen Process: History and Future ... 977
 J. Miller and A. Irgens

Efficiency of Nepheline Ore Processing for Alumina Production .. 983
 B. Arlyuk, D. Sc, and A. Pivnev

A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials ... 998
 K. Bengston

The Comparative Economics of Producing Alumina from U.S. Non-Bauxitic Ores .. 1031
 R. Nunn, P. Chuberka, L. Malm, A. San Jose

Recovery of Alumina from Non-Bauxite Aluminum-Bearing Raw Materials .. 1057
 J. Cohen and H. Mercier

Alumina Extraction from a Pennsylvania Diaspore Clay by an Ammonium Sulfate Process 1065
 J. Fetterman and S. Sun

Alumina From Clay: A Nitric Acid Process .. 1074
 J. Dewey

The Ammonoalunite Process for Production of Alumina From Clay ... 1082
 R. Bartlett, R. Wesely, and T. Bolles

Options in the HCl Process for the Production of Alumina from Clay ... 1089
 D. Shanks, D. Thompson, R. Arington, G. Dan, and J. Eisele

The Leaching of Aluminium in Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid 1098
 A. Fernández, J. Ibañez, M. Llavona, and R. Zapico

Recommended Reading ... 1109

Part 13: Non-Metallurgical Uses of Bauxite, Hydrate, and Alumina

Section Introduction ... 1111
 T. Laros

Non-Metallurgical Use of Alumina and Bauxite ... 1113
 W. Sleppy, A. Pearson, C. Misra, and G. MacZura

The Grafting of Industrial Chemicals Operations onto the Bayer Process ... 1121
 L. Chin

On Alumina Powders for Ceramics ... 1124
 Y. Oda, H. Okamoto, and S. Shibusawa

Development of Alumina and Silica Based Products in Hungary ... 1129
 G. Baksa, G. Szalay, and F. Valló
The Use of Bayer Alumina Fines for Other Industrial Purposes ... 1137
 P. García, R. Zapico, J. Ayala, and J. Sancho

Aluminas in Air Pollution Control... 1144
 J. Murphy

Aluminium Fluoride Synthesis in Circulating Fluidbeds ... 1158
 E. Böhm and L. Plass

Recommended Reading ... 1165

Author Index.. 1167
Since 1962, alumina production has grown from about 9–10 million to 87–88 million tpa smelter grade alumina, with China accounting for about 33–34 million tpa in 2011. Chemical or special alumina of varying specifications account for additional 8–9 million tpy alumina production. The energy consumption in modern alumina refineries using the Bayer process to produce alumina hydrate followed by the calcination process producing smelter grade alumina has decreased from about 13–14 GJ per ton in 1970 to 8–9 GJ per ton alumina in 2011.

In 1962 the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) organized a symposium on alumina and aluminum and published *Extractive Metallurgy of Aluminum, Volume 1, Alumina* and *Volume 2, Aluminum* in 1963. Subsequently, each year from 1971 to the present, TMS has published the *Light Metals* proceedings, which includes the Alumina and Bauxite section. We thank all of you for your contribution and support during all those years. We are confident the new generation of scientists, engineers, and technologists will make the alumina industry even better than it is today.

This volume includes the best technical papers published in the *Light Metals* volumes from 1963 to 2011 selected by the editorial team comprising Don Donaldson, Tim Laros, Chuck Misra, Linus Perander, Benny E. Raahauge, and Fred Williams.

On behalf of the editorial team and The Minerals, Metals, & Materials Society, it is our privilege to dedicate this volume of *Light Metals* articles on alumina and bauxite to all those authors and their co-workers, universities, and companies whose collective work represents an enormous investment in intellectual resources by concluding the research and development work, and subsequently preparing the technical papers for presentation of the results for the benefits of the alumina industry.
The selection process was challenging, owing to the great number of quality papers to review. First, subjects were selected to cover the alumina industry as shown in the Table of Contents. All alumina and bauxite proceedings, covering more than 40 years of symposia, were scanned to assign every paper to a subject; this alone is a valuable feature of the book. The work was then allocated so that at least two members of the editorial team were involved in the selection of each final paper. The subject lead editor and his assistants read and screened papers and finally selected 15% of the best papers from 1963 to 2011. A brief introduction to each subject has been prepared by the subject lead editor, and at the end of each section is a listing of recommended *Light Metals* alumina and bauxite articles for further reading.

The paper selection process was guided by the following criteria:

- Papers we remember as important in a fundamental context and had an influence on our work
- Papers we believe have had an impact on the industry
- Papers that describe a breakthrough or shift in applied technology
- Important review papers that bring together the current (at the time) thinking on key topics and that have stood the test of time
- Papers that received the Light Metals Award (Best Paper)
- Papers that are not overly commercial

It has been an honor for the editorial team to do the assigned work and our ambition is that the articles included here combined with the list of recommended readings in each section pave the way for you to use this book as a valuable tool and source of information in making your future work more effective and rewarding.
Finally, we hereby extend our thanks to Matt Baker for organizing and steering us through this challenging project and Stephen J. Lindsay for his constructive review of this preface and the section introductions.

Don Donaldson

Benny E. Raahauge

Lead Editors
LEAD EDITORS

Don Donaldson

Don Donaldson received his B.S. degree in Chemical Engineering from the University of Texas in 1947. He has worked in the sugar refining, seawater magnesia, and alumina industries. In the employ of Kaiser Aluminum & Chemical Corporation he worked 34 years in all facets of the production of alumina from bauxite and, subsequently, he was an Independent Alumina Consultant for 25 years.

Don has written several publications and holds patents in alumina technology.

Benny E. Raahauge

Benny E. Raahauge graduated as M.Sc. Chemical Engineering from the Danish Technical University in 1972. His current position is General Manager – Pyro and Alumina Technology at FLSmidth, Minerals Processing Division, Denmark. Prior to joining FLSmidth in 1974, he worked as Plant Engineer for the Danish Sugar Factories.

Benny has more than 36 years’ experience with calcination of alumina hydrate to alumina, and joint Alcan – FLSmidth development of the solid liquid calcination technology for liquor purification and destruction of salt cake.

Benny is the holder of several patents and has submitted several technical papers on calcination to TMS since 1980. He has acted as TMS Session Chair on Alumina and Bauxite sessions on several occasions, and he was Program Organizer for the TMS 2012 Alumina and Bauxite Session.
EDITORIAL TEAM

Associate Editor

Fred S. Williams

Fred S. Williams graduated from the University of Kansas with a B.S. Ch.E. in 1958 and M.S. Ch.E. in 1960. Upon graduation he joined Alcoa Research in East St. Louis, Illinois, USA, and continued to work for Alcoa in alumina and chemical research and production assignments in the United States and Suriname for 42 years. Among other assignments, Fred was Manager of Alumina and Chemical Research at the Alcoa Technical Center from 1977 to 1986.

Since retiring in 2002, Fred has continued as a consultant to the alumina and bauxite industry.

Fred is the holder of several patents and has written a number of published technical papers. He has been Alumina Subject Chairman three times and numerous times Session Chairman at TMS annual meetings.

Other Team Members

Tim Laros

Tim Laros is currently Manager of Strategic Initiatives, Group Research and Product Review, FLSmidth, Salt Lake City, Utah, USA. He has a B.S. degree in Civil Engineering from Iowa State University and an M.S. degree in Mineral Processing from The Pennsylvania State University. From 1979 to 1984, Tim held various positions in operations for the Anaconda Minerals Co. He joined the FLSmidth legacy company, Eimco Process Equipment, in 1984 where he has held various positions in Marketing and in Research and Development in the area of solid liquid separation. He has more than 20 years’ experience in the alumina refining process primarily in red mud washer circuits and red mud disposal. He has published numerous papers and has many U.S. and international patents in solid liquid separation. In 1995 Tim received the Alcoa Environmental Excellence Award for his work in Improved Bauxite Residue Management, Western Australian Operations.

xxiii
Chanakya (Chuck) Misra

Chuck Misra received his Ph.D. in Chemical Engineering from the University of Queensland, Australia. He has worked in the alumina industry for more than 50 years and presently works as an independent consultant.

Chuck has authored many publications including three books. He holds more than 35 patents.

Linus Perander

Linus received a Doctor of Philosophy (Chemistry) degree from the University of Auckland (Auckland, New Zealand) and a Master of Science (Chemistry) degree from Abo Akademi University (Turku, Finland). He is currently working in the Light Metals and Fluidized Bed business unit at Outotec GmbH in Germany as a Product Engineer. He has over 6 years of industrial experience and more than 8 years of academic experience mainly from the fields of alumina and aluminum production and research.

Linus’s industrial experience ranges from quality control and industrial research to process engineering and procurement, and comes from several different processes and plants. He has participated in several technical audits at alumina refineries and aluminum smelters, aimed at improving production rates and product quality. Prior to taking up the role as Product Engineer with Outotec, Linus worked as a Senior Research Engineer, and later as a Project Manager, at the Light Metals Research Centre (University of Auckland, New Zealand) where he was responsible for executing and delivering a number of externally funded research projects for clients in the global alumina and aluminum industries.

Linus’s academic experience also relates mainly to the alumina and aluminum production processes. Much of his work has been focused on how the calcination process influences the alumina properties and quality and furthermore what consequences this has when the material is used as a feedstock and scrubbing medium in the aluminum smelter. He has authored/presented about 20 publications in international peer reviewed journals and industry relevant conference proceedings (including 3 TMS contributions).