More information about this series at http://www.springer.com/series/7407
Combinatorial Algorithms

27th International Workshop, IWOCA 2016
Helsinki, Finland, August 17–19, 2016
Proceedings
This volume contains revised versions of papers presented at the 27th International Workshop on Combinatorial Algorithms (IWOCA 2016), held August 17–19, 2016, in Helsinki, Finland.

IWOCA 2016 continued a long and well-established tradition of encouraging high-quality research in theoretical computer science, providing an opportunity to bring together specialists and young researchers working in the area. The IWOCA conference series grew out of a 17-year history of the Australasian Workshop on Combinatorial Algorithms (AWOCA). Previous AWOCA and IWOCA meetings have been held in Australia, Indonesia, South Korea, Japan, Czech Republic, Canada, UK, India, France, the USA, and Italy.

We solicited papers in the broad area of combinatorial algorithms. The Program Committee decided to accept 35 papers, out of a total of 87 submissions. Each submission received at least three reviews. Papers were submitted and reviewed using the EasyChair online system. Authors of accepted papers come from 21 countries, across three continents (Asia, Europe, North America).

The scientific program included three invited lectures, given by:

- Leslie Anne Goldberg on “Approximately Counting list H-Colourings”
- Giuseppe F. Italiano on “2-Connectivity Problems in Directed Graphs”
- Petteri Kaski on “Polynomial Representations in Algorithm Design”

We thank the invited speakers for accepting our invitation and for their excellent presentations at the conference. The program also included an open problem session, chaired by Gabriele Fici. The open problems presented can be found at the open problem collection of IWOCA at http://iwoca.org. This year for the second year running, IWOCA had a Best Student Paper Award, sponsored by the European Association for Theoretical Computer Science (EATCS). It was decided to assign this award to the paper “Online Chromatic Number Is PSPACE-Complete” by Martin Böhm and Pavel Veselý.

We thank all authors who submitted their work for consideration to IWOCA 2016. We wish to thank the Program Committee and the external reviewers, whose many thorough reviews helped us select the papers presented. The success of the scientific program is due to their hard work. We also thank the EATCS (European Association for Theoretical Computer Science), Federation of Finnish Learned Societies, and the Helsinki Institute for Information Technology for their support of the conference.

IWOCA 2016 was organized by the Department of Computer Science of the University of Helsinki, whose administrative and financial support we gratefully acknowledge.

August 2016

Simon Puglisi
Velis Mäkinen
Leena Salmela
Organization

Steering Committee

Costas S. Iliopoulos
King’s College London

William F. Smyth
McMaster University

Program Committee

Golnaz Badkobeh
University of Warwick, UK

Hideo Bannai
Kyushu University, Japan

Petra Berenbrink
Simon Fraser University, Canada

Christina Boucher
Colorado State University, USA

Charles Colbourn
Arizona State University, USA

Vida Dujmovic
University of Ottawa, Canada

Gabriele Fici
University of Palermo, Italy

Travis Gagie
University of Helsinki, Finland

Roberto Grossi
University of Pisa, Italy

Pinar Heggernes
University of Bergen, Norway

Seokhee Hong
University of Sydney, Australia

Costas Iliopoulos
King’s College London, UK

Jesper Jansson
Kyoto University, Japan

Telikepalli Kavitha
Tata Institute of Fundamental Research, Mumbai, India

Ralf Klasing
CNRS, France

Christian Komusiewicz
Friedrich-Schiller-Universität Jena, Germany

Jan Kratochvíl
Charles University, Czech Republic

Daniela Kühn
Birmingham University, UK

Zsuzsanna Lipták
University of Verona, Italy

Martin Milanič
University of Primorska, Slovenia

Petra Mutzel
University of Dortmund, Germany

Veli Mäkinen (Co-chair)
University of Helsinki, Finland

Christophe Paul
CNRS, France

Solon Pissis
King’s College London, UK

Simon Pugliisi (Co-chair)
University of Helsinki, Finland

Oliver Schaudt
Universität zu Köln, Germany

Michiel Smid
Carleton University, Canada

Tatiana Starikovskaya
University of Bristol, UK

Jukka Suomela
Aalto University, Finland

Alexandru Tomescu
University of Helsinki, Finland

Przemysław Uznański
ETH Zurich, Switzerland

Stéphane Vialette
CNRS, France
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Oren Weimann University of Haifa, Israel
Sue Whitesides University of Victoria, Canada
Christos Zaroliagis University of Patras, Greece

Organizing Committee

Leena Salmela, chair University of Helsinki, Finland
Veli Mäkinen University of Helsinki, Finland
Simon J. Puglisi University of Helsinki, Finland
Alexandru Tomescu University of Helsinki, Finland
Daniel Valenzuela University of Helsinki, Finland

Student Volunteers

Jarno Alanko University of Helsinki, Finland
Riku Walve University of Helsinki, Finland
Bella Zhukova University of Helsinki, Finland

Additional Reviewers

Ásgeirsson, Eyjólfur Ingi Bökler, Fritz
Ahn, Hee-Kap Cicalese, Ferdinando
Amani, Mahdi Courcelle, Bruno
Angelini, Patrizio Cucu-Grosjean, Liliana
dx Carvalho, Marcelo Henriques
Axtmann, Michael Dittmann, Christoph
Bampas, Evangelos Droschinsky, Andre
Barbero, Florian Ekim, Tinaz
Baum, Moritz Faro, Simone
Bergamini, Elisabetta Fertin, Guillaume
Bevern, René Van Fountoulakis, Nikolaos
Bhattacharya, Pritam Frig, Anna
Blanchet-Sadri, Francine Friedetzky, Tom
Boeckenhauer, Hans-Joachim Gawrychowski, Pawel
Bonomo, Flavia Graf, Daniel
Bosman, Thomas Guay-Paquet, Mathieu
Bougeret, Marin Gudmundsson, Joachim
Bousquet, Nicolas Hamann, Michael
Brandstädt, Andreas Harutyunyan, Hovhannes
Brankovic, Ljiljana Hermelin, Danny
Brettell, Nick Huang, Chien-Chung
Bryant, Randal Inenaga, Shunsuke
Burcsi, Péter Islam, A.S.M. Sohidull
Bärtschi, Andreas Iwata, Yoichi
VIII Organization

Kavitha, Telikepalli
Kling, Peter
Koivisto, Mikko
Kudahl, Christian
Kumar, Mithilesh
Kundu, Ritu
Lampis, Michael
Larsen, Kasper Green
Lecroq, Thierry
Liedloff, Mathieu
Lo, Allan
Luosto, Kerkko
Mallmann-Trenn, Frederik
Manea, Florin
Marino, Andrea
Matijevic, Domagoj
Megow, Nicole
Mercas, Robert
Mertzios, George
Michail, Othon
Morin, Pat
Moseley, Benjamin
Mouawad, Amer
<table>
<thead>
<tr>
<th>Mozes, Shay</th>
<th>Popa, Alexandru</th>
<th>Sorge, Manuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustafa, Nabil</td>
<td>Previtali, Marco</td>
<td>Stewart, Loma</td>
</tr>
<tr>
<td>Mycroft, Richard</td>
<td>Prutkin, Roman</td>
<td>Storanrdt, Sabine</td>
</tr>
<tr>
<td>Mydlarz, Marcelo</td>
<td>Rajendraprasad, Deepak</td>
<td>Strasser, Ben</td>
</tr>
<tr>
<td>Mömke, Tobias</td>
<td>Rampersad, Narad</td>
<td>Stuckey, Peter J.</td>
</tr>
<tr>
<td>Nakashima, Yuto</td>
<td>Rapaport, Ivan</td>
<td>Takes, Frank</td>
</tr>
<tr>
<td>Nichterlein, André</td>
<td>Raymond, Jean-Florent</td>
<td>Thomas, Robin</td>
</tr>
<tr>
<td>Niedermann, Benjamin</td>
<td>Rizzi, Romeo</td>
<td>Tiskin, Alexander</td>
</tr>
<tr>
<td>Noellenburg, Martin</td>
<td>Rusu, Irena</td>
<td>Treglown, Andrew</td>
</tr>
<tr>
<td>Pajak, Dominik</td>
<td>Sanita, Laura</td>
<td>Uchizawa, Kei</td>
</tr>
<tr>
<td>Patel, Viresh</td>
<td>Sau, Ignasi</td>
<td>Valicov, Petru</td>
</tr>
<tr>
<td>Paterson, Mike</td>
<td>Sawada, Joe</td>
<td>Versari, Luca</td>
</tr>
<tr>
<td>Perarnau, Guillem</td>
<td>Seki, Shinnosuke</td>
<td>Wang, Haitao</td>
</tr>
<tr>
<td>Perkins, Will</td>
<td>Shur, Arseny</td>
<td>Zhang, Jingru</td>
</tr>
<tr>
<td>Pirola, Yuri</td>
<td>Sikora, Florian</td>
<td>Zhang, Peng</td>
</tr>
</tbody>
</table>
Abstracts of Invited Talks
An H-colouring of a graph G is a homomorphism from G to H (a map from the vertices of G to the vertices of H that maps edges of G to edges of H). The “classification programme” in computational complexity aims to classify graphs H according to the difficulty of algorithmic problems, for example, the problem of constructing a homomorphism from an input graph G to H, or the problem of counting homomorphisms from G to H or (more recently) the problem of approximately counting these homomorphisms. I will explain the classifications that are known, focussing especially on “list H-colouring,” which generalises H-colouring in the same way that “list colouring” generalises ordinary (proper) vertex colouring. We still don’t know a complete classification for approximately counting H-colourings, but for approximately counting list H-colourings, there is more progress. Here it turns out that there is a trichotomy in the approximation complexity, based on hereditary graph classes. The talk will describe joint work with Andreas Galanis and Mark Jerrum.
We survey some recent results on 2-edge and 2-vertex connectivity problems in directed graphs. Despite being complete analogs of the corresponding notions on undirected graphs, in digraphs 2-vertex and 2-edge connectivity have a much richer and more complicated structure. It is thus not surprising that 2-connectivity problems on directed graphs appear to be more difficult than on undirected graphs. For undirected graphs it has been known for over 40 years how to compute all bridges, articulation points, 2-edge- and 2-vertex-connected components in linear time, by simply using depth first search. In the case of digraphs, however, the very same problems have been much more challenging and have been tackled only recently.
Currently the asymptotically fastest known algorithm designs for a number of \textit{a priori} purely combinatorial problems are based on algebraic techniques. This talk gives a brief survey on the use of polynomials and implicit polynomial representations in such designs. We start by recalling some of the classics and proceed towards recent multivariate polynomial sieving and batch evaluation frameworks that yield the state of the art for a range of problems including k-clique counting, graph coloring, Hamiltonian path, motif search, and so forth. Designs based on polynomials not only can give the fastest known and often embarrassingly parallel algorithms, the polynomial representation in itself may serve as a \textit{proof} that the computation was correctly executed.
Contents

Computational Complexity

On the Complexity of Computing Treebreadth 3
 Guillaume Ducoffe, Sylvain Legay, and Nicolas Nisse

Online Chromatic Number is PSPACE-Complete 16
 Martin Böhm and Pavel Veselý

Computational Geometry

Bounded Embeddings of Graphs in the Plane 31
 Radoslav Fulek

Crushing Disks Efficiently ... 43
 Stefan Funke, Filip Krumpe, and Sabine Storandt

Essential Constraints of Edge-Constrained Proximity Graphs 55
 Prosenjit Bose, Jean-Lou De Carufel, Alina Shaikhet, and Michiel Smid

Plane Bichromatic Trees of Low Degree .. 68
 Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel Smid

Networks

Directing Road Networks by Listing Strong Orientations 83
 Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, and Luca Versari

Evangelism in Social Networks ... 96
 Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro

Distance Queries in Large-Scale Fully Dynamic Complex Networks 109
 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni

Minimax Regret 1-Median Problem in Dynamic Path Networks 122
 Yuya Higashikawa, Siu-Wing Cheng, Tsunehiko Kameda, Naoki Katoh, and Shun Saburi
Enumeration

On Maximal Chain Subgraphs and Covers of Bipartite Graphs 137
Tiziana Calamoneri, Mattia Gastaldello, Arnaud Mary, Marie-France Sagot, and Blerina Sinaimeri

Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations 151
Max A. Alekseyev

Reconfiguration of Steiner Trees in an Unweighted Graph 163
Haruka Mizuta, Takehiro Ito, and Xiao Zhou

Online Algorithms

Weighted Online Problems with Advice ... 179
Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen

Finding Gapped Palindromes Online .. 191
Yuta Fujishige, Michitaro Nakamura, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Advice Complexity of the Online Search Problem ... 203
Jhoirene Clemente, Juraj Hromkočič, Dennis Komm, and Christian Kudahl

Packed Compact Tries: A Fast and Efficient Data Structure for Online String Processing ... 213
Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura

Algorithmic Graph Theory

A Boundary Property for Upper Domination .. 229
Hassan AbouEisha, Shahid Hussain, Vadim Lozin, Jérôme Monnot, Bernard Ries, and Viktor Zamaraev

Upper Domination: Complexity and Approximation .. 241
Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos

Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes 253
Konrad K. Dabrowski, Vadim V. Lozin, and Daniël Paulusma
Sufficient Conditions for Tuza’s Conjecture on Packing and Covering Triangles

Xujin Chen, Zhuo Diao, Xiaodong Hu, and Zhongzheng Tang

Dynamic Programming

Linear Time Algorithms for Happy Vertex Coloring Problems for Trees

N.R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare

Speeding up Dynamic Programming in the Line-Constrained k-median

Pawel Gawrychowski and Lukasz Zatorski

Combinatorial Algorithms

SOBRA - Shielding Optimization for BRAcbytherpay

Guillaume Blin, Marie Gasparoux, Sebastian Ordyniak, and Alexandru Popa

A Bit-Scaling Algorithm for Integer Feasibility in UTVPI Constraints

K. Subramani and Piotr Wojciechowski

Limit of Greedy Approximation Algorithms for the Maximum Planar Subgraph Problem

Markus Chimani, Ivo Hedtke, and Tilo Wiedera

Exact Algorithms for Weighted Coloring in Special Classes of Tree and Cactus Graphs

Robert Benkoczi, Ram Dahal, and Daya Ram Gaur

Graph Algorithms

Finding Cactus Roots in Polynomial Time

Petr A. Golovach, Dieter Kratsch, Daniël Paulusma, and Anthony Stewart

Computing Giant Graph Diameters

Peter Damaschke

Faster Computation of Path-Width

Martin Furer

The Solution Space of Sorting with Recurring Comparison Faults

Peter Damaschke
Combinatorics

Monotone Paths in Geometric Triangulations 411
 Adrian Dumitrescu, Ritankar Mandal, and Csaba D. Tóth

On Computing the Total Displacement Number via Weighted Motzkin Paths ... 423
 Andreas Bärtschi, Barbara Geissmann, Daniel Graf, Tomas Hruž,
 Paolo Penna, and Thomas Tschager

Probabilistics

Partial Covering Arrays: Algorithms and Asymptotics 437
 Kaushik Sarkar, Charles J. Colbourn, Annalisa de Bonis,
 and Ugo Vaccaro

Querying Probabilistic Neighborhoods in Spatial Data Sets Efficiently 449
 Moritz von Looz and Henning Meyerhenke

Author Index ... 461