Lecture Notes in Artificial Intelligence 9793

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
 University of Alberta, Edmonton, Canada

Yuzuru Tanaka
 Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
 DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
 DFKI and Saarland University, Saarbrücken, Germany
Preface

These proceedings contain the papers presented at Living Machines: The 5th International Conference on Biomimetic and Biohybrid Systems, held in Edinburgh, UK, during July 19–22, 2016. The international conferences in the Living Machines series are targeted at the intersection of research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems. The conference aim is to highlight the most exciting international research in both of these fields united by the theme of “Living Machines.”

Biomimetics is the development of novel technologies through the distillation of principles from the study of biological systems. The investigation of biomimetic systems can serve two complementary goals. First, a suitably designed and configured biomimetic artifact can be used to test theories about the natural system of interest. Second, biomimetic technologies can provide useful, elegant, and efficient solutions to unsolved challenges in science and engineering. Biohybrid systems are formed by combining at least one biological component—an existing living system—and at least one artificial, newly engineered component. By passing information in one or both directions, such a system forms a new hybrid bio-artificial entity. The theme of the conference also encompasses biomimetic methods for manufacture, repair, and recycling inspired by natural processes such as reproduction, digestion, morphogenesis, and metamorphosis.

The following are some examples of living machines as featured at this and past conferences:

- Biomimetic robots and their component technologies (sensors, actuators, processors) that can intelligently interact with their environments
- Active biomimetic materials and structures that self-organize and self-repair
- Nature-inspired designs and manufacturing processes
- Biomimetic computers—neuromimetic emulations of the physiological basis for intelligent behavior
- Biohybrid brain–machine interfaces and neural implants
- Artificial organs and body parts including sensory organ–chip hybrids and intelligent prostheses
- Organism-level biohybrids such as robot–animal or robot–human systems

Five hundred years ago, Leonardo da Vinci designed a series of flying machines based on the wings of birds. These drawings are famous for their beautiful, lifelike designs, created centuries before the Wright brothers made their first flight. This inspiration from nature that Leonardo pioneered remains as crucial for technology today as it was many centuries ago.
Leonardo’s inspiration was to imitate a successful biological design to solve a scientific problem. Today, this subject area is known as biomimetics. The American inventor Otto Schmitt first coined this term in the 1950s while trying to copy how nerve cells function in an artificial device. He put together the Greek words bios (life) and mimetic (copy) and the name caught on.

Why is nature so good at finding solutions to technological problems? The answer lies in Charles Darwin’s theory of evolution. Life, by the process of natural selection, is a self-improving phenomenon that continually reinvents itself to solve problems in the natural world. These improvements have accumulated over hundreds of millions of years in plants and animals. As a result, there are a myriad natural design solutions around us, from the wings of insects and birds to the brains controlling our bodies.

Biomimetics and bio-inspiration has always been present in human technology, for example, making knives akin to the claws of animals. An exciting development, however, has been the dramatic expansion of the biomimetic sciences in the new millennium. The Convergent Science Network (CSN) of biomimetic and biohybrid systems, which organized the first Living Machines conference, has also completed a survey on *The State of the Art in Biomimetics* (Lepora, Verschure and Prescott, 2013). As part of the survey, we counted how much work on biomimetics is published each year. This revealed a surprising answer: from only tens of articles before the millennium, it has exploded since then to more than a thousand papers each year.

This huge investment in research inspired by nature is producing a wide variety of innovative technologies. Examples include artificial spider silk that is stronger than steel, super-tough synthetic materials based on the shells of molluscs, and adhesive patches mimicking the padded feet of geckos. Medical biomimetics is also leading to important benefits for maintaining health. These include bionic cochlear implants for hearing, fully functional artificial hearts, and modern prosthetic hands and limbs aimed at repairing the human body.

Looking to the future, one of the most revolutionary applications of biomimetics will likely be based on nature’s most sophisticated creation: our brains. From our survey of biomimetic articles, we found that a main research theme is to take inspiration from how our brains control our bodies to design better ways of controlling robots. This is for a good reason. Engineers can build amazing robots that have seemingly human-like abilities. But so far, no existing robot comes close to copying the dexterity and adaptability of animal movements. The missing link is the controlling brain.

It is often said that future scientific discoveries are hard to predict. This is not the case in biomimetics. There are plenty of examples surrounding us in the natural world. The future will produce artificial devices with these abilities, from mass-produced flying micro devices based on insects to robotic manipulators based on the human hand to swimming robots based on fish. Less certain is what they will do to our society, economy, and way of life. Therefore the Living Machines conference also seeks to anticipate and understand the impacts of these technologies before they happen.

The main conference, during July 20–22, took the form of a three-day single-track oral and poster presentation program that included five plenary lectures from leading
international researchers in biomimetic and biohybrid systems: Antonio Bicchi (University of Pisa) on robotics, haptics, and control systems; Frank Hirth (Kings College London, Institute of Psychiatry) on evolutionary neuroscience; Yoskiko Nakamura (University of Tokyo) on biomimetics in humanoids; Thomas Speck (Albert-Ludwigs-Universität, Freiburg) on plants and animals as concept generators for biomimetic materials and technologies; and Barbara Webb (University of Edinburgh) on perceptual systems and the control of behavior in insects and robots. There were also 20 regular talks and a poster session featuring approximately 40 posters. Session themes included: biomimetic robotics; biohybrid systems including biological-machine interfaces; neuromimetic systems; soft robot systems; active sensing in vision and touch; social robotics and the biomimetics of plants.

The conference was complemented with a further day of workshops and symposia, on July 19, covering a range of topics related to biomimetic and biohybrid systems: Our Future with Living Machines: Societal, Economic, and Ecological Impacts (Jose Halloy and Tony Prescott); Living Machines That Grow, Evolve, Self-Heal and Develop: How Robots Adapt Their Morphology to the Environment (Barbara Mazzolai and Cecilia Laschi); and The Emergence of Biological Architectures (Enrico Mastropaolo, Naomi Nakayama, Rowan Muir, Ross McLean, Cathal Cummins).

The main meeting was hosted at Edinburgh’s Dynamic Earth, a five-star visitor attraction in the heart of Edinburgh’s historic old town, next to the Scottish Parliament and Holyrood Palace. Dynamic Earth is a visitor experience that invites you to take a journey through time to witness the story of planet Earth through a series of interactive exhibits and state-of-the-art technology. Satellite events were held nearby at University of Edinburgh’s School of Informatics in George Square. The Dynamics Earth experience, with its seamless integration of nature and technology, provided an ideal setting to host the 5th Living Machines Conference.

We wish to thank the many people that were involved in making LM2016 possible: Tony Prescott and Marc Desmulliez co-chaired the meeting; Nathan Lepora chaired the Program Committee and edited the conference proceedings; Paul Verschure chaired the international Steering Committee; Michael Mangan and Anna Mura co-chaired the workshop program; Anna Mura and Nathan Lepora co-organized the communications; Sytse Wierenga, Carme Buisan, and Mireia Mora provided additional administrative and technical support including organizing the website; and Katarzyna Przycbicen and Lynn Smith provided administrative and local organizational support. We would also like to thank the authors and speakers who contributed their work, and the members of the Programme Committee for their detailed and considered reviews. We are grateful to the five keynote speakers who shared with us their vision of the future.

Finally, we wish to thank the sponsors of LM2016: The Convergence Science Network for Biomimetic and Neurotechnology (CSNII) (ICT-601167), which is funded by the European Union’s Framework 7 (FP7) program in the area of Future Emerging Technologies (FET), and Heriot Watt University in Edinburgh, UK. Additional support was also provided by the University of Sheffield, the University of Bristol, the University of Pompeu Fabra in Barcelona, and the Institució Catalana de
Recerca i Estudis Avançats (ICREA). LM2016 was supported via a Santander Mobility Grant. Living Machines 2016 was also supported by the IOP Physics journal *Bioinspiration & Biomimetics*, who will publish a special issue of articles based on the best conference papers.

July 2016

Nathan F. Lepora
Anna Mura
Michael Mangan
Paul F.M.J. Verschure
Marc Desmulliez
Tony J. Prescott
Organization

Conference Chairs
Marc Desmulliez Heriot Watt University, UK
Tony Prescott University of Sheffield, UK

Program Chair
Nathan Lepora University of Bristol, UK

Satellite Events Chairs
Michael Mangan Lincoln University, UK
Anna Mura Universitat Pompeu Fabra, Spain

International Steering Committee Chair
Paul Verschure Universitat Pompeu Fabra and ICREA, Spain

Communications Chairs
Anna Mura Universitat Pompeu Fabra, Spain
Nathan Lepora University of Bristol, UK

Technical Support
Katarzyna Przybcien Heriot Watt University, UK
Lynn Smith Heriot Watt University, UK
Carme Buisan Universitat Pompeu Fabra, Spain
Mireia Mora Universitat Pompeu Fabra, Spain
Sytse Wierenga Universitat Pompeu Fabra, Spain

Program Committee
Andrew Adamatzky UWE, Bristol, UK
Robert Allen University of Southampton, UK
Josef Bar-Cohen JPL, USA
Federico Carpi Queen Mary University of London, UK
Anders Christensen University Institute of Lisbon, Portugal
Frederik Claeyssens University of Sheffield, UK
Andrew Conn University of Bristol, UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorg Conradt</td>
<td>TU München, Germany</td>
</tr>
<tr>
<td>Holk Cruse</td>
<td>University Bielefeld, Germany</td>
</tr>
<tr>
<td>Mark Cutkosky</td>
<td>Stanford University, USA</td>
</tr>
<tr>
<td>Danilo De Rossi</td>
<td>Research Centre E. Piaggio, Italy</td>
</tr>
<tr>
<td>Marc Desmulliez</td>
<td>Heriot Watt University, UK</td>
</tr>
<tr>
<td>Sanja Dogramadzi</td>
<td>University of the West of England, UK</td>
</tr>
<tr>
<td>Stéphane Doncieux</td>
<td>ISIR, France</td>
</tr>
<tr>
<td>Volker Dürr</td>
<td>Bielefeld University, Germany</td>
</tr>
<tr>
<td>Wolfgang Eberle</td>
<td>Imec, Belgium</td>
</tr>
<tr>
<td>Maria Elena Giannaccini</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Benoît Girard</td>
<td>CNRS and UPMC, France</td>
</tr>
<tr>
<td>Sabine Hauert</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Helmut Hauser</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Ivan Herrera</td>
<td>Universitat Pompeu Fabra, Spain</td>
</tr>
<tr>
<td>Koh Hosoda</td>
<td>Osaka University, Japan</td>
</tr>
<tr>
<td>Ioannis Ieropoulos</td>
<td>University of the West of England, UK</td>
</tr>
<tr>
<td>Cecilia Laschi</td>
<td>Scuola Superiore Sant’Anna, Italy</td>
</tr>
<tr>
<td>Nathan Lepora</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Michael Mangan</td>
<td>Lincoln University, UK</td>
</tr>
<tr>
<td>Uriel Martinez-Hernandez</td>
<td>University of Leeds, UK</td>
</tr>
<tr>
<td>Ben Mitchinson</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>Vishwanathan Mohan</td>
<td>Italian Institute of Technology, Italy</td>
</tr>
<tr>
<td>Anna Mura</td>
<td>Universitat Pompeu Fabra, Spain</td>
</tr>
<tr>
<td>Martin Pearson</td>
<td>Bristol Robotics Laboratory, UK</td>
</tr>
<tr>
<td>Hemma Philamore</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Andrew Philippides</td>
<td>University of Sussex, UK</td>
</tr>
<tr>
<td>Tony Pipe</td>
<td>Bristol Robotics Laboratory, UK</td>
</tr>
<tr>
<td>Tony Prescott</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>Roger Quinn</td>
<td>Case Western Reserve University, USA</td>
</tr>
<tr>
<td>Sylvain Saighi</td>
<td>University of Bordeaux, France</td>
</tr>
<tr>
<td>Thomas Schmickl</td>
<td>Karl-Franzens University Graz, Austria</td>
</tr>
<tr>
<td>Charlie Sullivan</td>
<td>University of the West of England, UK</td>
</tr>
<tr>
<td>Luca Tonin</td>
<td>University of Padova, Italy</td>
</tr>
<tr>
<td>Pablo Varona</td>
<td>Universidad Autonoma de Madrid, Spain</td>
</tr>
<tr>
<td>Eleni Vasilaki</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>Benjamin Ward-Cherrier</td>
<td>University of Bristol, UK</td>
</tr>
<tr>
<td>Stuart Wilson</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>Hartmut Witte</td>
<td>Technische Universität Ilmenau, Germany</td>
</tr>
</tbody>
</table>
Contents

Full Papers

The Natural Bipeds, Birds and Humans: An Inspiration for Bipedal Robots . . . 3
Anick Abourachid and Vincent Hugel

Retina Color-Opponency Based Pursuit Implemented Through Spiking
Neural Networks in the Neurorobotics Platform . 16
Alessandro Ambrosano, Lorenzo Vannucci, Ugo Albanese,
Murat Kirtay, Egidio Falotico, Pablo Martínez-Cañada, Georg Hinkel,
Jacques Kaiser, Stefan Ulbrich, Paul Levi, Christian Morillas,
Alois Knoll, Marc-Oliver Gewaltig, and Cecilia Laschi

A Two-Fingered Anthropomorphic Robotic Hand with Contact-Aided
Cross Four-Bar Mechanisms as Finger Joints . 28
Guochao Bai, Jieyu Wang, and Xianwen Kong

Living Designs . 40
Rina Bernabei and Jacqueline Power

iCub Visual Memory Inspector: Visualising the iCub’s Thoughts . . . 48
Daniel Camilleri, Andreas Damianou, Harry Jackson, Neil Lawrence,
and Tony Prescott

A Preliminary Framework for a Social Robot “Sixth Sense”. 58
Lorenzo Cominelli, Daniele Mazzei, Nicola Carbonaro,
Roberto Garofalo, Abolfazl Zaraki, Alessandro Tognetti,
and Danilo De Rossi

A Bio-Inspired Photopatterning Method to Deposit Silver Nanoparticles
onto Non Conductive Surfaces Using Spinach Leaves Extract in Ethanol . . . 71
Marc P.Y. Desmulliez, David E. Watson, Jose Marques-Hueso,
and Jack Hoy-Gig Ng

Leg Stiffness Control Based on “TEGOTAE” for Quadruped Locomotion . . 79
Akira Fukuhara, Dai Owaki, Takeshi Kano, and Akio Ishiguro

Wall Following in a Semi-closed-loop Fly-Robotic Interface. 85
Jiaqi V. Huang, Yilin Wang, and Holger G. Krapp

Sensing Contact Constraints in a Worm-like Robot by Detecting Load
Anomalies . 97
Akhil Kandhari, Andrew D. Horchler, George S. Zucker,
Kathryn A. Daltorio, Hillel J. Chiel, and Roger D. Quinn
Head-Mounted Sensory Augmentation Device: Comparing Haptic and Audio Modality .. 107

Hamideh Kerdegari, Yeongmi Kim, and Tony J. Prescott

Visual Target Sequence Prediction via Hierarchical Temporal Memory Implemented on the iCub Robot 119

Murat Kirtay, Egidio Falotico, Alessandro Ambrosano, Ugo Albanese, Lorenzo Vannucci, and Cecilia Laschi

Computer-Aided Biomimetics .. 131

Ruben Kruiper, Jessica Chen-Burger, and Marc P.Y. Desmulliez

A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model 144

Wei Li, Nicholas S. Szczecinski, Alexander J. Hunt, and Roger D. Quinn

Towards Unsupervised Canine Posture Classification via Depth Shadow Detection and Infrared Reconstruction for Improved Image Segmentation Accuracy .. 155

Sean Mealin, Steven Howell, and David L. Roberts

A Bio-Inspired Model for Visual Collision Avoidance on a Hexapod Walking Robot .. 167

Hanno Gerd Meyer, Olivier J.N. Bertrand, Jan Paskarbeit, Jens Peter Lindemann, Axel Schneider, and Martin Egelhaaf

MIRO: A Robot “Mammal” with a Biomimetic Brain-Based Control System ... 179

Ben Mitchinson and Tony J. Prescott

A Hydraulic Hybrid Neuroprosthesis for Gait Restoration in People with Spinal Cord Injuries ... 192

Mark J. Nandor, Sarah R. Chang, Rudi Kobetic, Ronald J. Triolo, and Roger Quinn

Principal Component Analysis of Two-Dimensional Flow Vector Fields on Human Facial Skin for Efficient Robot Face Design 203

Nobuyuki Ota, Hisashi Ishihara, and Minoru Asada

Learning to Balance While Reaching: A Cerebellar-Based Control Architecture for a Self-balancing Robot 214

Maximilian Ruck, Ivan Herreros, Giovanni Maffei, Martí Sánchez-Fibla, and Paul Verschure

Optimizing Morphology and Locomotion on a Corpus of Parametric Legged Robots ... 227

Grégoire Passault, Quentin Rouxel, Remi Fabre, Steve N’Guyen, and Olivier Ly
Stick(y) Insects — Evaluation of Static Stability for Bio-inspired Leg Coordination in Robotics .. 239
 Jan Paskarbeit, Marc Otto, Malte Schilling, and Axel Schneider

Navigate the Unknown: Implications of Grid-Cells “Mental Travel” in Vicarious Trial and Error .. 251
 Diogo Santos-Pata, Riccardo Zucca, and Paul F.M.J. Verschure

Insect-Inspired Visual Navigation for Flying Robots 263
 Andrew Philippides, Nathan Steadman, Alex Dewar, Christopher Walker, and Paul Graham

Perceptive Invariance and Associative Memory Between Perception and Semantic Representation USER a Universal SEMantic Representation Implemented in a System on Chip (SoC) 275
 Patrick Pirim

Thrust-Assisted Perching and Climbing for a Bioinspired UAV 288
 Morgan T. Pope and Mark R. Cutkosky

The EASEL Project: Towards Educational Human-Robot Symbiotic Interaction ... 297
 Dennis Reidsma, Vicky Charisi, Daniel Davison, Frances Wijnen, Jan van der Meij, Vanessa Evers, David Cameron, Samuel Fernando, Roger Moore, Tony Prescott, Daniele Mazzei, Michael Pieroni, Lorenzo Cominelli, Roberto Garofalo, Danilo De Rossi, Vasiliki Vouloutsi, Riccardo Zucca, Klaudia Grechuta, Maria Blancas, and Paul Verschure

Wasp-Inspired Needle Insertion with Low Net Push Force 307
 Tim Sprang, Paul Breedveld, and Dimitra Dodou

Use of Bifocal Objective Lens and Scanning Motion in Robotic Imaging Systems for Simultaneous Peripheral and High Resolution Observation of Objects .. 319
 Gašper Škulj and Drago Bračun

MantisBot Uses Minimal Descending Commands to Pursue Prey as Observed in Tenodera Sinensis .. 329
 Nicholas S. Szczecinski, Andrew P. Getsy, Jacob W. Bosse, Joshua P. Martin, Roy E. Ritzmann, and Roger D. Quinn

Eye-Head Stabilization Mechanism for a Humanoid Robot Tested on Human Inertial Data .. 341
 Lorenzo Vannucci, Egidio Falotico, Silvia Tolu, Paolo Dario, Henrik Hautop Lund, and Cecilia Laschi
Towards a Synthetic Tutor Assistant: The EASEL Project and its Architecture
Vasiliki Vouloutsi, Maria Blancas, Riccardo Zucca, Pedro Omedas, Dennis Reidsma, Daniel Davison, Vicky Charisi, Frances Wijnen, Jan van der Meij, Vanessa Evers, David Cameron, Samuel Fernando, Roger Moore, Tony Prescott, Daniele Mazzei, Michael Pieroni, Lorenzo Cominelli, Roberto Garofalo, Danilo De Rossi, and Paul F.M.J. Verschure

Aplysia Californica as a Novel Source of Material for Biohybrid Robots and Organic Machines
Victoria A. Webster, Katherine J. Chapin, Emma L. Hawley, Jill M. Patel, Ozan Akkus, Hillel J. Chiel, and Roger D. Quinn

A Soft Pneumatic Maggot Robot
Tianqi Wei, Adam Stokes, and Barbara Webb

Short Papers
On Three Categories of Conscious Machines
Xerxes D. Arsiwalla, Ivan Herreros, and Paul Verschure

Gaussian Process Regression for a Biomimetic Tactile Sensor
Kirsty Aquilina, David A.W. Barton, and Nathan F. Lepora

Modulating Learning Through Expectation in a Simulated Robotic Setup
Maria Blancas, Riccardo Zucca, Vasiliki Vouloutsi, and Paul F.M.J. Verschure

Don’t Worry, We’ll Get There: Developing Robot Personalities to Maintain User Interaction After Robot Error
David Cameron, Emily Collins, Hugo Cheung, Adriel Chua, Jonathan M. Aitken, and James Law

Designing Robot Personalities for Human-Robot Symbiotic Interaction in an Educational Context
David Cameron, Samuel Fernando, Abigail Millings, Michael Szollosy, Emily Collins, Roger Moore, Amanda Sharkey, and Tony Prescott

A Biomimetic Fingerprint Improves Spatial Tactile Perception
Luke Cramphorn, Benjamin Ward-Cherrier, and Nathan F. Lepora

Anticipating Synchronisation for Robot Control
Henry Eberle, Slawomir Nasuto, and Yoshikatsu Hayashi

MantisBot: The Implementation of a Photonic Vision System
Andrew P. Getsy, Nicholas S. Szczecinski, and Roger D. Quinn
Force Sensing with a Biomimetic Fingertip .. 436
Maria Elena Giannaccini, Stuart Whyle, and Nathan F. Lepora

Understanding Interlimb Coordination Mechanism of Hexapod Locomotion
via “TEGOTAE”-Based Control .. 441
Masashi Goda, Sakiko Miyazawa, Susumu Itayama, Dai Owaki,
Takeshi Kano, and Akio Ishiguro

Decentralized Control Scheme for Myriapod Locomotion That Exploits
Local Force Feedback .. 449
Takeshi Kano, Kotaro Yasui, Dai Owaki, and Akio Ishiguro

TEGOTAE-Based Control Scheme for Snake-Like Robots That Enables
Scaffold-Based Locomotion ... 454
Takeshi Kano, Ryo Yoshizawa, and Akio Ishiguro

Modelling the Effect of Cognitive Load on Eye Saccades and Reportability:
The Validation Gate ... 459
Sock C. Low, Joeri B.G. van Wijngaarden, and Paul F.M.J. Verschure

Mutual Entrainment of Cardiac-Oscillators Through Mechanical Interaction ...
Koki Maekawa, Naoki Inoue, Masahiro Shimizu, Yoshihiro Isobe,
Taro Saku, and Koh Hosoda

“TEGOTAE”-Based Control of Bipedal Walking 472
Dai Owaki, Shun-ya Horikiri, Jun Nishi, and Akio Ishiguro

Tactile Vision – Merging of Senses ... 480
Nedyalka Panova, Alexander C. Thompson,
Francisco Tenopala-Carmona, and Ifor D.W. Samuel

Tactile Exploration by Contour Following Using a Biomimetic Fingertip 485
Nicholas Pestell, Benjamin Ward-Cherrier, Luke Cramphorn,
and Nathan F. Lepora

Towards Self-controlled Robots Through Distributed Adaptive Control 490
Jordi-Ysard Puigbò, Clément Moulin-Frier, and Paul F.M.J. Verschure

Discrimination-Based Perception for Robot Touch 498
Emma Roscow, Christopher Kent, Ute Leonards, and Nathan F. Lepora

On Rock-and-Roll Effect of Quadruped Locomotion: From Mechanical and
Control-Theoretical Viewpoints .. 503
Ryoichi Kuratani, Masato Ishikawa, and Yasuhiro Sugimoto

Hydromast: A Bioinspired Flow Sensor with Accelerometers 510
Asko Ristolainen, Jeffrey Andrew Tuhtan, Alar Kuusik,
and Maarja Kruusmaa
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing an Ecosystem for Interactive Electronic Implants</td>
<td>518</td>
</tr>
<tr>
<td>Paul Strohmeier, Cedric Honnet, and Samppa von Cyborg</td>
<td></td>
</tr>
<tr>
<td>Gait Analysis of 6-Legged Robot with Actuator-Equipped Trunk and Insect</td>
<td>526</td>
</tr>
<tr>
<td>Yasuhiro Sugimoto, Yuji Kito, Yuichiro Sueoka, and Koichi Osuka</td>
<td></td>
</tr>
<tr>
<td>Quadruped Gait Transition from Walk to Pace to Rotary Gallop by Exploiting Head Movement</td>
<td>532</td>
</tr>
<tr>
<td>Shura Suzuki, Dai Owaki, Akira Fukuhara, and Akio Ishiguro</td>
<td></td>
</tr>
<tr>
<td>Exploiting Symmetry to Generalize Biomimetic Touch</td>
<td>540</td>
</tr>
<tr>
<td>Benjamin Ward-Cherrier, Luke Cramphorn, and Nathan F. Lepora</td>
<td></td>
</tr>
<tr>
<td>Decentralized Control Scheme for Centipede Locomotion Based on Local Reflexes.</td>
<td>545</td>
</tr>
<tr>
<td>Kotaro Yasui, Takeshi Kano, Dai Owaki, and Akio Ishiguro</td>
<td></td>
</tr>
<tr>
<td>Realization of Snakes’ Concertina Locomotion by Using “TEGOTAE-Based Control”</td>
<td>548</td>
</tr>
<tr>
<td>Ryo Yoshizawa, Takeshi Kano, and Akio Ishiguro</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>553</td>
</tr>
</tbody>
</table>