Solid Mechanics and Its Applications

Volume 227

Series editors
J.R. Barber, Ann Arbor, USA
Anders Klarbring, Linköping, Sweden

Founding editor
G.M.L. Gladwell, Waterloo, ON, Canada
Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is to the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

More information about this series at http://www.springer.com/series/6557
Fatigue Crack Growth

Detect—Assess—Avoid
Preface

From time to time in technical practice, damages occur due to mechanical loading. Reasons are often small defects or cracks that are already in the component or initiate during the operation. Under service load—time variable loading—cracks can grow. In general the crack growth is initially stable, i.e., the crack grows a small amount with each cycle. This is known as fatigue crack growth. Depending on the manner of the loading, the geometry of the component and the material, a fatigue crack can grow over thousands of cycles without becoming unstable. If the loading or the crack length reaches a critical limit, unstable crack growth occurs and the component or the whole structure fails.

This book deals with the fatigue crack growth process. Therefore, at first the dimensioning of components and structures in accordance with current approaches of the classical strength of materials is described. After the description of many cases of damage caused by the crack growth as well as the principles of damage analyses and non-destructive testing, the basics of fracture mechanics and fatigue crack growth for mode I, mode II, mode III as well as mixed mode are presented. The experimental determination of fracture-mechanical material parameters, e.g., the fracture toughness, the threshold value, or the fatigue crack growth curve is described afterwards. The previously mentioned concepts and material parameters are valid for cyclic loading with constant amplitude. However, constant amplitude loading is very rare in practice, so that the fatigue crack growth under service loading and its influence on the residual lifetime is discussed in detail in the next chapter. Subsequently, the calculation of the residual lifetime using analytical and numerical simulation tools is in the focus. The book concludes with practical examples such as a leak in a pipeline, an investigation of fatigue crack growth in a high-speed train tire or a simulation of the fatigue crack growth in a press frame.

The authors hope that readers will find here a solid basis for further study on fatigue crack growth and subsequent application of the described concepts and methods. Moreover, they hope these readers will enjoy studying the variety of examples contained in the book. Let the study of this book lead to a smaller number of damage cases caused by fatigue crack growth.
The book is translation from the third edition of the German language book “Ermüdungsrisse – Erkennen, Sicher beurteilen, Vermeiden” published by Springer Vieweg in 2012. In this context we thank all persons who contributed to the German edition, especially Dr.-Ing. Andre Riemer (University of Paderborn) as well as Thomas Zipsner and Imke Zander (Editorial Office Springer Vieweg).

For preparation of the drawings in English, we thank Birgit Felske. Moreover, the authors thank Springer Science Media for undertaking its publication. Our special thanks are expressed to Nathalie Jacobs and Cynthia Feenstra for their cooperation and assistance in the editing and the final preparation for printing.

Paderborn
Rostock
January 2016

Hans Albert Richard
Manuela Sander
Contents

1 Designing Components and Structures According to Strength Criteria

1.1 Loads on Components and Structures 2
1.2 Stresses and Stress States in Components and Structures 5
 1.2.1 Plane Stress State ... 6
 1.2.2 Spatial Stress State ... 6
 1.2.3 Principal Stresses .. 6
 1.2.4 Plane Stress State or Plane Strain State 8
1.3 Proof of Static Strength .. 9
 1.3.1 Equivalent Stress ... 9
 1.3.2 Allowable Stress ... 10
 1.3.3 Proof of Strength—Operational Sequence 11
 1.3.4 Taking Account of the Notch Effect 12
 1.3.5 Stress Concentration Factors 13
 1.3.6 Material Parameters and Safety Factors 13
1.4 Proof of Fatigue Strength .. 18
 1.4.1 Effective and Allowable Stresses 18
 1.4.2 Material Parameters ... 19
 1.4.3 Surface and Size Coefficients 21
 1.4.4 Proof of Fatigue Strength with Notched Components 23
1.5 Proof of Structural Durability 23
1.6 Other Proofs ... 24
1.7 Limits of Classic Component Design 24
References ... 25

2 Damages Caused by Crack Growth 27

2.1 Crack Initiation and Crack Growth 29
2.2 Stable and Unstable Crack Growth 31
2.3 Damage Analysis/Fracture Surface Analysis 32
2.4 Fatigue Crack Growth in an ICE Wheel Tire. 36
2.5 Crack Growth in a Press Frame. 37
2.6 Fatigue Crack Growth in the Fastener Body of an Internal High-Pressure Metal Forming Machine. 39
2.7 Fracture of the Drive Shaft of a Vintage Car. 39
2.8 Other Damage Events. 39
2.9 Basic Crack Paths and Crack Shapes in Components and Structures. 41
2.9.1 Crack Paths of Basic Stress States. 42
2.9.2 Crack Paths and Crack Shapes in Shafts. 43
2.9.3 Systematizing Crack Types in Components and Structures. 45
2.10 Crack Detection Using Non-destructive Testing Methods. 49
References. 51

3 Fundamentals of Fracture Mechanics. 55
3.1 Cracks and Crack Modes. 55
3.1.1 Mode I. 56
3.1.2 Mode II. 57
3.1.3 Mode III. 57
3.1.4 Mixed Mode. 57
3.2 Stress Distributions at Cracks. 58
3.2.1 Solving Crack Problems with Elasticity Theory. 58
3.2.2 Stress Distributions for Plane Crack Problems. 59
3.2.3 Stress Distributions for Spatial Crack Problems. 64
3.3 Displacement Fields Near the Crack. 66
3.4 Stress Intensity Factors. 67
3.4.1 Stress Intensity Factors for Crack Modes I, II and III. 67
3.4.2 Stress Intensity Factors for Basic Crack Problems. 68
3.4.3 Superposition of Stress Intensity Factors, Equivalent Stress Intensity Factors. 77
3.5 Local Plasticity at the Crack Tip. 84
3.5.1 Estimating the Plastic Zone. 84
3.5.2 Crack Length Correction. 87
3.5.3 Significance of the Plastic Zone in Fatigue Crack Propagation. 88
3.6 Energy Release Rate and the J-Integral. 88
3.6.1 Energy Release Rate. 88
3.6.2 J-Integral. 89
3.7 Determining the Stress Intensity Factors and Other Fracture-Mechanical Quantities

3.7.1 Determining the Stress Intensity Factors from the Stress Field in the Vicinity of the Crack

3.7.2 Determining the Stress Intensity Factors from the Displacement Field in the Vicinity of the Crack

3.7.3 Determining Fracture-Mechanical Quantities with the J-Integral

3.7.4 Determining Fracture-Mechanical Quantities with the Crack Closure Integral

3.8 Concepts for Predicting Unstable Crack Growth

3.8.1 K-Concept for Mode I

3.8.2 K-Concept for Mode II, Mode III and Mixed Mode Loadings

3.8.3 Criterion of Energy Release Rate

3.8.4 J-Criterion

3.9 Fracture Toughness

3.10 Assessing Components with Cracks Using Fracture-Mechanical Methods

3.10.1 Fracture-Mechanical Proof—Operational Sequence

3.10.2 Applying the Fracture Criterion and the Fracture-Mechanical Analysis to Mode I Crack Problems

3.10.3 Applying the Fracture Criterion and the Fracture-Mechanical Analysis to Mode II, Mode III and Mixed Mode Problems

3.11 Combining Strength Calculation and Fracture Mechanics

References

4 Fatigue Crack Growth Under Cyclic Loading with Constant Amplitude

4.1 Relation Between Component Loading and Cyclic Stress Intensity

4.1.1 Stress Fields with Time-Varying Mode I Loading

4.1.2 Cyclic Stress Intensity Factor for Mode I

4.1.3 R-ratio

4.1.4 Crack Propagation Process

4.1.5 Stress Field with Time-Varying Mode II, Mode III and Mixed-Mode Loading

4.1.6 Cyclic Stress Intensity Factor for Mode II

4.1.7 Cyclic Stress Intensity Factor for Mode III

4.1.8 Two-Dimensional Mixed-Mode Loading

4.1.9 Three-Dimensional Mixed-Mode Loading
4.2 Relationship Between Crack Growth Rate and the Cyclic Stress Intensity Factor .. 120
4.2.1 Limits of Fatigue Crack Propagation for Mode I 122
4.2.2 Factors Influencing the Crack Growth Curve 122
4.2.3 Crack Closure Behavior During Fatigue Crack Growth ... 123
4.2.4 Threshold Value and Threshold Value Behavior 127
4.3 Crack Propagation Concepts for Mode I 132
4.3.1 Paris Law ... 133
4.3.2 Erdogan/Ratwani Law .. 133
4.3.3 Forman/Mettu Equation 134
4.3.4 Comparison of the Crack Propagation Equations 135
4.3.5 Determining Residual Lifetime 137
4.4 Crack Growth Under Mode II, Mode III and Mixed-Mode Loading .. 140
4.4.1 Crack Growth Under Mode II Loading on the Initial Crack .. 140
4.4.2 Crack Growth Under Mode III Loading on the Initial Crack ... 142
4.4.3 Crack Growth Under Two-Dimensional Mixed-Mode Loading .. 142
4.4.4 Crack Growth Under Three-Dimensional Mixed-Mode Loading .. 143
4.5 Procedure for Assessing Fatigue Crack Growth 144
4.5.1 Fracture-Mechanical Assessment of Fatigue Crack Growth .. 145
4.5.2 Determining the Crack Length at Which Fatigue Crack Growth Is Possible .. 146
4.5.3 Safety Against the Occurrence of Fatigue Crack Growth .. 147
4.5.4 Area of Fatigue Crack Growth 147
4.5.5 Defining Inspection Intervals 148
4.6 Combination of Fatigue Strength Calculation and Fracture Mechanics .. 149
References .. 150

5 Experimental Determination of Fracture-Mechanical Material Parameters ... 153
5.1 Critical Stress Intensity Factor and Fracture Toughness 153
5.1.1 Determining Fracture Toughness According to ASTM E 399 ... 154
5.1.2 Testing Methods for Determining the Fracture Toughness .. 158
5.1.3 K_{IC} or K_Q?—Assessment of the Tests 158
5.2 Threshold Values and Crack Growth Curves
 5.2.1 Determining Threshold Values and Crack Growth Curves Acc. to ASTM E 647
 5.2.2 Methods of Determining the Threshold Value
 5.2.3 Methods of Measuring Crack Length
 5.2.4 Determining the Fatigue Crack Growth Rate
 5.2.5 Evaluating the Threshold Value and Crack Growth Curve Tests
5.3 Material Parameters for Mode I Crack Growth
 5.3.1 Fracture Toughnesses
 5.3.2 Threshold Values of Fatigue Crack Growth
 5.3.3 Fatigue Crack Growth Curves
5.4 Material Parameters for Mode II and Mixed-Mode Loading
 5.4.1 Mode II Loading
 5.4.2 Two-Dimensional Mixed-Mode Loading
 5.4.3 Three-Dimensional Mixed-Mode Loading
6 Fatigue Crack Growth Under Service Loads
 6.1 Load Spectra and Cumulative Frequency Distribution
 6.2 Interaction Effects
 6.3 Crack Propagation Concepts for Variable Amplitude Loading
 6.4 Mixed-Mode Loading
 References
7 Simulations of Fatigue Crack Growth .. 223
 7.1 Analytical Crack Growth Simulations 223
 7.1.1 NASGRO and ESACRACK ... 224
 7.1.2 AFGROW ... 225
 7.2 Numerical Crack Growth Simulations 226
 7.2.1 Basic Procedure with Finite Elements 226
 7.2.2 Program System FRANC/FAM for Two-Dimensional Crack Propagation Simulations 229
 7.2.3 Program System ADAPCRACK3D for Three-Dimensional Crack Propagation Simulations 230
 7.3 Determining the Effect of Load Changes with Finite Element Analyses 232
References ... 235

8 Crack Initiation Under Cyclic Loading 239
 8.1 Models for Describing Crack Initiation 240
 8.1.1 Threshold Value Curve Concept 241
 8.1.2 Theories of Critical Distances 243
 8.1.3 Fatigue Crack Resistance Curve Concept 244
 8.1.4 $\sqrt{\text{area}}$ Concept ... 246
 8.2 Short Crack Growth .. 248
References ... 249

9 Practical Examples .. 251
 9.1 Leak in a Pipeline .. 251
 9.1.1 Stresses in the Pipe ... 251
 9.1.2 Stress Intensity Factors for the Crack 253
 9.1.3 Safety Against Unstable Crack Propagation 253
 9.1.4 Crack Length at Which Unstable Crack Propagation Initiates .. 254
 9.2 Investigating Fatigue Crack Growth in ICE Tires 254
 9.2.1 Structure and Load of Rubber-Sprung Wheels 254
 9.2.2 Numerical Stress Analysis ... 256
 9.2.3 Damage Analysis of the Wheel Tire Fracture 257
 9.2.4 Fracture-Mechanical Characterization of the Tire Material ... 258
 9.2.5 Numerical Simulation of Fatigue Crack Growth 258
 9.2.6 Experimental Simulation of Crack Growth 260
 9.3 Simulation of Fatigue Crack Growth in a Press Frame 262
 9.4 Preventing Crack Growth in a Piston 265
 9.5 Investigating Crack Growth in an Aircraft Structure 267

References ... 269
9.6 Parameter Study of a Surface Crack in a Shaft Under Rotating Bending Load ... 270
 9.6.1 Influence of the Cumulative Frequency Distribution 271
 9.6.2 Influence of the Notch Effect and Press-Fit Stresses 273
 9.6.3 Influence of the Initial Crack Depth and Geometry on Residual Life Simulation 274
9.7 Restoration of a Press ... 275
 9.7.1 Modeling the Crack Geometry in the Sealing Cap 276
 9.7.2 Stress Analysis for the Cap 276
 9.7.3 Results of the FE Analyses for the Cracked Sealing Cap ... 277
 9.7.4 Fracture-Mechanical Assessment of the FE Results 277
 9.7.5 Consequences for Continued Machine Operation 278
9.8 Measures for Extending the Residual Life of Machines and Equipment ... 278
 9.8.1 Continued Operation of a Machine or System After Crack Detection .. 279
 9.8.2 Optimization Measures for a New Design 281
References ... 282

Index ... 285
Symbols

\(A \) Area
\(A_{\text{min}} \) Minimum area
\(A_0 - A_3 \) Coefficients in the Newman crack opening function
\(A-D \) Constants of the Richard interpolation formula
\(C \) Reduction rate according to ASTM (American Society for Testing and Material)
\(C_{\text{FM}} \) Material-dependent coefficient of the NASGRO equation
\(C_P \) Retardation factor
\(C_{\text{P}} \) Material-dependent coefficient in the Paris law
\(C_{\text{E}} \) Material-dependent factor in the Erdogan–Ratwani law
\(C_{\text{th}} \) Parameter in the Newman empirical function for describing the R-dependence of the threshold value
\(D \) Diameter
\(E \) Modulus of elasticity, Young’s Modulus
\(F \) Force
\(F_a \) Force amplitude
\(F_m \) Force mean
\(F_{\text{max}}, F_{\text{min}} \) Maximum, minimum force
\(F_0, F_u \) Maximum, minimum force
\(\Delta F \) Cyclic force
\(G \) Weight
\(G \) Energy release rate
\(G_{I}, G_{II}, G_{III} \) Energy release rate for mode I, mode II, mode III
\(G_{IC} \) Critical energy release rate
\(H \) Cumulative frequency
\(I \) Area moment of inertia
\(J \) Value of the J-integral
\(J_{IC} \) Critical value of the J-integral
\(K \) Stress intensity factor
\(K_C \) Critical stress intensity factor
\(K_{I}, K_{II}, K_{III} \) Stress intensity factor for mode I, mode II, mode III
$K_{I,Bl,max}$, $K_{I,Bl,min}$ Maximum, minimum stress intensity factor of the baseline level loading
$K_{I,block}$ Maximum stress intensity factor of the block load
K_{IC}, K_{IIC}, K_{III} Fracture toughness for mode I, mode II, mode III
$K_{I,max}$, $K_{I,min}$ Stress intensity factors for mode I under maximum, minimum load
$K_{II,max}$, $K_{II,min}$ Stress intensity factors for mode II under maximum, minimum load
$K_{I,max,eff}$, $K_{I,min,eff}$ Effective maximum, minimum stress intensity factor
$K_{I,max,req}$ Virtual stress intensity factor for taking the residual stress into account in the Willenborg model
$K_{I,ol}$ Stress intensity factor of an overload
$K_{I,op}$ Crack opening stress intensity factor
$K_{I,R}$ Residual stress intensity factor
$K_{I,ul}$ Stress intensity factor of an underload
$K_{I,zul}$ Allowable stress intensity factor
Q Critical stress intensity factor
V Equivalent stress intensity factor
V_{max}, V_{min} Maximum, minimum equivalent stress intensity factor
ΔK Cyclic stress intensity factor
ΔK_I, ΔK_{II}, ΔK_{III} Cyclic stress intensity factor for mode I, mode II, mode III
$\Delta K_{I,0}$ Initial cyclic stress intensity factor
$\Delta K_{I,Bl}$ Cyclic stress intensity factor of the baseline level loading
ΔK_{IC} Cyclic stress intensity at which unstable crack propagation starts: $\Delta K_{IC} = K_{IC} \cdot (1 - R)$
$\Delta K_{I,eff}$ Effective cyclic stress intensity factor
$\Delta K_{I,eff,th}$ Effective threshold value
$\Delta K_{I,rms}$ Root mean square of the cyclic stress intensity of a load spectrum
$\Delta K_{I,th}$ Threshold value for mode I (threshold value for the cyclic stress intensity factor for mode I)
$\Delta K_{II,th}$, $\Delta K_{III,th}$ Threshold value for mode II, mode III (threshold value for the cyclic stress intensity factor for mode II, mode III)
$\Delta K_{I,zul}$ Allowable cyclic stress intensity factor
ΔK_{th} Threshold value of the two-criteria concept
$\Delta K_{th,0}$ Threshold value ΔK_{th} for $R = 0$
ΔK_{V} Cyclic equivalent stress intensity factor
M Moment
M_B Bending moment
M_T Torque
L_j Beam element length (strip yield model)
Symbols

N Number of load cycle
N Normal force
N_Bl Residual life
N_{Bl} Number of load cycles of the baseline level loading
N_D Number of load cycles at fatigue strength
$N_{\text{D}}, N_{\text{DI}}$ Number of retardation load cycles, corrected number of retardation load cycles
N_i Initiation life
N_f Overall service life
Q Shear force
R Ratio of minimum to maximum stress or of minimum to maximum stress intensity: $R = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = \frac{K_{\text{min}}}{K_{\text{max}}}$
R_{block} Block loading ratio
R_{el}, R_p Stress ratio from which $\Delta K_{\text{th}} = \text{const.}$ applies for positive, negative R-ratios
R_e Yield strength
R_{eff} Effective stress ratio $R_{\text{eff}} = \frac{K_{\text{min,eff}}}{K_{\text{max,eff}}}$
R_{in} Tensile strength
R_{ol} Overload ratio
$R_{p0.2}$ 0.2 % yield strength
R_{SO} Shut-off ratio
R_t Surface roughness
S_B Safety against fracture
S_D Safety against fatigue fracture
S_E Safety against fatigue crack growth
S_F Safety against yielding
S_R Safety against unstable crack propagation
T Temperature
U Electrical potential difference
U Elastic energy
U_0 Initial electrical potential difference
\dot{U} Elastic energy density
V Volume
V_j Fictitious crack opening displacement (strip yield model)
W Work of external forces
W Section modulus
W Wheeler exponent
W_B Section modulus against bending
W_{min} Minimum section modulus
W_p Polar area moment of inertia
W_T Section modulus against torsion
$Y_i, Y_{\text{II}}, Y_{\text{III}}$ Geometry factor, standardized stress intensity factor for mode I, mode II, mode III
a Crack depth, crack length
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>El Haddad parameter</td>
</tr>
<tr>
<td>a_A</td>
<td>Initial crack length</td>
</tr>
<tr>
<td>a_C</td>
<td>Critical crack depth, crack length</td>
</tr>
<tr>
<td>a_{det}</td>
<td>Detection limit: crack length discoverable using non-destructive testing</td>
</tr>
<tr>
<td>a_{pl}</td>
<td>Plastic crack length correction</td>
</tr>
<tr>
<td>a_{th}</td>
<td>Crack length at which the threshold value of fatigue crack growth is exceeded</td>
</tr>
<tr>
<td>Δa</td>
<td>Crack increment</td>
</tr>
<tr>
<td>b</td>
<td>Half-axis of an ellipse</td>
</tr>
<tr>
<td>b_1</td>
<td>Surface coefficient</td>
</tr>
<tr>
<td>b_2</td>
<td>Size coefficient</td>
</tr>
<tr>
<td>c</td>
<td>Crack length</td>
</tr>
<tr>
<td>d</td>
<td>Diameter, width</td>
</tr>
<tr>
<td>da/dN</td>
<td>Crack growth rate</td>
</tr>
<tr>
<td>$(da/dN)_{th}$</td>
<td>Crack growth rate near the threshold value</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>$f_{ij}^I, f_{ij}^II, f_{ij}^III$</td>
<td>Dimensionless functions</td>
</tr>
<tr>
<td>m_p</td>
<td>Material-dependent exponent in the Paris law</td>
</tr>
<tr>
<td>m_E</td>
<td>Material-dependent exponent in the Erdogan–Ratwani law</td>
</tr>
<tr>
<td>n_{ol}</td>
<td>Number of interspersed overloads</td>
</tr>
<tr>
<td>n_{FM}, p, q</td>
<td>Material-dependent exponent of the NASGRO equation</td>
</tr>
<tr>
<td>p</td>
<td>Internal pressure</td>
</tr>
<tr>
<td>r, φ</td>
<td>Polar coordinates</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t</td>
<td>Thickness, specimen thickness</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Displacements</td>
</tr>
<tr>
<td>w</td>
<td>Specimen width</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Cartesian coordinates</td>
</tr>
<tr>
<td>a</td>
<td>Angle</td>
</tr>
<tr>
<td>α</td>
<td>Constraint factor</td>
</tr>
<tr>
<td>α_{th}</td>
<td>Principal shear stress angle</td>
</tr>
<tr>
<td>α_K</td>
<td>Stress concentration factor</td>
</tr>
<tr>
<td>β</td>
<td>Angle</td>
</tr>
<tr>
<td>ε</td>
<td>Strain</td>
</tr>
<tr>
<td>ε_{ij}</td>
<td>Strain tensor</td>
</tr>
<tr>
<td>ε_m</td>
<td>Mean strain</td>
</tr>
<tr>
<td>$\varepsilon_{max}, \varepsilon_{min}$</td>
<td>Maximum, minimum strain</td>
</tr>
<tr>
<td>γ</td>
<td>Crack opening function: ratio of $K_{I,op}$ to $K_{I,max}$</td>
</tr>
<tr>
<td>κ</td>
<td>$(3 - \nu)/(1 + \nu)$ for plane stress state (ESZ); $3 - 4\nu$ for plane strain state (EVZ)</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>ρ</td>
<td>Notch radius</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Normal stress</td>
</tr>
<tr>
<td>$\sigma_1, \sigma_2, \sigma_3$</td>
<td>Principal normal stresses</td>
</tr>
<tr>
<td>σ_a</td>
<td>Stress amplitude</td>
</tr>
<tr>
<td>$\sigma_{a,zul}$</td>
<td>Highest stress amplitude of the cumulative frequency distribution</td>
</tr>
<tr>
<td>$\sigma_{a,zul}$</td>
<td>Allowable stress amplitude</td>
</tr>
<tr>
<td>σ_A</td>
<td>Fatigue strength for a certain R-ratio</td>
</tr>
<tr>
<td>σ_C</td>
<td>Critical stress</td>
</tr>
<tr>
<td>σ_D</td>
<td>Fatigue strength</td>
</tr>
<tr>
<td>σ_F</td>
<td>Yield stress</td>
</tr>
<tr>
<td>σ_{ij}</td>
<td>Stress tensor</td>
</tr>
<tr>
<td>σ_j</td>
<td>Contact stress in the strip yield model</td>
</tr>
<tr>
<td>σ_m</td>
<td>Mean stress</td>
</tr>
<tr>
<td>$\sigma_{\text{max}}, \sigma_{\text{min}}$</td>
<td>Maximum, minimum normal stress</td>
</tr>
<tr>
<td>σ_N</td>
<td>Nominal stress</td>
</tr>
<tr>
<td>σ_{op}</td>
<td>Crack opening stress</td>
</tr>
<tr>
<td>$\sigma_r, \sigma_\phi, \sigma_z$</td>
<td>Normal stresses in cylindrical coordinates</td>
</tr>
<tr>
<td>σ_{Sch}</td>
<td>Fatigue strength under fluctuating stress</td>
</tr>
<tr>
<td>σ_V</td>
<td>Equivalent stress</td>
</tr>
<tr>
<td>$\sigma_{V,a}$</td>
<td>Equivalent stress amplitude</td>
</tr>
<tr>
<td>$\sigma_{V,\text{max}}$</td>
<td>Maximum equivalent stress</td>
</tr>
<tr>
<td>σ_W</td>
<td>Fatigue strength under alternating stress</td>
</tr>
<tr>
<td>$\sigma_{x, y, z}$</td>
<td>Normal stress in x, y, z direction</td>
</tr>
<tr>
<td>σ_{zul}</td>
<td>Allowable stress</td>
</tr>
<tr>
<td>$\Delta \sigma$</td>
<td>Cyclic normal stress</td>
</tr>
<tr>
<td>$\Delta \sigma_{\text{th}}$</td>
<td>Cyclic Stress at which fatigue crack growth initiates</td>
</tr>
<tr>
<td>τ</td>
<td>Shear stress</td>
</tr>
<tr>
<td>τ_a</td>
<td>Shear stress amplitude</td>
</tr>
<tr>
<td>τ_C</td>
<td>Critical shear stress</td>
</tr>
<tr>
<td>τ_H</td>
<td>Principal shear stress</td>
</tr>
<tr>
<td>τ_{max}</td>
<td>Maximum shear stress</td>
</tr>
<tr>
<td>$\tau_{r\phi}, \tau_{rz}, \tau_{\phi z}$</td>
<td>Shear stresses in cylindrical coordinates</td>
</tr>
<tr>
<td>$\tau_{xy}, \tau_{yz}, \tau_{zx}$</td>
<td>Shear stresses in Cartesian coordinates</td>
</tr>
<tr>
<td>τ_z</td>
<td>Non-planar shear stress</td>
</tr>
<tr>
<td>$\Delta \tau$</td>
<td>Cyclic shear stress</td>
</tr>
<tr>
<td>ϕ_0</td>
<td>Kinking angle</td>
</tr>
<tr>
<td>ψ_0</td>
<td>Twisting angle</td>
</tr>
<tr>
<td>ω, ω_{pl}</td>
<td>Size of plastic zone</td>
</tr>
<tr>
<td>$\omega_{\text{max}}, \omega_{ol}$</td>
<td>Size of primary plastic zone</td>
</tr>
<tr>
<td>ω_{min}</td>
<td>Size of reversed-plastic zone</td>
</tr>
</tbody>
</table>