About this Series

The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and well structured form. The series includes reference works, handbooks, compendia, textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains well integrated knowledge and current information in the field of Intelligent Systems. The series covers the theory, applications, and design methods of Intelligent Systems. Virtually all disciplines such as engineering, computer science, avionics, business, e-commerce, environment, healthcare, physics and life science are included.

More information about this series at http://www.springer.com/series/8578
Eman El-Sheikh · Alfred Zimmermann
Lakhmi C. Jain
Editors

Emerging Trends in the Evolution of Service-Oriented and Enterprise Architectures
Almost 25 years ago Henderson and Venkatraman were writing “Even though the information technology has evolved from its traditional orientation and administrative support toward a more strategic role within an organization, there is still a glaring lack of fundamental frameworks within which to understand the potential of IT for tomorrow’s organizations” (IBM Systems Journal 32(1), 1993). Targeting to master this challenging issue, they developed a model, strategic alignment model, and derived four perspectives of alignment with specific impacts for guiding management practices in order to “leverage IT for transforming organizations.”

More recent technologies and paradigms (such as cloud computing, big data, IoT) show that not the ownership of IT resources but their strategic management is the foundation for sustainable competitive advantage, as it was earlier defended by Mata, Fuerst, and Barney (MIS Quarterly, 1995).

A decade ago, Ross, Weill, and Robertson in their book “Enterprise Architecture as Strategy: Creating a Foundation for Business Execution” (2006) illustrated through numerous companies worldwide, how constructing the right enterprise architecture enhances profitability and time to market, improves strategy execution, and even lowers IT costs.

Enterprise architecture (EA) aimed (i) to understand the interactions and all kinds of articulations between business and IT, (ii) to define how to align business components and IT components, as well as business strategy and IT strategy, and more particularly (iii) to develop and support a common understanding and sharing of those purposes of interest. EA is also used to map the enterprise goals and strategy to the enterprise’s resources (actors, assets, and IT supports) and to manage the evolution of this mapping.

Services are the governing principle for EA. Nearly all newly created EAs are service-oriented. Service-oriented enterprise architecture (SoEA) easily integrates widespread technological approaches such as SOA or emerging ones as cloud computing because they also use service as structuring and governing paradigm. The scope of SoEA is much broader than the scope of the SOA and also includes services not accessible through software such as business services and infrastructure
services. Services of different purposes and granularities may be interconnected in service (value) nets to provide higher-level services.

Today, foundations of social computing influence EA in new ways. The senior management defines organizational structures no longer alone, but weak ties that are initiated by individuals superimpose the organization. Innovation is no longer a process guided by an elite, but can be initiated by every member of an organization. Decisions are no longer only made by experts, but are also results of collaborative processes. Big data technologies allow to process data with higher velocity, variety, and volume and to create new information flows and data services within EAs.

EA is positioned as a coordination and steering mechanism and as an instrument to support the strategic direction of digital enterprises, which new frontiers require permeability and which new structures require elasticity. The service paradigm and the underlying mechanisms offer an accelerator for nurturing the elasticity of EAs and that of the enterprises themselves, to allow them to survive in evolving business ecosystems. In this context, service ecosystems offer a new land of application for the Nash equilibrium.

The new challenges for the “design by reuse” of modern IT solutions (recommended to be built in shorter cycles), in accordance with SOA and EA frameworks, impose in turn new challenges to the “design for reuse.” The latter should (i) handle the potential components (services), in terms of abilities to satisfy functional business requirements in manyfold contexts and also (ii) deal with new capabilities for mastering nonfunctional requirements, such as flexibility, maintainability, and trustworthiness, which may themselves be variable in different contexts.

The twelve chapters of this book all together present challenging issues and hot topics related to the emerging trends in the evolution of service-oriented and enterprise architectures, as the evolution of EAs and systems, the flexibility, the maintainability, the security of the underlying software solutions and infrastructures, the digital transformation, the capability management, the forecasting of service demands, the conciliation of resilient and stable parts of EA, which are essential for the integrity of transactions and reliability of systems, with a fast-speed-architecture offering channels that are pivotal for the customer experience. As advocated by one of the contributors, “Digital Transformation sets a new challenge for the enterprise architect: she has now not just to align the IT with the demands from the business but to enable and even invent new business opportunities. So the architecture capability of an organization gets an active part in shaping the business”.

Selmin Nurcan
University Paris 1 Panthéon-Sorbonne
This research oriented book presents emerging trends in the evolution of Service-Oriented and Enterprise architectures. New architectures and methods of both business and IT are integrating services to support mobility systems, Internet of Things, Ubiquitous Computing, collaborative and adaptive business processes, Big Data, and Cloud ecosystems. They inspire current and future digital strategies and create new opportunities for the digital transformation of next digital products and services. Service-Oriented Architectures (SOA) and Enterprise Architectures (EA) have emerged as useful frameworks for developing interoperable, large-scale systems, typically implementing various standards, like Web Services, REST, and Microservices. Managing the adaptation and evolution of such systems presents a great challenge. Service-Oriented Architectures enable flexibility through loose coupling, both between the services themselves and between the IT organizations that manage them. Enterprises evolve continuously by transforming and extending their services, processes and information systems. Enterprise Architectures provide a holistic blueprint to help define the structure and operation of an organization with the goal of determining how an organization can most effectively achieve its objectives. This book presents several novel approaches to address the challenges of the service-oriented evolution of digital enterprise and software architectures.

The book is directed to the researchers, postgraduate, graduate and undergraduate students, professors and practitioners who are interested in the service-oriented evolution of digital enterprise and software architectures.

We are grateful to the contributors and reviewers for their very valuable expertise and contributions without which this book would not have existed. We wish to show our appreciation to Springer-Verlag for their support right from the concept development to the final typesetting phase of this book.

The unconditional support provided by our universities is acknowledged.

USA
Eman El-Sheikh

Germany
Alfred Zimmermann

Australia
Lakhmi C. Jain
Contents

1 Evolution of Service-Oriented and Enterprise Architectures: An Introduction .. 1
Eman El-Sheikh, Alfred Zimmermann and Lakhmi C. Jain
1.1 Introduction .. 1
References ... 3

2 Approaches to the Evolution of SOA Systems. 5
Norman Wilde, Bilal Gonen, Eman El-Sheikh and Alfred Zimmermann
2.1 Introduction .. 5
2.2 Perspectives on Software Evolution 6
2.2.1 Design for Evolvability 7
2.2.2 Support for Evolution 7
2.3 Design for Evolvability Approaches to SOA 8
2.4 Support for Evolution Approaches to SOA 10
2.4.1 Code Level Approaches to SOA Evolution 10
2.4.2 Service Interaction Level Approaches to SOA Evolution 11
2.4.3 Model Level Approaches to SOA Evolution 13
2.5 Emerging Trends 16
2.5.1 Microservices and Design for Evolvability 16
2.5.2 Knowledge-Based Support 16
2.6 Concluding Remarks 18
References ... 18

3 Flexible and Maintainable Service-Oriented Architectures with Resource-Oriented Web Services 23
Michael Gebhart, Pascal Giessler and Sebastian Abeck
3.1 Introduction .. 23
3.2 Fundamentals 25
3.2.1 SOAP .. 25
3.2.2 REST ... 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Quality Model</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Scenario</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Quality Indicators for Resource-Oriented Web Services</td>
<td>29</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Unique Categorization</td>
<td>30</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Loose Coupling</td>
<td>32</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Discoverability</td>
<td>34</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Autonomy</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion and Outlook</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Knowledge Elicitation and Conceptual Modeling to Foster Security and Trust in SOA System Evolution</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Security and Trust in SOA Federations</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Concept Maps, Knowledge Models, and Knowledge Modeling</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Studies in Knowledge Modeling for SOA Security and Trust</td>
<td>45</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Developing a Security Assurance Case Through Knowledge Modeling</td>
<td>45</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Assessing Trust Needs for a SOA Federation</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>56</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>The Fractal Nature of SOA Federations: A Real World Example</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>The Historical Context of This Work</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Literature on SOA Federations, SOA Elements, Algorithms and Data Persistence</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Three Levels of Abstraction for SOA Federations</td>
<td>65</td>
</tr>
<tr>
<td>5.5</td>
<td>Dimensions of Our SOA World at Each Level of Abstraction: Real World Example</td>
<td>66</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Enterprise Federation</td>
<td>67</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Desktop Federation</td>
<td>70</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Tool Federation</td>
<td>72</td>
</tr>
<tr>
<td>5.6</td>
<td>Fractal Issues We Have Identified</td>
<td>76</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Finiteness Limits Drive the Need for Structure</td>
<td>76</td>
</tr>
<tr>
<td>5.6.2</td>
<td>SOA Federations Favor Some Structural Patterns Over Others</td>
<td>78</td>
</tr>
<tr>
<td>5.6.3</td>
<td>SOA Federations Favor Late Binding</td>
<td>81</td>
</tr>
</tbody>
</table>
7.6 The Viewpoints of the Lightweight Enterprise Architecture Framework ... 125
7.6.1 Viewpoints at Enterprise Level ... 126
7.6.2 Viewpoints at Project Level ... 129
7.7 The Challenge for the Architect of a Digital Transformation Program ... 137
References ... 137

8 A Two-Speed Architecture for the Digital Enterprise ... 139
Oliver Bossert
8.1 Introduction ... 139
8.2 The Digital Era ... 140
8.3 Fundamentals of a Two-Speed Architecture 144
8.3.1 Implications for Enterprise Architecture 145
8.4 The Building Blocks of Digital-Enterprise Architecture 147
8.5 Organizational and Process Implications 148
8.6 Conclusion ... 150
References ... 150

9 Capability-Driven Development ... 151
Hasan Koç, Jan-Christian Kuhr, Kurt Sandkuhl and Felix Timm
9.1 Introduction ... 151
9.2 Problem Investigation: The Need for Capability-Driven Development ... 153
9.2.1 Flexible Business Services in Utility Industries 153
9.2.2 Adaptive E-Government Services 155
9.2.3 Industrial Requirements 155
9.3 Background and Related Work ... 156
9.3.1 Notion of Capability in CDD and EAM Capabilities 157
9.3.2 Context Modelling ... 158
9.3.3 Overview of Capability Design Methods 159
9.3.4 Summary ... 161
9.4 Capability-Driven Development ... 162
9.4.1 CDD Method ... 163
9.4.2 CDD Implementation ... 165
9.5 Real-World Use Case: Utility Industry 167
9.5.1 Background and Motivation ... 167
9.5.2 Use Case Scenario ... 168
9.5.3 Capability Model ... 170
9.5.4 Clearing Center ... 171
9.6 Summary and Recommendations ... 174
References ... 175
Exploring the Nature of Capability Research

Matthias Wißotzki

10.1 Introduction

10.1.1 Motivating Research Questions

10.1.2 Source Selection

10.1.3 Time Frame Selection

10.4 Performing the Review

10.4.1 Article Selection

10.4.2 Data Collection

10.5 Review Report

10.5.1 Types of Capabilities

10.5.2 Descriptive Capability Elements

10.5.3 Correlations of Capability Elements

10.6 Conclusion and Outlook

References

Enterprise Architecture Analytics and Decision Support

Rainer Schmidt and Michael Möhring

11.2 Data Sources for Enterprise Architecture Analytics

11.2.1 Structured Data

11.2.2 Semi-structured Data

11.2.3 Unstructured Data

11.4 Applications of Big Data and Advanced Analytics in Enterprise Architecture

11.4.1 Forecasting the Demand and Prices of EA Services

11.4.2 Service Recommendation for Different Customers

11.4.3 Analyzes of Unstructured Data

11.5 Outlook

11.5.1 Graph-Based Data

11.5.2 Frameworks for Stream-Based Data Processing

11.6 Conclusion

References

A Guide for Capability Management

Matthias Wißotzki and Anna Sonnenberger

12.1 Introduction

12.1.1 BB1—Preparation

12.1.2 Catalog Design

12.4 Capability Management Process v3.0

12.4.1 BB1—Preparation

12.4.2 Catalog Design
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.3 Detail Development</td>
<td>250</td>
</tr>
<tr>
<td>12.4.4 Catalog Governance</td>
<td>256</td>
</tr>
<tr>
<td>12.5 Conclusion and Outlook</td>
<td>262</td>
</tr>
<tr>
<td>References</td>
<td>263</td>
</tr>
<tr>
<td>Author Index</td>
<td>265</td>
</tr>
</tbody>
</table>
About the Editors

Eman El-Sheikh is professor of computer science and director of the Center for Cybersecurity at the University of West Florida. She received her Ph.D. and M.Sc. in computer science from Michigan State University and her B.Sc. in computer science from the American University of Cairo. Her research interests include artificial intelligence, machine learning, intelligent systems, cybersecurity and software maintenance and evolution. Dr. El-Sheikh has applied her research to various problem domains, including education, health care, finance, software maintenance, and robotics. She has authored over 60 publications and given over 50 conference presentations in her research areas and enjoys engaging and mentoring undergraduate and graduate students in research activities.

Alfred Zimmermann is a professor of computer science at Reutlingen University, director of the Graduate Cooperative Research School for Services Computing, and the research director of the Herman Hollerith Center, Boeblingen, Germany. His research is focused on digital transformation and digital enterprise architecture in close relationship with services and cloud computing. He graduated in medical informatics at the University of Heidelberg and obtained his Ph.D. in informatics from the University of Stuttgart, Germany. He keeps the academic relations of his home university to the GI—the German Computer Science Society, the ACM—the US Association for Computing Machinery, and the IEEE, where he is a part of specific research groups, programs, and initia-
atives like software architecture, enterprise architecture and management, services computing, and cloud computing. Additionally, he is a visiting professor and honorary professor at international universities: La Plata University—Buenos Aires, the Marmara University, and the Yeditepe University of Istanbul.

Lakhmi C. Jain is a visiting professor at Bournemouth University, UK, and adjunct professor at University of Canberra, Australia.

Dr. Jain founded the KES International for providing a professional community the opportunities for publications, knowledge exchange, cooperation, and teaming. Involving around 5000 researchers drawn from universities and companies worldwide, KES facilitates international cooperation and generates synergy in teaching and research. KES regularly provides networking opportunities for professional community through one of the largest conferences of its kind in the area of KES.

His interests focus on the artificial intelligence paradigms and their applications in complex systems, security, e-education, e-health care, unmanned air vehicles, and intelligent systems.

www.kesinternational.org