Editorial Board

David Hutchison
 Lancaster University, Lancaster, UK
Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
 University of Surrey, Guildford, UK
Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA
Friedemann Mattern
 ETH Zurich, Zurich, Switzerland
John C. Mitchell
 Stanford University, Stanford, CA, USA
Moni Naor
 Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan
 Indian Institute of Technology, Madras, India
Bernhard Steffen
 TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos
 University of California, Los Angeles, CA, USA
Doug Tygar
 University of California, Berkeley, CA, USA
Gerhard Weikum
 Max Planck Institute for Informatics, Saarbrücken, Germany
More information about this series at http://www.springer.com/series/7407
Combinatorial Optimization

4th International Symposium, ISCO 2016
Vietri sul Mare, Italy, May 16–18, 2016
Revised Selected Papers
This volume contains the full-papers presented at ISCO 2016, the 4th International Symposium on Combinatorial Optimization, held in Vietri Sul Mare (Italy) during May 16–18, 2016. ISCO 2016 was followed by the Spring School on “Extended Formulations for Combinatorial Optimization” given by Volker Kaibel and Samuel Fiorini. ISCO is a biennial symposium. The first event was held in Hammamet, Tunisia, in March 2010, the second in Athens, Greece, in April 2012, and the third in Lisbon, Portugal, in March 2014. The symposium aims to bring together researchers from all the communities related to combinatorial optimization, including algorithms and complexity, mathematical programming, operations research, stochastic optimization, graphs, and combinatorics. It is intended to be a forum for presenting original research on all aspects of combinatorial optimization, ranging from mathematical foundations and theory of algorithms to computational studies and practical applications, and especially their intersections. In response to the call for papers, ISCO 2016 received 98 fullpaper submissions. Each submission was reviewed by at least three reviewers, with at least two of them belonging to the Program Committee (PC). The submissions were judged on their originality and technical quality and the PC had to discuss in length the reviews and make tough decisions. As a result, the PC selected 38 fullpapers to be presented at the symposium, giving an acceptance rate of 39 % (57 short papers were also selected from both regular and short submissions). Four eminent invited speakers, R. Ravi (Carnegie Mellon University), András Frank (Egerváry Research Group, Eötvös University Budapest), Adam N. Letchford (Lancaster University), and Volker Kaibel (Otto-von-Guericke University, Magdeburg), gave talks at the symposium. The revised versions of the accepted full-papers, as well as the abstracts of the invited talks, are included in this volume. We would like to thank all the authors who submitted their work to ISCO 2016, and the PC members and external reviewers for their excellent work. We would also like to thank our invited speakers as well as the speakers of the Spring School for their exciting lectures. They all greatly contributed to the quality of the symposium. Finally, we would like to thank the Organizing Committee members for their dedicated work in preparing this conference, and we gratefully acknowledge our sponsoring institutions for their assistance and support.

July 2016

Raffaele Cerulli
Satoru Fujishige
A. Ridha Mahjoub
Organization

Program Committee

Edoardo Amaldi DEI, Politecnico di Milano, Italy
Francisco Barahona IBM Research, USA
Mourad Baltou LIMOS - Université Blaise Pascal, France
Daniel Bienstock Columbia University, USA
Francesco Carrabs University of Salerno, Italy
Raffaele Cerulli University of Salerno, Italy
Laureano Escudero Universidad Rey Juan Carlos, Spain
Matteo Fischetti University of Padua, Italy
Pierre Fouilhoux Laboratoire LIP6, Université Pierre et Marie Curie, France
Satoru Fujishige RIMS, Kyoto University, Japan
Ricardo Fukasawa University of Waterloo, Canada
Takuro Fukunaga National Institute of Informatics, Japan
Naveen Garg IIT Delhi, India
Monica Gentili University of Salerno, Italy
Bruce Golden University of Maryland, USA
Laurent Gourvès Iamsade, France
Luis Gouveia University of Lisbon, Portugal
Mohamed Haouari Qatar University, Qatar
Hiroshi Hirai University of Tokyo, Japan
Giuseppe Italiano University of Rome “Tor Vergata”, Italy
Imed Kacem LCOMS - University of Lorraine, France
Volker Kaibel Otto-von-Guericke Universitaet Magdeburg, Germany
Naoyuki Kamiyama Kyushu University, Japan
Shuji Kijima Kyushu University, Japan
Yusuke Kobayashi University of Tsukuba, Japan
Martine Labbé Université Libre de Bruxelles, Belgium
Gilbert Laporte HEC Montréal, Canada
Leo Liberti LIX, Ecole Polytechnique, France
Andrea Lodi DEI, University of Bologna, Italy
Marco Lübbecke RWTH Aachen University, Germany
Nelson Maculan Federal University of Rio de Janeiro (UFRJ), Brazil
Ali Ridha Mahjoub LAMSAD, University Paris-Dauphine, France
Carlo Mannino Sintef ict, Norway
Francois Margot Carnegie Mellon University, USA
Silvano Martello University of Bologna, Italy
Thomas McCormick Sauder School of Business, UBC, Canada
Ioannis Milis Athens University of Economics and Business, Greece
Kiyohito Nagano Future University, Japan
Yoshio Okamoto University of Electro-Communications, Japan
Gianpaolo Oriolo Università di Roma “Tor Vergata”, Italy
Vangelis Paschos LAMSADE, University Paris-Dauphine, France
Nancy Perrot Orange Labs, France
Franz Rendl University of Klagenfurt, Austria
Giovanni Rinaldi CNR, Italy
Juan José Salazar Universidad de La Laguna, Spain
González
Marc Sevaux Lab-STICC, Université de Bretagne-Sud, France
Douglas Shier Clemson University, USA
Akiyoshi Shioura Tokyo Institute of Technology, Japan
Maria Grazia Speranza University of Brescia, Italy
Kenjiro Takazawa Hosei University, Japan
Shinichi Tanigawa Kyoto University, Japan
Paolo Toth DEIS, University of Bologna, France
Chefí Triki University of Salento, Italy and Sultan Qaboos University, Oman
Eduardo Uchoa Universidade Federal Fluminense, Brazil
Francois Vanderbeck University of Bordeaux, France
Hande Yaman Bilkent University, Turkey
Peng-Yeng Yin National Chi Nan University, Taiwan
Yuichi Yoshida National Institute of Informatics, Japan

Additional Reviewers

Alvarez-Miranda, Eduardo
Amanatidis, Georgios
Andrade, Rafael
Aristolotelis, Giannakos
Assunção, Lucas
Belmonte, Rémy
Ben-Ameur, Walid
Bendali, Fatiha
Benhamiche, Amal
Boeckenhauer, Hans-Joachim
Bonomo, Flavia
Bulteau, Laurent
Cai, Shaowei
Carlinet, Yannick
Carrabs, Francesco
Casel, Katrin
Catanzaro, Daniele
Cerqueus, Audrey
Cornaz, Denis
Cunha, Alexandre
D’Ambrosio, Ciriac
Derrien, Alban
Dias, Gustavo
Faenza, Yuri
Fampa, Marcia
Felici, Giovanni
Firsching, Moritz
Fotakis, Dimitris
Gaudioso, Manlio
Grappe, Roland
Imahori, Shinji
John, Maximilian
Karrenbauer, Andreas
Katsikarelis, Ioannis
Kawase, Yasushi
Koca, Esra
Koichi, Shungo
Lampis, Michael
Letsios, Dimitrios
Lhouari, Nourine
M.S., Ramanujan
Mahey, Philippe
Martin, Sébastien
Martinez, Leonardo
Marín, Alfredo
Mendez-Diaz, Isabel
Miyashiro, Ryuhei
Miyazawa, Flavio K.
Mkrtychyan, Vahan
Moura, Pedro
Murota, Kazuo
Mörike, Tobias
Maghmouchi, Mohamed Yassine
Nannicini, Giacomo
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasini, Graciela</td>
<td>Pêcher, Arnaud</td>
<td>Stamoulis, Georgios</td>
</tr>
<tr>
<td>Neto, Jose</td>
<td>Raiconi, Andrea</td>
<td>Sukegawa, Noriyoshi</td>
</tr>
<tr>
<td>Nobili, Paolo</td>
<td>Raidl, Günther</td>
<td>Tural, Mustafa Kemal</td>
</tr>
<tr>
<td>Oliveira, Daniel</td>
<td>Rossi, Fabrizio</td>
<td>Umetani, Shunji</td>
</tr>
<tr>
<td>Ozbaygin, Gizem</td>
<td>Rudolph, Larry</td>
<td>Urrutia, Sebastián</td>
</tr>
<tr>
<td>Pahl, Julia</td>
<td>Sadykov, Ruslan</td>
<td>van Renssen, André</td>
</tr>
<tr>
<td>Papadigenopoulos, Vassileios-Orestis</td>
<td>Sikora, Florian</td>
<td>Ventura, Paolo</td>
</tr>
<tr>
<td>Pessoa, Artur</td>
<td>Smriglio, Stefano</td>
<td>Zhou, Yuan</td>
</tr>
<tr>
<td>Picouleau, Christophe</td>
<td>Soma, Tasuku</td>
<td>Zois, Georgios</td>
</tr>
</tbody>
</table>
Abstracts
New Graph Optimization Problems
in NP ∩ co-NP

András Frank
Egerváry Research Group, Eötvös University Budapest
frank@cs.elte.hu

We show that the following three problems in graph theory belong to NP ∩ co-NP.

1. Wang and Kleitman (1972) characterized degree-sequences of simple k-connected undirected graphs. We solve the corresponding problem for digraphs.

2. Edmonds (1973) characterized digraphs admitting k disjoint spanning arborescences of given root, and his result could be extended to the case when there is no prescription for the localization of the roots. Here we exhibit a much more general result that characterizes digraphs admitting k disjoint branchings with specified sizes $\mu_1, \mu_2, \ldots, \mu_k$.

3. Ryser (1958) solved the maximum term rank problem which consisted of characterizing the row-sums and column-sums of $(0, 1)$-matrices with term-rank at least μ, or equivalently, characterize the degree-sequences of simple bipartite graphs with matching number at least μ. Recently, it turned out that the maximum term rank problem, though not particularly difficult, is not tractable with network flow or matroid techniques since the weighted version is NP-complete. Yet, we found a necessary and sufficient condition for the existence of a simple bipartite graph with matching number at least μ such that the degree of each node lies between specified lower and upper bounds.

As a major novelty, we show that these three apparently quite distant problems stem out from one common root: a general theorem on covering a supermodular function by a minimal simple digraph. Since the corresponding weighted optimization version includes NP-complete problems, the new results are certainly out of the range of classic general frameworks such as the one of submodular flows.

In the talk, I outline first the origin and the history of optimization problems concerning optimal coverings of supermodular functions and exhibit then the new developments giving rise to the characterizations indicated above. Finally, some open problems are sketched that are hopeful to be attacked successfully with the new approach.
Describing Integer Points in Polyhedra

Volker Kaibel
Otto-von-Guericke University, Magdeburg
kaibel@ovgu.de

Linear mixed integer models are fundamental in treating combinatorial problems via Mathematical Programming. In this lecture we are going to discuss the question how small such formulations one can obtain for different problems. It turns out that for several problems including, e.g., the traveling salesman problem and the spanning tree problem, the use of additional variables is essential for the design of polynomial sized integer programming formulations. In fact, we prove that their standard exponential size formulations are asymptotically minimal among the formulations based on incidence vectors only. We also treat bounds for general sets of 0/1-points and briefly discuss the question for the role of rationality of coefficients in formulations.
In the past decade, a revolution in telecommunications has been taking place. There has been an inexorable trend towards mobile wireless communications, in which there are a large number of portable devices (such as smartphones) scattered across a geographical region. Each such region is divided into a number of so-called cells. Each cell contains a powerful transmitter called a base station. When they wish to send or receive data, the portable devices have to send requests to one or more nearby base stations.

It turns out that mobile wireless communications are a rich source of new and difficult combinatorial optimisation problems. These include strategic problems, such as where and when to locate new base stations, tactical problems, such as how much power to give to each base station, and operational problems, such as how to assign incoming user requests to the available frequency bands.

In this talk, we focus on operational problems associated with so-called orthogonal frequency-division multiple access (OFDMA) systems. In these systems, there are a large number of channels available, each of which can be allocated to at most one user. On the other hand, a user can be assigned to more than one channel. The rate at which data is transmitted over a given channel is a nonlinear function of the power allocated to that channel, the bandwidth of the channel, and the noise associated with the channel. So one faces the problem of simultaneously assigning channels to users and allocating the available power to the channels. This leads to several different combinatorial optimization problems, depending on the particular objective in question, the side-constraints imposed, and the time-horizon of interest.

We show that some of these joint channel assignment and power allocation problems can be tackled successfully via mixed-integer linear programming, especially if one uses clever pre-processing tricks, strong cutting planes, and symmetry-breaking techniques. On the other hand, some of the problems still present a formidable challenge.
Improved Approximations for Graph-TSP in Regular Graphs

R. Ravi
Carnegie Mellon University
ravi@andrew.cmu.edu

A tour in a graph is a connected walk that visits every vertex at least once, and returns to the starting vertex. We describe improved approximation results for a tour with the minimum number of edges in regular graphs. En route we illustrate the main ideas used recently in designing improved approximation algorithms for graph TSP.
Contents

On the Finite Optimal Convergence of Logic-Based Benders’ Decomposition in Solving 0–1 Min-Max Regret Optimization Problems with Interval Costs .. 1

Lucas Assunção, Andréa Cynthia Santos, Thiago F. Noronha,
and Rafael Andrade

A Full Description of Polytopes Related to the Index of the Lowest Nonzero Row of an Assignment Matrix ... 13

Walid Ben-Ameur, Antoine Glorieux, and José Neto

On Robust Lot Sizing Problems with Storage Deterioration,
with Applications to Heat and Power Cogeneration 26

Stefano Coniglio, Arie Koster, and Nils Spiekermann

Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions ... 38

Daniël Paulusma, Christophe Picouleau, and Bernard Ries

The Parity Hamiltonian Cycle Problem in Directed Graphs 50

Hiroshi Nishiyama, Yukiko Yamauchi, Shuji Kijima,
and Masafumi Yamashita

Lovász-Schrijver PSD-Operator on Claw-Free Graphs 59

Silvia Bianchi, Mariana Escalante, Graciela Nasini,
and Annegret Wagler

Benders Decomposition for Capacitated Network Design 71

Sara Mattia

Modelling and Solving the Joint Order Batching and Picker Routing Problem in Inventories ... 81

Cristiano Arbex Valle, John E. Beasley, and Alexandre Salles da Cunha

Uniqueness of Equilibria in Atomic Splittable Polymatroid Congestion Games ... 98

Tobias Harks and Veerle Timmermans

A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs 110

Christoph Buchheim, Maribel Montenegro, and Angelika Wiegele
MIP Formulations for a Rich Real-World Lot-Sizing Problem with Setup Carryover. ... 123
Filippo Focacci, Fabio Furini, Virginie Gabrel, Daniel Godard, and Xueying Shen

Towards an Accurate Solution of Wireless Network Design Problems 135
Fabio D’Andreagiovanni and Ambros M. Gleixner

Approximability and Exact Resolution of the Multidimensional Binary Vector Assignment Problem. 148
Marin Bougeret, Guillerme Duvillié, and Rodolphe Giroudeau

Towards a Polynomial Equivalence Between \{k\}-Packing Functions and \(k\)-Limited Packings in Graphs. ... 160
Valeria Leoni and Maria Patricia Dobson

Exact Solution Methods for the \(k\)-Item Quadratic Knapsack Problem 166
Lucas Lé toc art and Angelika Wiegele

On Vertices and Facets of Combinatorial 2-Level Polytopes 177
Manuel Aprile, Alfonso Cevallos, and Yuri Faenza

Optimization Problems with Color-Induced Budget Constraints. 189
Corinna Gottschalk, Hendrik Lüthen, Britta Peis, and Andreas Wierz

Strengthening Chvátal-Gomory Cuts for the Stable Set Problem 201
Adam N. Letchford, Francesca Marzi, Fabrizio Rossi, and Stefano Smriglio

Scheduling Personnel Retraining: Column Generation Heuristics 213
Oliver G. Czibula, Hanyu Gu, and Yakov Zinder

Diagonally Dominant Programming in Distance Geometry 225
Gustavo Dias and Leo Liberti

A Decomposition Approach for Single Allocation Hub Location Problems with Multiple Capacity Levels ... 237
Borzou Rostami, Christopher Strothmann, and Christoph Buchheim

An Algorithm for Finding a Representation of a Subtree Distance 249
Kazutoshi Ando and Koki Sato

A Set Covering Approach for the Double Traveling Salesman Problem with Multiple Stacks ... 260
Michele Barbato, Roland Grappe, Mathieu Lacroix, and Roberto Wolfler Calvo

Shared Multicast Trees in Ad Hoc Wireless Networks 273
Marika Ivanova
Two-Level Polytopes with a Prescribed Facet

Samuel Fiorini, Vissarion Fisikopoulos, and Marco Macchia

Optimum Solution of the Closest String Problem via Rank Distance

Claudio Arbib, Giovanni Felici, Mara Servilio, and Paolo Ventura

Unrelated Parallel Machine Scheduling Problem with Precedence
Constraints: Polyhedral Analysis and Branch-and-Cut

Mohammed-Albarra Hassan, Imed Kacem, Sébastien Martin,
and Izzeldin M. Osman

The Multi-terminal Vertex Separator Problem: Polytope
Characterization and TDI-ness

Yousef Magnouche and Sébastien Martin

Toward Computer-Assisted Discovery and Automated Proofs
of Cutting Plane Theorems

Matthias Köppe and Yuan Zhou

Approximating Interval Selection on Unrelated Machines
with Unit-Length Intervals and Cores

Kateřina Böhmová, Enrico Kravina, and Matúš Mihalák

Balanced Partition of a Graph for Football Team Realignment in Ecuador

Diego Recalde, Daniel Severín, Ramiro Torres, and Polo Vaca

On a General Framework for Network Representability in Discrete
Optimization (Extended Abstract)

Yuni Iwamasa

A Compact Representation for Minimizers of k-Submodular Functions
(Extended Abstract)

Hiroshi Hirai and Taihei Oki

Optimization Models for Multi-period Railway Rolling Stock Assignment

Susumu Morito, Yuho Takehi, Jun Imaizumi, and Takayuki Shiina

Sum-of-Squares Rank Upper Bounds for Matching Problems

Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli

A Novel SDP Relaxation for the Quadratic Assignment Problem
Using Cut Pseudo Bases

Maximilian John and Andreas Karrenbauer

The Maximum Matrix Contraction Problem

Dimitri Watel and Pierre-Louis Poirion
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Production Scheduling and Delivery Routing:</td>
<td>439</td>
</tr>
<tr>
<td>Complexity Results and Column Generation</td>
<td></td>
</tr>
<tr>
<td>Azeddine Cheref, Christian Artigues, Jean-Charles Billaut, and Sandra Ulrich Ngueveu</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>451</td>
</tr>
</tbody>
</table>