The 30th International Symposium on Shock Waves (ISSW30) was held in Tel Aviv, Israel, during July 19–24, 2015. This was the 30th meeting in a series of symposia that started in Boston in 1957 (then under the name International Symposium on Shock Tubes). These symposia are held biennially in different countries in which active shock wave research is practiced. It is a central event for people active in different fields, such as physics, chemistry, fluid mechanics, gas dynamics, and applied mathematics, who are interested in shock wave-related phenomena. It was last held in Jerusalem, Israel, in 1979. The ISSW30 was held in Tel Aviv Dan Panorama Hotel. When comparing the topics and content of early symposia with the present one, one notices the significant developments that took place in the shock wave research. Hopefully these developments will continue.

A total of 370 abstracts were submitted for review by the deadline for abstracts submission. All submissions were reviewed by at least two members of the International Advisory Committee regarding standard and suitability for inclusion in the program. Out of the 370 submitted abstracts, 358 were accepted for either oral (314) or poster (44) presentations: 88 out of the 314 accepted abstracts for oral presentations and 8 out of the 44 accepted abstracts for poster presentations were submitted by graduate students. Unfortunately, by the time the meeting started 121 accepted papers were withdrawn (almost half of them from Russia, China, and India). The main reasons were lack of travel funds, security fears, and lack of clearance. Hence, the final program included 210 oral presentations and 27 poster presentations: 54 out of the 210 accepted abstracts for oral presentations and 4 out of the 27 accepted abstracts for poster presentations were presented by graduate students who competed on 12 student awards of 250 USD each that were donated by the International Shock Wave Institute (ISWI). The total number of the participants was about 300. In addition, there were 35 accompanying persons from overseas.

In summary, 9 invited presentations and 237 peer-reviewed contributed papers were presented. The Paul Vielle Memorial Lecture was delivered by Prof. Beric Skews on July 20, 2015, and the Irvine Israel Glass Memorial Lecture was delivered by Charles Needham on July 24, 2015. The other plenary lecturers were Prof. Riccardo Bonaza, Prof. Martin Brouillette, Prof. Ron Hanson, Prof. Achim Loske, Prof. Kazuo Maeno, Prof. Marcello Onofri, and Prof. K.P.J. Reddy.

The scientific program was complemented by three social events:

On the eve of the first day of the conference, a Welcome Gathering Cocktail, which included a full dinner, was held.

On the third day of the conference, only morning sessions were held; thereafter two different tours to attractive sites in Israel were offered. Participants and their accompanying persons could choose between a guided tour in Jerusalem and visit to various sites in the Galilee.

• The first option, the Jerusalem tour, included a visit to the Mount of Olives for a panoramic view of the city, a stop at Mount Zion to visit King David’s tomb, the room of last supper, and the Dormition Abbey, and thereafter entering the old city and walking through the
Armenian and Jewish quarters to the recently excavated and restored Cardo, the main Roman road, and then proceeding to the Jewish Wailing Wall and continuing to the Christian Quarter. The next sightseeing was a walk along the Via Dolorosa and visiting the Church of the Holy Sepulcher. The last stop of this tour was entering the Tower of David to view the spectacular Sound and Light show there. Ending this long tour was a dinner at a restaurant viewing the Old City walls.

- The second option, the Galilee tour, started with a drive along the coastal plain to Caesarea, capital of Judea under the Roman occupation, seeing there the excavations of the Crusader city and the Roman port, aqueduct, and the amphitheater that has been restored to its former glory as a concert venue. The next stop was the biblical city Megiddo, identified as the site of Armageddon, visiting the archaeological excavations including the well-preserved water supply system, and thereafter driving to Haifa, the largest harbor of Israel, with a breathtaking panoramic view of Haifa Bay and the Western Galilee from the summit of Mount Carmel and a walking tour of the German Colony, and then continuing to Daliat El Carmel, and visiting this pictorial Druze village and finally ending with a dinner at the house of a local Druze family.

The third social activity, for all participants, was the banquet dinner. It was held in Beit Guvrin, an underground “city” where Jews were hiding from the conquering Roman legions 2000 years ago. The dinner was held in a huge cave whose ceiling collapsed.

In addition to the above mentioned three social events, three tours were held to the accompanying persons: to the Galilee; to Masada and Dead Sea; and to Haifa, Acre, and Rosh Hanikra.

The International Advisory Committee (IAC) decided during its meeting that ISSW32 in 2019 will be held in Singapore. The IAC also decided to add to the Paul Vielle and the Irvine Israel Glass Memorial Lectures a third memorial lecture, the Ray Stalker Memorial Lecture.

As decided by the IAC during ISSW29, the 31st International Symposium on Shock Waves (ISSW31) will be chaired by Prof. Akihiro Sasoh, in Nagoya, Japan, in July 2017.

Beer Sheva, Israel

Gabi Ben-Dor
Oren Sadot
Ozer Igra
Contents

Part XII Plasma and Magnetohydrodynamics

K.K.N. Anbuselvan and K.P.J. Reddy

Pulse Gas Injection in Separation Zone of Hypersonic MHD Flow Over Rotation Body 795
E. Gubanov, A. Likhachev, and S. Medin

Observations of the Magnetized Disruption of Collimated Plasma Flows .. 801
Mario Manuel, Carolyn Kuranz, Alex Rasmus, Sallee Klein,
Michael MacDonald, Matt Trantham, Jeff Fein, Pat Belancourt,
Rachel Young, Paul Keiter, R.P. Drake, Brad Pollock, Jaebum Park,
Andrew Hazi, Jackson Williams, and Hui Chen

Shock-Wave Formation by Nanosecond Multichannel Surface Discharges .. 803
A.E. Lutsky, I.V. Mursenkova, and I.A. Znamenskaya

Experimental Investigations on a Free-Flying Supersonic Projectile Model Submitted to an Electric Discharge Generating Plasma .. 807
P. Gnemmi and C. Rey

Wave Profile and Current Limits for Lightning Return Stroke ... 813
M. Hemmati, W.C. Childs, R.S. Horn, and H.S. Shojaei

Part XIII Re-entry to Earth Atmosphere

In Situ Ablation Measurement for an Ablative Heat Shield Using an Embedded Sensor 821
T. Sakai, H. Nakazawa, Y. Dantsuka, K. Kitagawa, K. Hirai, and Y. Ishida

Preliminary Experimental Investigation of Air Radiation in Superorbital Expanding Flow 827
H. Wei, R.G. Morgan, U.A. Sheikh, P.A. Jacobs, R.J. Gollan, and T.J. McIntyre

Comparison of Chemical Reaction Models with Various Experimental Reentry Capsules Using DSMC 833
Tapan K. Mankodi, Upendra V. Bhandarkar, and Bhalchandra P. Puranik

Experimental and Numerical Assessment of Aerothermal Environments About Jupiter Trojan Sample Return Capsule 839
K. Fujita, H. Takayanagi, S. Matsuyama, S. Nishimura,
K. Yamada, and T. Abe
Contents

Part XIV Shock Waves in Rarefied Gases

Numerical Study of High-Energy Collisions Inside the Shock Wave in a Gas Mixture ... 847
F. Tcheremissine, O. Dodulad, and Yu. Kloss

A Numerical Investigation of Shock Propagation and Attenuation in a Three-Dimensional Micro-duct 853
A. Deshpande and Bhalchandra P. Puranik

Experimental Study on the Interaction of Under-expanded Jets in Rarefied Flow Regimes .. 859
A. Vinod Yeldho Baby and B. Rajesh G.

Structure and Expansion of a Plume Emitted During Laser Ablation of Multicomponent Materials 869
A.M. Słowicka, Z.A. Walenta, J. Hoffman, J. Chrzanowska, and T. Mościcki

Impact of the Interplanetary Magnetic Field to Impingement of a Solar Wind Rotational Discontinuity on the Earth’s Bow Shock ... 875
E.A. Pushkar

Part XV Shock Waves in Solids

Investigation on Shock Wave-Assisted Deformation of Nano Nickel ... 885
Anuj Bisht, G. Jagadeesh, and Satyam Suwas

On the Shock-Induced Structures in Copper .. 891
Yu. Meshcheryakov, N.I. Zhigacheva, A. Divakov, G.V. Konovalov, and B. Barakhtin

Layered Pre-fragmentation Warhead Reveals Strong Shock Wave Effect .. 897
Eitan Hirsch, Roman Shapiro, and Amos Raz

Structural Transformation in Two-Component Medium ... 899
D.A. Indeitsev, D.Yu. Skubov, and D.S. Vavilov

Application of Mathematical Programming for Analysis of Experimental Data Obtained at the Hopkinson’s Stand 903
Andrei Kuchmin and Andrei Abramyan

Criticality of Damage-Failure Transition in Quasi-Brittle Materials Under Dynamic and Shock Wave Loading 907
O. Naimark

Shock Wave Response of Iron-Based Metallic Glass Matrix Composites 913
Gauri R. Khanolkar, James P. Kelly, Olivia A. Graeve, Andrea M. Hodge, and Veronica Eliasson

Detonation Shock Waves in Various Media ... 917
Alex Zlatkis, Itzhak David, Maxim Teitel, and Evgeny Gofman

Detonation Velocity Dependence on Front Curvature for Overdriven Detonation in Solid Explosives 923
Y. Partom
I.F. Barna and R. Kersner

Compression, Rarefaction, and Failure Waves in Silicate Glasses 933
G.I. Kanel, A.S. Savinykh, and S.V. Razorenov

A Study of Mass Loss at Hypervelocity Impacts of Projectiles with Single- and Multilayer Targets ... 939
A.D. Devir, A.B. Lessin, and A. Vaynshtein

The Head-On Collision of Normal Shock Waves with a Concrete Supported Plate ... 945
Gedalya Mazor, Dmitry Nemirovsky, and Uri Tzadka

Mechanisms of Stress Relaxation and Failure in Metals Under Shock Compression ... 949
Yu. Bayandin, O. Naimark, and N. Saveleva

Part XVI Shock Waves in Liquids

Propagation of Pressure Waves in Compression System Prototype for Magnetized Target Fusion Reactor in General Fusion Inc. .. 955
V. Suponitsky, D. Plant, E.J. Avital, and A. Munjiza

Intense Shock Wave Through Water and Impulse Transmission in Submerged Structure ... 961
Nilanjan Mitra

The Motion of a 2 mm Tantalum Block Induced by Underwater Explosion ... 965

On the Refraction of Shock Wave by a Cylindrical Water Droplet ... 971
S. Sembian, M. Liverts, N. Tillmark, and N. Apazidis

Fluid Rheology Effect on Wave Attenuation in an Elastic Pipe ... 977
S. Levitsky and R. Bergman

A Summary of the Experiments of Shock/Bubble Interactions Performed in IFS Since 1980 ... 983
K. Takayama

Analysis of Bubble Dynamics Created by Ballistic Impacts in Liquid-Filled Tanks ... 987
Thomas Fourest, Jean-Marc Laurens, Eric Deletombe, Jacques Dupas, and Michel Arrigoni

Air–Water Interface Jetting Induced by Explosion Load ... 991
Guifu Zhang, Yujian Zhu, and Jiming Yang

Part XVII Shock Waves in Dense Gases

Shock Wave Attenuation in Milli- or Microtubes for Laminar and Turbulent Flow Regime ... 999
David E. Zeitoun

Comparison of BKW and JWL Equations of State for Explosion Simulations ... 1003
S. Amar, E. Kochavi, Y. Lefler, S. Vaintraub, and D. Sidilkover
Similarity Parameters for Shock Waves in Dense Fluids
Z.A. Walenta and A.M. Słowicka

Part XVIII Shock Wave Focusing

Experimental Investigation of Shock Wave Amplification Using Multiple Munitions
Veronica Eliasson and J. Gross

Shock Focusing Effect for The Interaction of Blunt Bodies with Gas Bubbles in a Supersonic Flow
P. Georgievskiy, V. Levin, and O. Sutyrin

A Parameter Study of Shock Focusing Phenomenon for Shock-Elliptic Bubble Interaction
P. Georgievskiy, V. Levin, and O. Sutyrin

Coalescence and Interaction of Blast Waves Using Multiple Munitions
Shi Qiu and Veronica Eliasson

Temperature Measurements at the Focus of a Converging Spherical Shock Wave
M. Liverts, N. Tillmark, and N. Apazidis

Preliminary Design and Optimization of 2D Supersonic Intake Using OpenFOAM
D. Mukundhan and Rakesh Kumar

A New Method of Convergent Contour Design for Planar Shock Wave Enhancement in a Shock Tube
Dongwen Zhan, Yujian Zhu, and Jiming Yang

Investigations of Shock Wave Reflection and Focusing in Different Triangle Wedges
C. Zheng, Z. Chen, and X. Sun

Part XIX Richtmyer–Meshkov Instability

Numerical Simulations of the Turbulent Richtmyer-Meshkov Instability in a Spherically Convergent Geometry
I. Boureima and P. Ramaprabhu

Richtmyer-Meshkov Instability in a Cylindrical Geometry Using a Conventional Shock Tube
Laurent Biamino, Georges Jourdan, Christian Mariani, Lazhar Houas, Marc Vandenboomgaerde, and Denis Souffland

A Semi-annular Cylindrically Converging Shock Tube for Richtmyer-Meshkov Instability Studies
Juchun Ding, Ting Si, Minghu Wang, and Xisheng Luo

Experimental Study on the Interaction of Cylindrical Converging Shock Waves with Sinusoidal Light-Heavy Interface
Fu Zhang, Zhigang Zhai, Ting Si, and Xisheng Luo

Effects of Density Distribution on Reshocked Gas Cylinder
Xiansheng Wang, Xisheng Luo, and Dangguo Yang
A Numerical Investigation of Shockwave-Cylindrical Gas Inhomogeneity Interaction for Convergent and Divergent Geometries ... 1097
M.P. Ray, Bhalchandra P. Puranik, and Upendra V. Bhandarkar

On the Richtmyer-Meshkov Instability of a Three-Dimensional Single-Mode Interface: Effect of Initial Interfacial Principal Curvatures ... 1103
B. Guan and Xisheng Luo

Numerical investigation of 3D effects on a 2D dominated flow 1109
Daniel Reese and Chris Weber

Mach Number Influence on Ignition and Mixing Processes in a Reacting Shock–Bubble Interaction .. 1115
Felix Diegelmann, Volker Tritschler, and Stefan Hickel

Richtmyer-Meshkov Instability Shock Tube Experiments with Mixing Measurements .. 1121
V. Krivets, K. Ferguson, and J. Jacobs

Experimental Investigations of Three-Dimensional Shock-Vortex Loop Interaction: Shock Reflection and Diffraction Phenomena 1127
T. Ukai, H. Zare-Behtash, K. Kontis, and S. Obayashi

Part XX Shock Boundary Layer Interaction

Shock Wave Boundary Layer Interaction Control by Rod Vortex Generators .. 1135
R. Szwaba and P. Doerffer

Consistency of Double Wedge Shock–Boundary Layer Interaction Between Numerical Simulation and Experiment .. 1141
Xiaofeng Shi, Yujian Zhu, and Jiming Yang

Analysis of Upstream Conditions Effect on Shock Wave–Boundary Layer Interaction at Moderate Mach Number 1147
Pavel Polivanov, Andrey Sidorenko, and Anatoly Maslov

Experimental Investigation of Shock-Bubble Properties at the Liquid–Air Phase Boundary .. 1153
W. Garen, B. Meyerer, Y. Kai, W. Neu, S. Koch, and U. Teubner

Numerical Study of a Transonic Wingtip Flow 1159
James R. Grisham, Frank K. Lu, and Brian H. Dennis

Control of Unsteadiness in Shock Wave–Boundary Layer Interaction by Repetitive Laser Energy Deposition .. 1165
T. Shoda, T. Tamba, S. Pham, A. Iwakawa, and A. Sasoh

Aeroheating Test of Double Cone Configurations in Shock Tunnel 1171
Jiasui Zhou, Tao Jiang, Xiaowei Ma, Rongzong Kong, Kouli Zhang, and Runyu Tian

Induction Time Measurements in Shock Tube of Different Roughness 1177
O. Penyazkov and A. Skilandz
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control of Boundary Layer Separation in Supersonic Flow</td>
<td>1183</td>
</tr>
<tr>
<td>Using Injection Through Microramps</td>
<td></td>
</tr>
<tr>
<td>S. Vaisakh and T.M. Muruganandam</td>
<td></td>
</tr>
<tr>
<td>Shock-Induced Large Separation Bubbles Near the Leading Edge of a Flat Plate at Hypersonic Mach Numbers</td>
<td>1189</td>
</tr>
<tr>
<td>Srinath Lakshman, R. Sriram, and G. Jagadeesh</td>
<td></td>
</tr>
<tr>
<td>Flow Separation Control Over a Ramp with Nanosecond-Pulsed Plasma Actuators</td>
<td>1195</td>
</tr>
<tr>
<td>Y.D. Cui, Z.J. Zhao, J. Li, J.G. Zheng, and B.C. Khoo</td>
<td></td>
</tr>
<tr>
<td>Generation and Propagation of Shock Waves in Submillimeter Capillaries</td>
<td>1201</td>
</tr>
<tr>
<td>Y. Kai, W. Garen, and U. Teubner</td>
<td></td>
</tr>
<tr>
<td>Influence of Boundary Layer Bleed Slot Width onto Static and Total Pressure Recovery of a Shock Train</td>
<td>1205</td>
</tr>
<tr>
<td>A. Weiss and H. Olivier</td>
<td></td>
</tr>
<tr>
<td>Expansion Wave/Boundary Layer Interaction</td>
<td>1211</td>
</tr>
<tr>
<td>J. Thomas, B.W. Skews, and R.T. Paton</td>
<td></td>
</tr>
<tr>
<td>Shock Tunnel Studies of the Unsteady Hypersonic Flowfield Around Spiked Bodies</td>
<td>1217</td>
</tr>
<tr>
<td>G. Balakalyani, R. Sriram, and G. Jagadeesh</td>
<td></td>
</tr>
<tr>
<td>Plasma Control of Transonic Shock Wave/Boundary Layer Interaction</td>
<td>1223</td>
</tr>
<tr>
<td>Andrey Sidorenko, Alexey Budovskii, Pavel Polivanov, and Anatoly Maslov</td>
<td></td>
</tr>
<tr>
<td>Investigations on Unsteadiness and Instability of Shock/Boundary Layer Interactions of the Ramp Flow by DNS</td>
<td>1225</td>
</tr>
<tr>
<td>Dong Sun, Qin Li, and Hanxin Zhang</td>
<td></td>
</tr>
<tr>
<td>Design and Execution of a Hypersonic Boundary-Layer Trip Transition Experiment on Blunt Cone Flare Models with Distributed Roughness</td>
<td>1231</td>
</tr>
<tr>
<td>S. Seror, L. Kosarev, and Oren Sadot</td>
<td></td>
</tr>
<tr>
<td>Part XXI Multiphase Flow</td>
<td></td>
</tr>
<tr>
<td>Water Nucleation Measurements in a Pulse-Expansion Wave Tube</td>
<td>1239</td>
</tr>
<tr>
<td>M.A.L.J. Fransen, J. Hrubý, D.M.J. Smeulders, and M.E.H. van Dongen</td>
<td></td>
</tr>
<tr>
<td>Modified Ghost Fluid Method for the Fluid Elastic-Perfectly Plastic Solid Interaction</td>
<td>1245</td>
</tr>
<tr>
<td>S. Gao and T.G. Liu</td>
<td></td>
</tr>
<tr>
<td>Evolution of a Cloud of Cavitation Bubbles in a Disturbed Compressible Liquid: A Numerical Study</td>
<td>1251</td>
</tr>
<tr>
<td>N. Petrov and A. Schmidt</td>
<td></td>
</tr>
<tr>
<td>Towards Particle Image Velocimetry Measurements During Shock–Particle Curtain Interactions</td>
<td>1257</td>
</tr>
<tr>
<td>Justin L. Wagner, Steven J. Beresh, E. DeMauro, Brian O.M. Pruett, and P. Farias</td>
<td></td>
</tr>
<tr>
<td>Flow Separation in Rocket Nozzles Under High Altitude Condition</td>
<td>1263</td>
</tr>
<tr>
<td>R. Stark and C. Génin</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>On the Early-Stage Deformation of Liquid Drop in Shock-Induced Flow</td>
<td>1269</td>
</tr>
<tr>
<td>Xiangyu Yi, Yujian Zhu, and Jiming Yang</td>
<td></td>
</tr>
<tr>
<td>Numerical Investigation of Shock-Induced Bubble Collapse in Water</td>
<td>1275</td>
</tr>
<tr>
<td>N. Apazidis</td>
<td></td>
</tr>
<tr>
<td>Suction Force Induced by the Collapse of a Near-Wall Bubble</td>
<td>1281</td>
</tr>
<tr>
<td>M. Sun</td>
<td></td>
</tr>
<tr>
<td>Toward the Prediction of Far-Field Pressure Induced</td>
<td>1287</td>
</tr>
<tr>
<td>by the Atmospheric Entry of a Small Meteorite</td>
<td></td>
</tr>
<tr>
<td>Ryo Maruyama and M. Sun</td>
<td></td>
</tr>
<tr>
<td>Pressure Field Produced by the Rapid Vaporization of a CO₂ Liquid</td>
<td>1293</td>
</tr>
<tr>
<td>Column</td>
<td></td>
</tr>
<tr>
<td>G. Ciccarelli, J. Melguizo-Gavilanes, and J.E. Shepherd</td>
<td></td>
</tr>
<tr>
<td>Penetration of Cryogenic Nitrogen Jets into a Liquid:</td>
<td>1299</td>
</tr>
<tr>
<td>“Phase Explosion” and Formation of Bubble Clusters</td>
<td></td>
</tr>
<tr>
<td>V. Kedrinskiy, V. Kuzavov, and G. Lazareva</td>
<td></td>
</tr>
<tr>
<td>Part XXII Blast Waves</td>
<td></td>
</tr>
<tr>
<td>Shock Wave Energy: Explosions in Air, Ground, and Water</td>
<td>1307</td>
</tr>
<tr>
<td>Lippe D. Sadwin, Michael M. Swisdak, Y. Gitterman, and Oren Lotan</td>
<td></td>
</tr>
<tr>
<td>The Energy Distribution of Explosions</td>
<td>1313</td>
</tr>
<tr>
<td>Hai Kedar, Lippe D. Sadwin, and David Ornai</td>
<td></td>
</tr>
<tr>
<td>Blast Wave Observations for Large-Scale Underwater Explosions</td>
<td>1315</td>
</tr>
<tr>
<td>in the Dead Sea</td>
<td></td>
</tr>
<tr>
<td>Y. Gitterman and Lippe D. Sadwin</td>
<td></td>
</tr>
<tr>
<td>Blast Waves Caused by Internal Explosion in Ammunition</td>
<td>1321</td>
</tr>
<tr>
<td>and Explosive Facility: Vulnerability and Protection Alternatives</td>
<td></td>
</tr>
<tr>
<td>David Ornai, Igal M. Shohet, Arie Boimel, Erez Gal, Robert Levy,</td>
<td></td>
</tr>
<tr>
<td>Sima M. El Kabetz, Liav Yaloz, and Eyal Mendel</td>
<td></td>
</tr>
<tr>
<td>Exploration of Methods in the Exploding Wire Technique</td>
<td>1327</td>
</tr>
<tr>
<td>for Simulating Large Blasts</td>
<td></td>
</tr>
<tr>
<td>E. Nof, O. Ram, E. Kochavi, Gabi Ben-Dor, and Oren Sadot</td>
<td></td>
</tr>
<tr>
<td>Development of a Vertical Shock Tube Facility for Blast Testing</td>
<td>1333</td>
</tr>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>I. Obed Samuelraj and G. Jagadeeesh</td>
<td></td>
</tr>
<tr>
<td>Effects of Negative Overpressure Phase of a Laser Breakdown-Induced</td>
<td>1339</td>
</tr>
<tr>
<td>Blast Wave on Impulse Characteristics</td>
<td></td>
</tr>
<tr>
<td>The Influence of Soil Characteristics on the Blast Intensity</td>
<td>1345</td>
</tr>
<tr>
<td>of Buried Explosive Charges</td>
<td></td>
</tr>
<tr>
<td>Oded Drori, Zvi Assaf, Eylam Ran, Guy Golan, and Itzhak Kuchuk Katalan</td>
<td></td>
</tr>
<tr>
<td>Partitioning of a Scaled Shallow-Buried Near-Field Blast Load</td>
<td>1351</td>
</tr>
<tr>
<td>J.D. Reinecke, F.J. Beetge, I. Horsfall, and M. Miaymbo</td>
<td></td>
</tr>
<tr>
<td>Prevention of Blast Waves Focusing in Designing and Testing of Blast-</td>
<td>1357</td>
</tr>
<tr>
<td>Resistant Constructions</td>
<td></td>
</tr>
<tr>
<td>M.V. Silnikov, M.V. Chernyshov, N.A. Danilov, V.Ya. Dmitriev,</td>
<td></td>
</tr>
<tr>
<td>A.S. Pankov, V.N. Shishkin, and A.I. Spivak</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Analysis and Testing of Combined Blast Inhibitors</td>
<td>1361</td>
</tr>
<tr>
<td>M.V. Silnikov, M.V. Chernyshov, N.A. Danilov, I.A. Melnikov, A.I. Mikhaylin, A.S. Pankov, V.N. Shishkin, and N.N. Vasilyev</td>
<td></td>
</tr>
<tr>
<td>Reconstruction of Recoilless Weapon Blast Environments</td>
<td>1367</td>
</tr>
<tr>
<td>Using High-Fidelity Simulations</td>
<td></td>
</tr>
<tr>
<td>Suthee Wiri, Thomas Wofford, Troy Dent, and Charles Needham</td>
<td></td>
</tr>
<tr>
<td>Development of a Risk-Informed Decision Support Model</td>
<td>1373</td>
</tr>
<tr>
<td>for Protecting an Urban Medical Center from a Nuclear Explosion</td>
<td></td>
</tr>
<tr>
<td>Benny Brosh, David Ormai, Igal M. Shohet, and Gabi Ben-Dor</td>
<td></td>
</tr>
<tr>
<td>Part XXIII Facilities</td>
<td></td>
</tr>
<tr>
<td>Behavior of the Shock Wave Propagating</td>
<td></td>
</tr>
<tr>
<td>in the Small-Diameter Tubes</td>
<td>1381</td>
</tr>
<tr>
<td>S. Udagawa, W. Garen, T. Inage, M. Ota, and K. Maeno</td>
<td></td>
</tr>
<tr>
<td>Hypersonic Research in the High-Enthalpy Shock Tunnel Göttingen</td>
<td>1385</td>
</tr>
<tr>
<td>K. Hannemann</td>
<td></td>
</tr>
<tr>
<td>Simulating Gas Giant Entry with Increased Helium</td>
<td>1391</td>
</tr>
<tr>
<td>Diluent in an Expansion Tube</td>
<td></td>
</tr>
<tr>
<td>C.M. James, D.E. Gildfind, R.G. Morgan, S.W. Lewis, and T.M. McIntyre</td>
<td></td>
</tr>
<tr>
<td>A New Sliding Joint to Accommodate Recoil of a Free-Piston Driven Expansion Tube</td>
<td>1397</td>
</tr>
<tr>
<td>D.E. Gildfind and R.G. Morgan</td>
<td></td>
</tr>
<tr>
<td>A Comparative Study of Shockwave Propagation in Different Diameter Miniature Shock Tubes</td>
<td>1401</td>
</tr>
<tr>
<td>S. Janardhanraj and G. Jagadeesh</td>
<td></td>
</tr>
<tr>
<td>Indraft Supersonic Wind Tunnel for Shock Train Investigations</td>
<td>1407</td>
</tr>
<tr>
<td>F. Gnani, H. Zare-Behtash, and K. Kontis</td>
<td></td>
</tr>
<tr>
<td>Experiments Using Reddy Tube-Driven Tabletop Hypersonic Shock Tunnel</td>
<td>1413</td>
</tr>
<tr>
<td>K.P.J. Reddy, N. Sharath, Ramesh Babu, and Chintoo S. Kumar</td>
<td></td>
</tr>
<tr>
<td>Rapid Assessment on Flow Parameter Matching Scheme</td>
<td>1419</td>
</tr>
<tr>
<td>in Aerodynamic Testing in a Combustion Wind Tunnel</td>
<td></td>
</tr>
<tr>
<td>Kunwei Liu, Yujian Zhu, Jiming Yang, and Yingchuan Wu</td>
<td></td>
</tr>
<tr>
<td>The T4 Stalker Tube</td>
<td>1425</td>
</tr>
<tr>
<td>David J. Mee, R.G. Morgan, Allan Paull, P.A. Jacobs, and Michael K. Smart</td>
<td></td>
</tr>
<tr>
<td>Stalker Tube Activities in India</td>
<td>1431</td>
</tr>
<tr>
<td>K.P.J. Reddy</td>
<td></td>
</tr>
<tr>
<td>Part XXIV Flow Visualization</td>
<td></td>
</tr>
<tr>
<td>Tomographic Visualization of the Hypersonic Flow Field over a Waverider</td>
<td>1437</td>
</tr>
<tr>
<td>K. Nagashetty, Biswajit Medhi, R. Sriram, G. Jagadeesh, and K.P.J. Reddy</td>
<td></td>
</tr>
<tr>
<td>Effect of Primary Flow Mach Number on the Non-mixed Length in a Two-Dimensional Supersonic Ejector</td>
<td>1441</td>
</tr>
</tbody>
</table>
Contents

Pulse-Burst PIV in a High-Speed Wind Tunnel .. 1447
Steven J. Beresh, Justin L. Wagner, John F. Henfling, Russell W. Spillers,
and Brian O.M. Pruett

A Novel Pressure-Sensitive Luminescent Coating for Microscale
Flow Visualization ... 1451
Y. Sakamura, S. Kawabata, Y. Arai, and K. Nagano

Handheld Wavefront Measuring Camera for Quantitative
Flow Visualization ... 1455

Flow Visualization of the Exhaust Jet from a Pulse Detonation
Engine by Mie Scattering ... 1461
F.K. Lu, D.D. Joshi, J.T. Peace, R.T. Bello, and J.D. Carter

Design of a Focusing Schlieren Setup for Use in a Supersonic
Combustion Chamber ... 1467
Manuel N. Bühler, Felix J. Förster, Nils C. Dröské, Jens von Wolfersdorf,
and Bernhard Weigand

Improved Flow Visualization for Fast Recovery of Flow Gradients
in Shadow-Casting Technique ... 1473
Biswajit Medhi, Abhishek Khatta, G.M. Hegde, K.P.J. Reddy,
D. Roy, and R.M. Vasu

Quantitative Flow Visualization by Wavefront Reconstruction:
A Focal Stack Approach .. 1477
Biswajit Medhi, Vikas M. Shelar, G.M. Hegde, K.P.J. Reddy,
D. Roy, and R.M. Vasu

Shock Induced Flow Through a Pipegap .. 1481
S. Kapfudzaruwa, B.W. Skews, and R.T. Paton

Part XXV Numerical Methods

New Methods for Resolution Improvement in Simulations
on Subtle Structures Generated by Shock Waves 1489
Qin Li, Pengxin Liu, and Hanxin Zhang

H. Shen and C.Y. Wen

Development of an Unsteady Shock-Fitting Technique
for Unstructured Grids .. 1501
Aldo Bonfiglioli, Renato Paciorri, Lorenzo Campoli, Valentina De Amicis,
and Marcello Onofri

On the Propagation of Curved Shockwaves Using Geometric
Shock Dynamics ... 1505
Bright B. Ndebele, B.W. Skews, and R.T. Paton

Part XXVI Commercial Lecture

Engineering Tools for the Analysis of Penetration and Fragmentation 1513
T. Hartmann, E. Rottenkolber, and Arie Boimel

Author Index ... 1519

Subject Index ... 1525
Contributors

T. Abe Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan
Andrei Abramyan Laboratory of Hydroelasticity, Institute of Problems in Mechanical Engineering (IPME RAS), Saint Petersburg, Russia
Budovskii Alexey Flow Control Lab, Institute of Theoretical and Applied Mechanics (ITAM SB RAS), Novosibirsk, Russia
S. Amar Soreq NRC, Yavne, Israel
Valentina De Amicis Università degli Studi di Roma “La Sapienza”, Rome, Italy
K.K.N. Anbuselvan Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
N. Apazidis Department of Mechanics, KTH-Royal Institute of Technology, Stockholm, Sweden
Y. Arai Toyama Prefectural University, Toyama, Japan
Michel Arrigoni LBMS, ENSTA Bretagne, Brest, France
Zvi Assaf Plasan Ltd., M.P. Merom Hagalil, Israel
E. J. Avital School of Engineering and Materials Science, Queen Mary University of London, London, UK
Ramesh Babu Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
A. Vinod Yeldho Baby Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India
Department of Mechanical Engineering, Mar Athanasius College of Engineering, Kerala, India
G. Balakalyani Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
B. Barakhtin Central Institute of Constructional Materials “Prometei”, Saint-Petersburg, Russia
I.F. Barna Wigner Research Centre of the Hungarian Academy of Sciences, Budapest, Hungary
Yu Bayandin Institute of Continuous Media Mechanics, UB RAS, Perm, Russia
F.J. Beetge Armaments Corporation of South Africa Limited (Armscor), Pretoria, South Africa
Contributors

Pat Belancourt Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

R.T. Bello Aerodynamics Research Center, Mechanical and Aerospace Engineering Department, University of Texas at Arlington, Arlington, TX, USA

Gabi Ben-Dor Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Steven J. Beresh Sandia National Laboratories, Albuquerque, NM, USA

R. Bergman Shamoon College of Engineering, Beer Sheva, Israel

Upendra V. Bhandarkar Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India

Laurent Biamino CNRS, IUSTI UMR 7343, Aix-Marseille University, Marseille, France

Anuj Bisht Centre for Nanoscience and Engineering, Indian Institute of Science Bangalore, Bangalore, India

Arie Boimel Boimel Consulting, Petah-Tiqwa, Israel

Structural Engineering, Beersheba, Israel

Aldo Bonfiglioli Università degli Studi della Basilicata, Potenza, Italy

I. Boureima University of North Carolina at Charlotte, Charlotte, NC, USA

B. Ndebele Bright Flow Research Unit, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa

Benny Brosh Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

Manuel N. Bühler Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany

Lorenzo Campoli Università degli Studi di Roma “La Sapienza”, Rome, Italy

J.D. Carter Aerodynamics Research Center, Mechanical and Aerospace Engineering Department, University of Texas at Arlington, Arlington, TX, USA

Hui Chen Physics, Lawrence Livermore National Laboratory, Livermore, CA, USA

Z. Chen Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, China

M.V. Chernyshov Special Materials Corp., St. Petersburg, Russia

Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

W.C. Childs Department of Physical Science, Arkansas Tech University, Russellville, AR, USA

J. Chrzanowska Department of Strength Materials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland

G. Ciccarelli Queen’s University, Kingston, ON, Canada

Y.D. Cui Temasek Laboratories, National University of Singapore, Singapore, Singapore

N.A. Danilov Special Materials Corp., St. Petersburg, Russia

Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

Y. Dantsuka Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
Contributors

Itzhak David IDF—Israel Defense Force, Jerusalem, Israel
Eric Deletombe DADS, ONERA—The French Aerospace Lab, Palaiseau, France
E. DeMauro Sandia National Laboratory, Albuquerque, NM, USA
Brian H. Dennis Director of the Computational Fluid Dynamics Lab and Professor
Troy Dent Southwest Division, Albuquerque, NM, USA
A. Deshpande Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
A.D. Devir IARD Sensing Solutions LTD, Kibbutz Yagur, Israel
Felix Diegelmann Institute for Aerodynamics and Fluid Mechanics, Technische Universität München, Garching bei München, Germany
Juchun Ding Advanced Propulsion Laboratory, University of Science and Technology of China, Hefei, China
A. Divakov Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia
V. Ya. Dmitriev Special Materials Corp., St. Petersburg, Russia
O. Dodulad National Research Centre “Kurchatov Institute”, Moscow, Russia
Moscow Institute of Physics and Technology, Dolgoprudny, Russia
P. Doerffer Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
M.E.H. van Dongen Eindhoven University of Technology, MB Eindhoven, The Netherlands
R.P. Drake Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA
Oded Drori Plasan Ltd., M.P. Merom Hagalil, Israel
Nils C. Dröske Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany
Jacques Dupas DADS, ONERA—The French Aerospace Lab, Palaiseau, France
Veronica Eliasson Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
Department of Structural Engineering, University of California, San Diego, La Jolla, CA, USA
P. Farias Sandia National Laboratory, Albuquerque, NM, USA
Jeff Fein Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA
K. Ferguson Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
Felix J. Förster Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany
Thomas Fourest DADS, ONERA—The French Aerospace Lab, Palaiseau, France
LBMS, ENSTA Bretagne, Brest, France
M.A.L.J. Fransen Eindhoven University of Technology, MB Eindhoven, The Netherlands
K. Fujita Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan
Contributors

E. Gal Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

S. Gao LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, People’s Republic of China

W. Garen Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Constantiaplatz 4, Emden, Germany

C. Génin German Aerospace Center (DLR), Langer Grund, Lampoldshausen, Germany

P. Georgievskiy Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

D.E. Gildfind The School of Mechanical and Mining Engineering, The Centre for Hypersonics, The University of Queensland, Brisbane, QLD, Australia

Y. Gitterman Seismology Division, Geophysical Institute of Israel, Lod, Israel

F. Gnani School of Engineering, University of Glasgow, Glasgow, UK

P. Gnemmi French German Research Institute of Saint-Louis (ISL), Saint-Louis Cedex, France

Evgeny Gofman IDF—Israel Defense Force, Jerusalem, Israel

Guy Golan Plasan Ltd., M.P. Merom Hagalil, Israel

R.J. Gollan Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD, Australia

T. Gonai Department of Aerospace Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan

Olivia A. Graeve Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA

James R. Grisham Graduate Student

J. Gross University of Southern California, Los Angeles, CA, USA

B. Guan Department of Modern Mechanics, University of Science and Technology of China, Hefei, People’s Republic of China

E. Gubanov Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

Guifu Zhang Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China

K. Hannemann Institute of Aerodynamics and Flow Technology, Spacecraft Department, German Aerospace Center, DLR, Göttingen, Germany

T. Hartmann NUMERICS GmbH, Petershausen, Germany

Andrew Hazi Physics, Lawrence Livermore National Laboratory, Livermore, CA, USA

G.M. Hegde Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India

M. Hemmati Department of Physical Science, Arkansas Tech University, Russellville, AR, USA

John F. Henfling Sandia National Laboratories, Albuquerque, NM, USA

Stefan Hickel Faculty of Aerospace Engineering, TU Delft, HS Delft, The Netherlands
Contributors

K. Hirai IHI Aerospace Co. LTD, Fujiki, Tomioka, Japan
Eitan Hirsch Private Consultant, Netanya, Israel
Andrea M. Hodge Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
J. Hoffman Department of Strength Materials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland
R.S. Horn Department of Physical Science, Arkansas Tech University, Russellville, AR, USA
I. Horsfall Defence and Security, Cranfield University, Shrivenham, UK
Lazhar Houas Aix-Marseille University, CNRS, IUSTI UMR 7343, Marseille, France
J. Hrubý Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
T. Inage Salesian Polytechnic, Machida, Tokyo, Japan
D.A. Indeitsev Institute for Problems in Mechanical Engineering, St. Petersburg, Russia
Y. Ishida Japan Aerospace Exploration Agency, Jindaiji-Higashi-machi, Chofu, Japan
A. Iwakawa Department of Aerospace Engineering, Nagoya University, Nagoya, Japan
P.A. Jacobs Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia
J. Jacobs Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
G. Jagadeesh Department of Aerospace Engineering, Indian Institute of Science Bangalore, Bangalore, India
C.M. James The School of Mechanical and Mining Engineering, The Centre for Hypersonics, The University of Queensland, Brisbane, QLD, Australia
S. Janardhanraaj Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
Zhou Jiasui China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China
D.D. Joshi Aerodynamics Research Center, Mechanical and Aerospace Engineering Department, University of Texas at Arlington, Arlington, TX, USA
Georges Jourdan Aix-Marseille University, CNRS, IUSTI UMR 7343, Marseille, France
S.M. El Kabetz Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
Y. Kai Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Emden, Germany
Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
G.I. Kanel Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow, Russia
National Research Tomsk State University, Tomsk, Russia
S. Kapfudzaruwa Flow Research Unit, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa

S.K. Karthick Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Itzhak Kuchuk Katalan Plasan Ltd., M.P. Merom Hagalil, Israel

S. Kawabata Toyama Prefectural University, Toyama, Japan

Hai Kedar Mechanical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva, Israel

V. Kedrinskiy Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia

Paul Keiter Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

James P. Kelly Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA

R. Kersner Department of Mathematics, University of Pécs, Pécs, Hungary

Gauri R. Khanolkar Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA

Abhishek Khatta Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

B.C. Khoo Temasek Laboratories, National University of Singapore, Singapore, Singapore

K. Kitagawa Aichi Institute of Technology, Yakusa-cho, Toyota, Japan

Sallee Klein Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

Yu. Kloss National Research Centre “Kurchatov Institute”, Moscow, Russia

S. Koch Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Emden, Germany

E. Kochavi Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

T. Koita Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

G.V. Konovalov Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia

K. Kontis School of Engineering, University of Glasgow, Glasgow, Scotland, UK

Zhang Kouli China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China

V. Krivets Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA

Andrei Kuchmin Laboratory of Mechanics of Controlled Systems, Institute of Problems in Mechanical Engineering (IPME RAS), Saint-Petersburg, Russia
R. Kumar Indian Institute of Technology, Kanpur, UP, India
Chintoo S. Kumar Srushti Education Systems, Bangalore, India
Carolyn Kuranz Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA
V. Kuzavov Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia
Srinath Lakshman Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka, India
Jean-Marc Laurens LBMS, ENSTA Bretagne, Brest, France
G. Lazareva Lavrentyev Institute of Hydrodynamics, SB RAS, Novosibirsk, Russia
Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk, Russia
Y. Lefler Soreq NRC, Yavne, Israel
A.B. Lessin IARD Sensing Solutions LTD, Kibbutz Yagur, Israel
V. Levin Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
S. Levitsky Shamoon College of Engineering, Beer Sheva, Israel
R. Levy Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
Protective Technologies Research and Development Center, Ben-Gurion University of the Negev, Beersheba, Israel
S.W. Lewis The School of Mechanical and Mining Engineering, The Centre for Hypersonics, The University of Queensland, Brisbane, QLD, Australia
J. Li Temasek Laboratories, National University of Singapore, Singapore, Singapore
Qin Li State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, Sichuan, China
A. Likhachev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Kunwei Liu Department of Modern Mechanics, University of Science and Technology of China, Hefei, People’s Republic of China
Pengxin Liu State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, Sichuan, China
T.G. Liu LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, People’s Republic of China
M. Liverts Mechanics, KTH—Royal Institute of Technology, Stockholm, Sweden
Oren Lotan Technical Branch, Israeli Navy, Tel Aviv, Israel
F.K. Lu Director of Aerodynamics Research Center and Professor
Xisheng Luo Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
A.E. Lutsky Department of Physics, Moscow State University, Moscow, Russia
Xiaowei Ma China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China
Michael MacDonald Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

K. Maeno National Institute of Technology, Kisarazu College, Chiba, Japan

Tapan K. Mankodi Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India

Mario Manuel Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

Christian Mariani Aix-Marseille University, CNRS, IUSTI UMR 7343, Marseille, France

Ryo Maruyama School of Engineering, Tohoku University, Sendai, Japan

Anatoly Maslov Laboratory of Nonequilibrium Processes, Novosibirsk State University, Novosibirsk, Russia

S. Matsuyama Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan

Gedalya Mazor Mechanical Engineering Department, Shamoon College of Engineering, Beer Sheva, Israel

T.M. McIntyre The School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia

T. J. McIntyre Centre for Hypersonics, School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia

Biswajit Medhi Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India

S. Medin Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia

David J. Mee Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia

J. Melguizo-Gavilanes California Institute of Technology, Pasadena, CA, USA

I.A. Melnikov Special Materials Corp., St. Petersburg, Russia

Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

E. Mendel Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

Yu. Meshcheryakov Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia

B. Meyerer Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Emden, Germany

M. Miaymbo Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa

A.I. Mikhaylin Special Materials Corp., St. Petersburg, Russia

Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

Nilanjan Mitra Indian Institute of Technology, Kharagpur, India

R.G. Morgan The School of Mechanical and Mining Engineering, The Centre for Hypersonics, The University of Queensland, Brisbane, QLD, Australia

Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, Australia
T. Mościcki Department of Strength Materials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland

D. Mukundhan Indian Institute of Technology, Kanpur, UP, India

A. Munjiza School of Engineering and Materials Science, Queen Mary University of London, London, UK

I.V. Mursenkova Department of Physics, Moscow State University, Moscow, Russia

T. M. Muruganandam Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India

K. Nagano Toyama Prefectural University, Toyama, Japan
Sato Tekko Co., Ltd., Toyama, Japan

K. Nagashetty Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

O. Naimark Institute of Continuous Media Mechanics UB RAS, Perm, Russia

T. Nakamura Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

H. Nakazawa Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan

Charles Needham Southwest Division, Albuquerque, NM, USA

Dmitry Nemirovsky Physics Department, Shamoon College of Engineering, Beer Sheva, Israel

W. Neu Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Emden, Germany

S. Nishimura Shizuoka University, Shizuoka, Japan

E. Nof Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

S. Obayashi Institute of Fluid Science, Tohoku University, Sendai, Japan

H. Olivier Shock Wave Laboratory, Aachen, Germany

Marcello Onofri Università degli Studi di Roma “La Sapienza”, Rome, Italy

David Ornai Department of Structural Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Protective Technologies Research and Development Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel

M. Ota Chiba University, Chiba, Japan

S. Owada Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Renato Paciorri Università degli Studi di Roma “La Sapienza”, Rome, Italy

A. S. Pankov Special Materials Corp., St. Petersburg, Russia
Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

Jaebum Park Physics, Lawrence Livermore National Laboratory, Livermore, CA, USA

Y. Partom Rafael, Haifa, Israel
R.T. Paton Flow Research Unit, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa

Allan Paull Applied Hypersonics Branch, Defence Science and Technology Organisation, Brisbane, QLD, Australia

J.T. Peace Aerodynamics Research Center, Mechanical and Aerospace Engineering Department, University of Texas at Arlington, Arlington, TX, USA

O. Penyazkov A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus

N. Petrov Computational Physics Laboratory, Ioffe Institute, St. Petersburg, Russia

S. Pham Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

D. Plant General Fusion Inc., Burnaby, BC, Canada

Pavel Polivanov Laboratory of Nonequilibrium Processes, Novosibirsk State University, Novosibirsk, Russia

P.A. Polivanov Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia

Brad Pollock Physics, Lawrence Livermore National Laboratory, Livermore, CA, USA

Brian O. M. Pruett Sandia National Laboratory, Albuquerque, NM, USA

Bhalchandra P. Puranik Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Mumbai, India

E.A. Pushkar Moscow State University of Mechanical Engineering (MAMI), Moscow, Russia

Shi Qiu Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA

B. Rajesh G. Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India

O. Ram Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

P. Ramaprabhu University of North Carolina at Charlotte, Charlotte, NC, USA

Eylam Ran Plasan Ltd., M.P. Merom Hagalil, Israel

Paton Randall Flow Research Unit, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa

M.V. Srisha Rao Department of Mechanical, Aerospace and Materials Engineering, Muroran Institute of Technology, Muroran, Japan

Alex Rasmus Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

M.P. Ray Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India

Amos Raz Elbit Systems LTD, Haifa, Israel

S.V. Razorenov National Research Tomsk State University, Tomsk, Russia

Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russia
K.P.J. Reddy Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Daniel Reese University of Wisconsin, Madison, WI, USA
Lawrence Livermore National Laboratory, Livermore, CA, USA

J.D. Reinecke Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa

C. Rey French German Research Institute of Saint-Louis (ISL), Saint-Louis Cedex, France

Kong Rongzong China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China

E. Rottenkolber NUMERICS GmbH, Petershausen, Germany

D. Roy Department of Civil Engineering, Indian Institute of Science, Bangalore, India

Tian Runyu China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China

Oren Sadot Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

Lippe D. Sadwin Sadwin Engineering Consultancy, Kefar Pines, Israel

T. Sakai Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan

Y. Sakamura Toyama Prefectural University, Toyama, Japan

I. Obed Samuelraj Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

A. Sasoh Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

N. Saveleva Institute of Continuous Media Mechanics, Perm, Russia

A.S. Savinykh National Research Tomsk State University, Tomsk, Russia
Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russia

A. Schmidt Computational Physics Laboratory, Ioffe Institute, St. Petersburg, Russia

S. Sembian Mechanics, KTH—Royal Institute of Technology, Stockholm, Sweden

Roman Shapiro Elbit Systems LTD, Haifa, Israel

N. Sharath Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

U.A. Sheikh Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD, Australia
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Vikas M. Sheler Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

H. Shen The Hong Kong Polytechnic University, Kowloon, Hong Kong

J.E. Shepherd California Institute of Technology, Pasadena, CA, USA
Xiaofeng Shi Department of Modern Mechanics, University of Science and Technology of China, Heifei, People’s Republic of China

V.N. Shishkin Special Materials Corp., St. Petersburg, Russia
Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

T. Shoda Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

I.M. Shohet Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheva, Israel
Protective Technologies Research and Development Center, Ben-Gurion University of the Negev, Beersheva, Israel

H.S. Shojaei Department of Physical Science, Arkansas Tech University, Russellville, AR, USA

Ting Si Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China

D. Sidilkover Soreq NRC, Yavne, Israel
Andrey Sidorenko Laboratory of Nonequilibrium Processes, Novosibirsk State University, Novosibirsk, Russia

M.V. Silnikov Special Materials Corp., St. Petersburg, Russia
Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, Russia

B.W. Skews Flow Research Unit, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa

A. Skilandz A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus

D. Yu. Skubov St. Petersburg Polytechnic University, St. Petersburg, Russia

A.M. Slowicka Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland

A.M. Slowicka Department of Fluid Mechanics, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland

Michael K. Smart Applied Hypersonics Branch, Defence Science and Technology Organisation, Brisbane, QLD, Australia

D.M. J. Smeulders Eindhoven University of Technology, MB Eindhoven, The Netherlands

Denis Souffland CEA-DAM, DIF, Arpajon, France

Russell W. Spillers Sandia National Laboratories, Albuquerque, NM, USA

A.I. Spivak Special Materials Corp., St. Petersburg, Russia

R. Sriram Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka, India

R. Stark German Aerospace Center (DLR), Langer Grund, Lampoldshausen, Germany

M. Sun Institute of Fluid Science, Tohoku University, Sendai, Japan

X. Sun Aerospace System Engineering, Shanghai, China

Dong Sun State Key Laboratory of Aerodynamics, Mianyang, Sichuan, China

V. Suponitsky General Fusion Inc., Burnaby, BC, Canada
Contributors

O. Sutyrin Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

Satyam Suwas Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore, India

Michael M. Swisdak APT Research Inc., Huntsville, AL, USA

R. Szwaba Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland

K. Takayama Emeritus Tohoku University, Sendai, Japan

H. Takayanagi Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan

T. Tamba Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

Jiang Tao China Aerodynamics Research and Development Center, Hypervelocity Aerodynamics Institute, Mianyang, China

F. Tcheremissine Dorodnicyn Computer Centre of RAS, Moscow, Russia

U. Teubner Hochschule Emden/Leer, Institute for Laser and Optics, University of Applied Sciences, Emden, Germany

Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

J. Thomas Flow Research Unit, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa

N. Tillmark Mechanics, KTH—Royal Institute of Technology, Stockholm, Sweden

Maxim Teitel IDF—Israel Defense Force, Jerusalem, Israel

Matt Trantham Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

Volkert Tritschler Institute for Aerodynamics and Fluid Mechanics, Technische Universität München, Garching bei München, Germany

H. Tsuruta Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

Uri Tzadka Civil Engineering Department, Shamoon College of Engineering, Beer Sheva, Israel

S. Udagawa Tokyo Metropolitan College of Industrial Technology, Tokyo, Japan

T. Ukai Institute of Fluid Science, Tohoku University, Sendai, Japan

S. Vaintraub Soreq NRC, Yavne, Israel

S. Vaisakh Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India

Marc Vandenboomgaerde CEA-DAM, DIF, Arpajon, France

N.N. Vasilyev Special Materials Corp., St. Petersburg, Russia

R.M. Vasu Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India

D.S. Vavilov Institute for Problems in Mechanical Engineering, St. Petersburg, Russia

A. Vaynshtein IARD Sensing Solutions LTD, Kibbutz Yagur, Israel

Justin L. Wagner Sandia National Laboratories, Albuquerque, NM, USA

Z.A. Walenta Department of Fluid Mechanics, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland
Contributors

Minghu Wang Advanced Propulsion Laboratory, University of Science and Technology of China, Hefei, China

Xiansheng Wang High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, China

Z. Wang Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

B. Wang Department of Aerospace Engineering, Nagoya University, Nagoya, Japan

Chris Weber Lawrence Livermore National Laboratory, Livermore, CA, USA

H. Wei Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD, Australia

Bernhard Weigand Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany

A. Weiss DLR Space Administration, Bonn, Germany

C.Y. Wen The Hong Kong Polytechnic University, Kowloon, Hong Kong

Jackson Williams Physics, Lawrence Livermore National Laboratory, Livermore, CA, USA

Suthee Wiri Southwest Division, Albuquerque, NM, USA

Thomas Wofford Southwest Division, Albuquerque, NM, USA

Jens von Wolfersdorf Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany

Yingchuan Wu State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, People’s Republic of China

L. Yaloz Department of Structural Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

K. Yamada Japan Aerospace Exploration Agency, Chofu, Tokyo, Japan

Jiming Yang Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China

Dangguo Yang High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang, China

Xiangyu Yi Department of Modern Mechanics, University of Science and Technology of China, Hefei, China

Rachel Young Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

H. Zare-Behtash School of Engineering, University of Glasgow, Glasgow, Scotland, UK

David E. Zeitoun Aix Marseille University, Polytech Marseille, IUSTI/UMR CNRS 6595, Marseille, France

Zhigang Zhai Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China

Dongwen Zhan Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China

Fu Zhang Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
Hanxin Zhang State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, Sichuan, China

Z.J. Zhao Temasek Laboratories, National University of Singapore, Singapore, Singapore

C. Zheng Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, China

J.G. Zheng Temasek Laboratories, National University of Singapore, Singapore, Singapore

N.I. Zhigacheva Institute of Problems of Mechanical Engineering RAS, Saint-Petersburg, Russia

Yujian Zhu Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China

Alex Zlatkis IDF—Israel Defense Force, Jerusalem, Israel

I.A. Znamenskaya Department of Physics, Moscow State University, Moscow, Russia