17

Springer Series on Fluorescence

Methods and Applications

Series Editor: Martin Hof
Springer Series on Fluorescence
Series Editor: Martin Hof
Recently Published and Forthcoming Volumes

Perspectives on Fluorescence
A Tribute to Gregorio Weber
Volume Editor: David M. Jameson
Vol. 17, 2016

Fluorescence Studies of Polymer Containing Systems
Volume Editor: Karel Procházka
Vol. 16, 2016

Advanced Photon Counting
Volume Editors: Peter Kapusta, Michael Wahl and Rainer Erdmann
Vol. 15, 2015

Far-Field Optical Nanoscopy
Volume Editors: Philip Tinnefeld, Christian Eggeling and Stefan W. Hell
Vol. 14, 2015

Fluorescent Methods to Study Biological Membranes
Volume Editors: Y. Mély and G. Duportail
Vol. 13, 2013

Fluorescent Proteins II
Application of Fluorescent Protein Technology
Volume Editor: G. Jung
Vol. 12, 2012

Fluorescent Proteins I
From Understanding to Design
Volume Editor: G. Jung
Vol. 11, 2012

Advanced Fluorescence Reporters in Chemistry and Biology III
Applications in Sensing and Imaging
Volume Editor: A.P. Demchenko
Vol. 10, 2011

Advanced Fluorescence Reporters in Chemistry and Biology II
Molecular Constructions, Polymers and Nanoparticles
Volume Editor: A.P. Demchenko
Vol. 9, 2010

Advanced Fluorescence Reporters in Chemistry and Biology I
Fundamentals and Molecular Design
Volume Editor: A.P. Demchenko
Vol. 8, 2010

Lanthanide Luminescence
Photophysical, Analytical and Biological Aspects
Volume Editors: P. Hänninen and H. Härmä
Vol. 7, 2011

Standardization and Quality Assurance in Fluorescence Measurements II
Bioanalytical and Biomedical Applications
Volume Editor: Resch-Genger, U.
Vol. 6, 2008

Standardization and Quality Assurance in Fluorescence Measurements I
Techniques
Volume Editor: U. Resch-Genger
Vol. 5, 2008

Fluorescence of Supermolecules, Polymers, and Nanosystems
Volume Editor: M.N. Berberan-Santos
Vol. 4, 2007

Fluorescence Spectroscopy in Biology
Volume Editor: M. Hof
Vol. 3, 2004

Fluorescence Spectroscopy, Imaging and Probes
Volume Editor: R. Kraayenhof
Vol. 2, 2002

New Trends in Fluorescence Spectroscopy
Volume Editor: B. Valeur
Vol. 1, 2001

More information about this series at http://www.springer.com/series/4243
Perspectives on Fluorescence

A Tribute to Gregorio Weber

Volume Editor:
David M. Jameson

With contributions by

L.A. Bagatolli · F.J. Barrantes · L. Betts · P. Bianchini ·
L. Brand · F. Cardarelli · M. Castello · P.L.-G Chong ·
R.N. Day · A.P. Demchenko · A. de Silva · A. Diaspro ·
E. Gratton · K. Jacobson · D.M. Jameson · T.M. Jovin ·
J.R. Knutson · L. Lanzanò · P. Liu · G. Marriott ·
G.D. Reinhart · M. Ridilla · C.A. Royer · L. Scipioni ·
R.P. Stock · N.L. Thompson · H. van Amerongen ·
A. van Hoek · G. Vicidomini · A.J.W.G. Visser ·
N.V. Visser · J. Xu

Springer
Aims and Scope

Fluorescence spectroscopy, fluorescence imaging and fluorescent probes are indispensable tools in numerous fields of modern medicine and science, including molecular biology, biophysics, biochemistry, clinical diagnosis and analytical and environmental chemistry. Applications stretch from spectroscopy and sensor technology to microscopy and imaging, to single molecule detection, to the development of novel fluorescent probes, and to proteomics and genomics. The *Springer Series on Fluorescence* aims at publishing state-of-the-art articles that can serve as invaluable tools for both practitioners and researchers being active in this highly interdisciplinary field. The carefully edited collection of papers in each volume will give continuous inspiration for new research and will point to exciting new trends.
During the last few decades, fluorescence spectroscopy has evolved from a narrow, highly specialized technique into an important discipline widely utilized in the biological, chemical, and physical sciences. As in all scientific disciplines, the development of modern fluorescence spectroscopy has benefited from the contributions of many individuals from many countries. However, one individual, Gregorio Weber, can be singled out for his outstanding and far-reaching contributions to this field.

Gregorio Weber was born in Argentina on July 4, 1916. He died of leukemia on July 18, 1996. His death ended a remarkable and amazingly productive scientific career, which began in Buenos Aires, developed in England at Cambridge and Sheffield, and flourished at the University of Illinois at Urbana-Champaign. His contributions to the fields of fluorescence spectroscopy and protein chemistry are still evident and significant yet many young people entering these fields may not realize the debt they owe to his pioneering efforts. This book is intended to recognize the 100th anniversary of his birth. This project began several years ago when I was approached by Martin Hof and Otto Wolfbeis to organize this volume. To this end, I invited a number of distinguished researchers to take time away from their already busy schedules and write a chapter outlining a particular aspect of fluorescence spectroscopy, indicating how Gregorio Weber had influenced the field and their own approach to the work. Many of these authors had worked directly with Gregorio Weber, either as students, postdocs, or scientists visiting his lab. I believe that these collected chapters will not only offer the reader valuable and informative insights into the application of fluorescence methodologies to a wide variety of systems but will also serve to emphasize the debt that all of us working with fluorescence owe to Gregorio Weber.

The first four chapters (Jameson, Barrantes, Jovin, Visser) focus largely on the life and science of Gregorio Weber. Jameson summarizes and recounts Weber’s scientific career pointing out his contributions to fluorescence spectroscopy as well as to protein chemistry. Barrantes provides a marvelously detailed look into
Weber’s formative years in Argentina – before he left for England. Jovin follows Weber’s life from childhood to scientific eminence, discussing many of the major personalities and influences along the way. Visser gives a personal account of his time as a postdoc at UIUC in Weber’s lab and his work there on the application of high pressure to flavinyl tryptophan compounds and flavodoxin proteins.

Several chapters focus on spectroscopy, in particular the application of fluorescence spectroscopy to biophysical subjects. Gratton presents a compelling personal account of the development of frequency domain fluorometry and the pivotal influence Gregorio Weber had on his approach to this research. Visser and his co-authors discuss the ultrafast decay of fluorescence anisotropy of NATA, while Demchenko gives an extensive and detailed account of Weber’s red-edge effect and its significance to fluorescence spectroscopy in general and to protein dynamics in particular. Day discusses modern approaches to fluorescent lifetime imaging, while Xu and Knutson discuss the impact of laser developments on fluorescence spectroscopy.

Two chapters concern applications of fluorescence probes to study cell membranes as well as cellular interiors. Chong describes the use of fluorescence to elucidate membrane lateral organization, while Bagatolli and Stock apply 6-acyl-2-(dimethylamino)naphthalenes as relaxation probes of biological environments to elucidate aspects of water dynamics in cellular interiors.

Four chapters focus on proteins, in and out of cells. Reinhart presents an engaging discussion of his early connections to the Weber lab and how Weber’s work on the thermodynamics of protein interactions inspired his own studies on allosteric enzymes. Royer describes how fluorescence can be applied to characterize the molecular and energetic basis for the role of protein interactions in the regulation of gene expression. Brand provides a detailed examination of relaxation processes, such as time-dependent spectral shifts, exhibited by solvatochromic probes including tryptophan, and how these processes can illuminate aspects of protein dynamics. Marriott describes a new class of genetically encoded fluorescent proteins based on the lumazine-binding protein (LUMP) and then discusses the potential of using LUMP and related encoded proteins to advance the application of fluorescence polarization to analyze target proteins and protein interactions in living cells.

Several chapters describe the use of fluorescence methodologies to elucidate aspects of cellular dynamics. Cardarelli and Gratton discuss spatiotemporal fluorescence correlation spectroscopy to follow movement of single molecules inside cells, while Diaspro and colleagues describe the use of STED microscopy to elucidate pico-nanosecond temporal dynamics in cells. Jacobson and colleagues discuss plasma membrane DC-SIGN clusters and their significance.

I hope you enjoy this overview of modern applications of fluorescence, and I hope you gain a better appreciation not only of Gregorio Weber’s contributions to the field but also of his unique personality and character.

Kailua, HI, USA

David M. Jameson
Contents

A Fluorescent Lifetime: Reminiscing About Gregorio Weber 1
David M. Jameson

Gregorio Weber’s Roots in Argentina .. 17
Francisco J. Barrantes

The Labyrinthine World of Gregorio Weber 41
Thomas M. Jovin

Personal Recollections of Gregorio Weber, My Postdoc Advisor,
and the Important Consequences for My Own Academic Career 57
Antonie J.W.G. Visser

Measurements of Fluorescence Decay Time by the Frequency
Domain Method .. 67
Enrico Gratton

Ultra-Fast Fluorescence Anisotropy Decay of
N-Acetyl-l-Tryptophanamide Reports on the Apparent Microscopic
Viscosity of Aqueous Solutions of Guanidine Hydrochloride 81
Antonie J.W.G. Visser, Nina V. Visser, Arie van Hoek,
and Herbert van Amerongen

Weber’s Red-Edge Effect that Changed the Paradigm
in Photophysics and Photochemistry 95
Alexander P. Demchenko

Imaging Lifetimes ... 143
Richard N. Day
The Impact of Laser Evolution on Modern Fluorescence Spectroscopy 163
Jianhua Xu and Jay R. Knutson

Effects of Sterol Mole Fraction on Membrane Lateral Organization:
Linking Fluorescence Signals to Sterol Superlattices 179
Parkson Lee-Gau Chong

The Use of 6-Acyl-2-(Dimethylamino)Naphthalenes as Relaxation
Probes of Biological Environments .. 197
Luis A. Bagatolli and Roberto P. Stock

Continuing Inspiration: Gregorio Weber’s Influence on Understanding
the Basis of Allosteric Regulation of Enzymes 217
Gregory D. Reinhart

Using Fluorescence to Characterize the Role of Protein Oligomerization
in the Regulation of Gene Expression 235
Catherine A. Royer

Light Initiated Protein Relaxation .. 255
Ludwig Brand

Synthetic and Genetically Encoded Fluorescence Probes for
Quantitative Analysis of Protein Hydrodynamics 271
Gerard Marriott

Spatiotemporal Fluorescence Correlation Spectroscopy of Inert Tracers:
A Journey Within Cells, One Molecule at a Time 287
Francesco Cardarelli and Enrico Gratton

Role of the Pico-Nano-Second Temporal Dimension in STED
Microscopy ... 311
Luca Lanzanò, Lorenzo Scipioni, Marco Castello, Paolo Bianchini,
Giuseppe V西侧ini, and Alberto Diaspro

Plasma Membrane DC-SIGN Clusters and Their Lateral Transport:
Role in the Cellular Entry of Dengue Virus 331
Ken Jacobson, Laurie Betts, Ping Liu, Marc Ridilla,
Aravinda de Silva, and Nancy L. Thompson

Index ... 343