Microfluidic Very Large Scale Integration (VLSI)
Paul Pop · Wajid Hassan Minhass
Jan Madsen

Microfluidic Very Large Scale Integration (VLSI)
Modeling, Simulation, Testing,
Compilation and Physical Synthesis

Springer
Contents

1 **Introduction** ... 1
 1.1 Microfluidic Biochips .. 1
 1.2 mVLSI Technology .. 3
 1.2.1 Application Areas ... 4
 1.2.2 Motivation for Automated Physical Design and
 Testing Techniques ... 6
 1.2.3 Motivation for Programming and Control of mVLSI
 Biochips ... 8
 1.3 Overview ... 8
 References ... 10

Part I Preliminaries

2 **Design Methodology for Flow-Based Microfluidic Biochips** 15
 2.1 Modeling and Simulation .. 17
 2.2 Physical Design and Testing 20
 2.3 Programming and Control .. 23
 References ... 25

3 **Biochip Architecture Model** ... 29
 3.1 Microfluidic Valve .. 29
 3.2 Component Design .. 31
 3.2.1 Pneumatic Switches ... 31
 3.2.2 Pneumatic Mixer ... 31
 3.3 Illustrative Example ... 33
 3.4 Component Model and Library 35
 3.4.1 Component Model .. 35
 3.4.2 Component Model Library 36
 3.5 System-Level Architecture Model 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>On-Chip Control</td>
<td>40</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Pneumatic Logical Components</td>
<td>44</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Supportive Components</td>
<td>48</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Logical Circuits</td>
<td>50</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Logic Truth Tables</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Biochemical Application Modeling</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>High-Level Protocol Language: Aqua</td>
<td>53</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Declarations</td>
<td>54</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Statements</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Biochemical Application Model</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Benchmarks</td>
<td>59</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Real-Life Benchmarks</td>
<td>60</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Synthetic Benchmarks</td>
<td>62</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Part II</td>
<td>Compilation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Compiling High-Level Languages</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Problem Formulation</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Application Model Synthesis</td>
<td>68</td>
</tr>
<tr>
<td>5.2.1</td>
<td>High-Level Language Grammar</td>
<td>70</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Generating the Application Graph</td>
<td>73</td>
</tr>
<tr>
<td>5.3</td>
<td>Solving the Mixing Problem</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Application Mapping and Simulation</td>
<td>93</td>
</tr>
<tr>
<td>6.1</td>
<td>Application Mapping</td>
<td>94</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Problem Formulation</td>
<td>96</td>
</tr>
<tr>
<td>6.2</td>
<td>Constraint Programming Strategy</td>
<td>96</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Finite Domain Variables</td>
<td>97</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Resource Binding Constraints</td>
<td>98</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Resource Sharing Constraints</td>
<td>98</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Precedence Constraints</td>
<td>99</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Cost Function</td>
<td>99</td>
</tr>
<tr>
<td>6.3</td>
<td>List Scheduling Strategy</td>
<td>99</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Route Generation</td>
<td>102</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Optimization</td>
<td>103</td>
</tr>
<tr>
<td>6.4</td>
<td>Experimental Evaluation</td>
<td>103</td>
</tr>
<tr>
<td>6.5</td>
<td>Simulation</td>
<td>106</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>109</td>
</tr>
</tbody>
</table>
7 Control Synthesis and Pin-Count Minimization .. 111
 7.1 Biochip Control Synthesis .. 113
 7.1.1 Control Logic Generation ... 116
 7.1.2 Pin-Count Minimization .. 117
 7.1.3 Problem Formulation ... 119
 7.2 Synthesis Strategy .. 119
 7.2.1 Control Logic Generation ... 119
 7.2.2 Pin-Count Minimization .. 120
 7.3 Experimental Evaluation ... 122
References .. 124

Part III Physical Design

8 Allocation and Schematic Design .. 127
 8.1 Problem Formulation ... 128
 8.2 Allocation and Schematic Design .. 129
 8.2.1 Allocation and Schematic Design .. 129
 8.3 Synthesis Strategy ... 131
 8.3.1 Allocation .. 131
 8.3.2 Schematic Design .. 134
 8.4 Experimental Evaluation ... 136
References .. 144

9 Placement and Routing .. 145
 9.1 Models, Component Library, and Design Rules 146
 9.1.1 Connection Model ... 148
 9.1.2 Grid Graph Model .. 148
 9.1.3 Route Model ... 150
 9.2 Problem Formulation ... 151
 9.2.1 Formalization .. 152
 9.3 Simulated Annealing .. 152
 9.3.1 Concept ... 152
 9.3.2 Implementation .. 153
 9.4 Approximated Cost Function .. 157
 9.4.1 Metrics ... 158
 9.4.2 Computing the Cost Function ... 160
 9.5 Routed Cost Function ... 162
 9.5.1 Routing Algorithms ... 162
 9.5.2 Metrics ... 166
 9.5.3 Computing the Cost Function ... 169
 9.6 Experimental Evaluation ... 175
 9.6.1 Benchmarks ... 176
 9.6.2 Placement Quality .. 176
 9.6.3 Performance ... 180
References .. 182
10 On-Chip Control Synthesis ... 183
 10.1 Circuit Design .. 185
 10.1.1 Ongoing Example. ... 186
 10.1.2 Two-Level Minimization ... 187
 10.1.3 Multiple-Level Optimization 193
 10.1.4 Library Binding ... 197
 10.2 Control Synthesis ... 204
 10.2.1 Component Control Logic Generation 204
 10.2.2 Routing Control Logic Generation 206
 10.3 Physical Synthesis .. 209
 10.3.1 Placement ... 211
 10.3.2 Routing ... 215
 10.4 Evaluation ... 227
 10.5 Benchmarks ... 228
 10.5.1 Evaluation of the Circuit Design 229
 10.5.2 Evaluation of the Placement Step 231
 10.5.3 Evaluation of the Routing Step 232
 10.6 On-Chip and Off-Chip Trade-Off 233
 10.7 On-Chip Control Circuits .. 238
References .. 238

11 Testing and Fault-Tolerant Design 241
 11.1 Fault Model and Testing ... 242
 11.1.1 Fault Model .. 242
 11.1.2 Testing .. 246
 11.1.3 Fault-Tolerant Architecture Synthesis 246
 11.1.4 Design Transformations ... 250
 11.1.5 Simulated Annealing .. 251
 11.1.6 GRASP ... 254
 11.1.7 Architecture Evaluation .. 258
 11.2 Experimental Evaluation ... 263
References .. 267

Index ... 269
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCENT</td>
<td>A Compiler Compiler for the ENTire class of context-free languages</td>
</tr>
<tr>
<td>ALAP</td>
<td>As Late As Possible</td>
</tr>
<tr>
<td>ALL</td>
<td>Adaptive Left-to-right Leftmost derivation (parsing algorithm)</td>
</tr>
<tr>
<td>ANTLR</td>
<td>ANOther Tool for Language Recognition</td>
</tr>
<tr>
<td>ASAP</td>
<td>As Soon As Possible</td>
</tr>
<tr>
<td>ATPG</td>
<td>Automatic Test Pattern Generation</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CL</td>
<td>Candidate List</td>
</tr>
<tr>
<td>CP</td>
<td>Constraint Programming</td>
</tr>
<tr>
<td>CPA</td>
<td>Colorimetric Protein Assay</td>
</tr>
<tr>
<td>CPAM</td>
<td>Constraint Programming-Based Application Mapping</td>
</tr>
<tr>
<td>CSR</td>
<td>Combined Scheduler and Router</td>
</tr>
<tr>
<td>DAG</td>
<td>Directed Acyclic Graph</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribose Nucleic Acid</td>
</tr>
<tr>
<td>EA</td>
<td>Example Application</td>
</tr>
<tr>
<td>EWOD</td>
<td>Electrowetting-on-dielectric</td>
</tr>
<tr>
<td>FDV</td>
<td>Finite Domain Variables</td>
</tr>
<tr>
<td>GCP</td>
<td>Graph Coloring Problem</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
</tr>
<tr>
<td>GPA</td>
<td>General Purpose Actuation</td>
</tr>
<tr>
<td>GRASP</td>
<td>Greedy Random Adaptive Search Procedure</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HA</td>
<td>Hadlock’s Algorithm</td>
</tr>
<tr>
<td>HC</td>
<td>Hill Climbing</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HLS</td>
<td>High Level Synthesis</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
</tbody>
</table>
IDE Integrated Design Environment
ISI Institute for Scientific Information
ITRS International Technology Roadmap for Semiconductors
IVD In-Vitro Diagnosis
JSON Java Script Object Notation
LALR Look Ahead Left-to-right Rightmost derivation
LL Left-to-right Leftmost derivation
LR Left-to-right Rightmost derivation
LS List Scheduling
LSAM List Scheduling-Based Application Mapping
LSI Large-Scale Integration
MHDL microfluidic Hardware Description Language
MI Microfluidic Innovations
MiS Multilevel logic Synthesis
mLSI microfluidic Large-Scale Integration
MOS Metal Oxide Semiconductor
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MSL Multilayer Soft Lithography
mVLSI microfluidic Very Large-Scale Integration
MVVM Model-View-ViewModel
NMO N-type Metal Oxide Semiconductor
NW Naive Washing
PCR Polymerase Chain Reaction
PDMS Poly DiMethyl Siloxane
PLA Programmable Logic Array
PLY Python Lex-Yacc
PMOS P-type Metal Oxide Semiconductor
RAM Random Access Memory
RCL Restrictive Candidate List
RNA Ribose Nucleic Acid
SA Simulated Annealing
SB Synthetic Benchmark
TL Tabu List
TS Tabu Search
UML Unified Modeling Language
USA United States of America
μTAS Miniaturized Total Analysis Systems
VLSI Very Large-Scale Integration
WGA Whole Genome Amplification
WPF Windows Presentation Foundation
XML eXtensible Markup Language
Notations

\(A(N, D) \) \hspace{1em} \text{Biochip architecture graph model, where} \ N \text{ is the set of vertices and} \ D \text{ is the set of edges}

\(a_i \) \hspace{1em} \text{Reachable mixing ratio}

\(B \) \hspace{1em} \text{Binding function for operations on components}

\(C \) \hspace{1em} \text{Set of execution times of a component}

\(C(U_C, V_C, E_C) \) \hspace{1em} \text{A connection bipartite graph model for a biochip architecture} \ A; \ U_C \text{ is the set of entry points,} \ V_C \text{ is the set of exit points and} \ E_C \text{ is the set of connections between them}

\(CF \) \hspace{1em} \text{Finite set of channel faults}

\(CF(N, t) \) \hspace{1em} \text{Channel fault on component} \ N \text{, of type} \ t

\(C_i \) \hspace{1em} \text{Execution time of operation} \ O_i

\(C_{M_j} \) \hspace{1em} \text{Execution time of} \ O_i \text{ on component} \ M_j

\(c(D_{ij}) \) \hspace{1em} \text{Routing latency of directed edge} \ D_{ij} \text{ in the architecture graph}

\(c(F_i) \) \hspace{1em} \text{Fluid routing latency along flow path} \ F_i

\(c_{\text{max}} \) \hspace{1em} \text{Maximum number of channel faults that can occur in} \ A, \text{ during fabrication}

\(CF(D_{ij}, t) \) \hspace{1em} \text{Channel fault on edge} \ D_{ij}, \text{ of type} \ t

\(\text{Cost}_A \) \hspace{1em} \text{Cost of architecture} \ A

\(\text{Cost}_{C(G)} \) \hspace{1em} \text{Approximated cost function for the grid graph} \ G_G

\(C_R \) \hspace{1em} \text{The set of routing grid cells, which are occupied by one of more routes}

\(C_{R(E)} \) \hspace{1em} \text{The set of cells which are occupied by routes in} \ R(E)

\(C'_{R(E)} \) \hspace{1em} \text{The set of cells which are occupied by routes in} \ R'(E)

\(D \) \hspace{1em} \text{Finite set of directed edges in} \ A

\(\text{depth} \) \hspace{1em} \text{Depth in the mixing tree}

\(d_0 \) \hspace{1em} \text{Deadline of the biochemical application graph} \ G

\(D_{ij} \) \hspace{1em} \text{Directed edge in} \ D \text{ from vertex} \ N_i \text{ to vertex} \ N_j

\(d(p) \) \hspace{1em} \text{A detour in the routing grid path} \ p

\(E \) \hspace{1em} \text{The subset of edges that change from the current solution} \ G_G \text{ to the neighbor solution} \ G'_G
\(\mathcal{E} \) Finite set of edges in \(\mathcal{G} \)
\(e_{i,j} \) Directed edge in \(\mathcal{E} \) from \(O_i \) to \(O_j \)
\(e_{u,v} \) An edge in \(\mathcal{C} \) that represents a connection from exit point \(u \), to entry point \(v \)
\(\mathcal{T} \) Finite set of flow paths in \(\mathcal{A} \)
\(F_i \) A flow path in \(\mathcal{T} \)
\(F_{i-j} \) A flow path between two vertices \(N_i \) and \(N_j \) in \(\mathcal{N} \)
\(F_{i}^{\text{ON}} \) Set of all Boolean input combinations, for which \(i \)th output evaluates to 1
\(F_{i}^{\text{OFF}} \) Set of all Boolean input combinations, for which \(i \)th output evaluates to 0
\(F_{i}^{\text{DC}} \) Set of all Boolean input combinations, for which \(i \)th output evaluates to “don’t care” (X)
\(\mathcal{FS} \) Set of all possible fault scenarios in \(\mathcal{A} \), under fault model \(\mathcal{J} \)
\(f \) A fault scenario
\(f(X) \) Boolean function for on-chip control
\(f_i \) \(i \)th input fluid in the fluid mixture
\(fI(f) \) Boolean variable that evaluates the connectivity of the architecture, under a fault scenario \(f \)
\(\mathcal{G} \) Biochemical application graph model
\(G_G(V_G, E_G) \) Grid graph, where \(V_G \) is the set of cells in the routing grid, and \(E_G \) is the set of edges defining adjacent cells
\(G_C(V_C, E_C) \) Coloring graph for pin-count minimization, where \(V_C \) are the vertices and \(E_C \) are the edges
\(H \) Geometric dimensions of a component
\(H(G_G) \) The neighborhood solutions of grid graph \(G_G \)
\(\text{Heater}_i \) Heater component in the biochip architecture
\(I_A(e_{uv}, e_{pq}) \) Intersection function between routes \(e_{uv} \) and \(e_{pq} \)
\(I(e) \) List of edges that intersect \(e \)
\(I_R(c_i, c_j) \) Set of intersection cells between adjacent routing grid cells, \(c_i \) and \(c_j \)
\(\text{Ini}_i \) Input port (reservoir) in the biochip architecture
\(\mathcal{J} \) Fault model
\(\mathcal{K} \) Finite set of routing constraints for \(\mathcal{A} \)
\(K_i \) One of the routing constraints in \(\mathcal{K} \), which is a finite set of flow paths that are mutually exclusive with the flow path \(F_i \in \mathcal{T} \)
\(\mathcal{L} \) Component model library
\(L(m) \) Set of all vertices of the subject tree corresponding to leaves of pattern trees for \(m \in \mathcal{M}(v) \)
\(L_A \) The approximated total length of the routes, found as the sum of the Manhattan lengths of all edges
\(L_M \) Squared two-dimensional Manhattan distance
\(L_R \) Total length of all routes in \(\mathcal{C} \)
\(L_R(E) \) The total length of routes in \(R(E) \)
\(L_R(E) \) The total length of routes in \(R'(E) \)
\(\mathcal{M} \) Finite set of components in an architecture
\(M_l \) One of the components in \(\mathcal{M} \)
\(M(v_i,v_j) \) Manhattan distance between \(v_i \) and \(v_j \) in the routing grid
\(M(v) \) Set of all matching pattern trees in the Tree Covering Algorithm
\(\text{Mixer}_l \) Mixer component in the biochip architecture
\(\text{Met}_i \) Metering component in the biochip architecture
\(\mathcal{N} \) Finite set of vertices in \(A \)
\(\mathcal{N}(E) \) Number of intersections for edges \(E \) in solution \(G'_G \)
\(\mathcal{N}'(E) \) Number of intersections for edges \(E \) in solution \(G'_G \)
\(N_A \) Total number of intersections of channels
\(N_i \) One of the vertices in \(\mathcal{N} \)
\(N_R \) Total number of flow channel intersections
\(N_R(E) \) The number of intersections that are removed when routes \(R(E) \) are removed from \(G'_G \)
\(N'_R(E) \) The number of intersections that are introduced when the routes in \(R'(E) \) are added to \(G'_G \)
\(\emptyset \) Finite set of vertices in \(\mathcal{G} \)
\(O_l \) Operation in the application, one of the vertices in \(\emptyset \)
\(O_E(c) \) Overlap contribution for cell, \(c \), in \(C_{R(E)} \)
\(\text{Out}_i \) Output port in the biochip architecture
\(p \) A path in the routing grid
\(\mathcal{P} \) Set of operational phases of a component
\(P_R^2 \) Smallest power of two, greater than \(R \)
\(R \) Total sum of desired mixing fluid ratios
\(r(e) \) Set of cells for the route corresponding to connection \(e \)
\(R(E) \) The set of routes corresponding to edges in \(E \) for solution \(G'_G \)
\(\text{Res}_i \) A reservoir in the biochip architecture
\(R'(E) \) The set of routes corresponding to edges in \(E \) for solution \(G'_G \)
\(r_i \) Mixing ratios specified in the biochemical application
\(\mathcal{R}_f \) Flow channel routing
\(\mathcal{R}_c \) Control channel routing
\(\mathcal{R}_E \) Resource constraints for the allocation task
\(RL \) Ready list of operations for scheduling
\(\mathcal{S} \) Finite set of switches in the biochip architecture \(A \)
\(S_A \) The approximated total squared route length, found as the sum of the squares of the Manhattan lengths of all edges
\(S_i \) One of the switches in \(\mathcal{S} \)
\(S_R \) Total squared length of all routes in \(\mathcal{G} \)
\(\text{Storage}_i \) Storage component in the biochip architecture
\(t \) Type of fault
Temperature a parameter in the Simulated Annealing Algorithm; T_0 is the initial temperature and $T_{termination}$ is the termination temperature

$T(V_T, E_T)$ Subject tree used in the Tree Covering Algorithm

t_{start} Start time of operation O_i

t_{finish} Finish time of operation O_i

Q_i Biochip control input signals used as input for the on-chip control circuits

u Pattern graph for the Tree Matching Algorithm

\mathcal{U} Allocation of architectural components

v Subject graph for the Tree Matching Algorithm

v_i A vertex in graph G_G that represents cell c_i in the routing grid

V_i Function mapping integer variables in the Aqua code to integer values

V_f Function mapping fluid variables in the Aqua code to operations in the application graph G

\mathcal{V}_F Finite set of valve faults

$VF(N, w, t)$ Valve fault w in component N, of type t

v_{max} Maximum number of valve faults that can occur in A, during fabrication

V_R The total overlap of flow channel intersection

$V'_R(E)$ Amount of overlap introduced from solution G_G to G'_G

w_i Waste outlet in the biochip architecture

X Scheduling and fluid routing information

Y One-dimensional Boolean space

\mathcal{Z} Biochip architecture layer model for placement and routing

\mathcal{Z}_F Biochip architecture fault model

Z_i Control signal Boolean value for valves, which is an output of an on-chip biochip control circuit

Z_f Placement of components in the flow layer

Z_c Placement of valves in the control layer

$Z(c)$ Set of all occupants of a routing grid cell c

$Z_R(c)$ Set of routes at routing grid cell c

$Z_{e \in R(E)}(c)$ The set of routes at cell c that are in $R(E)$

$\alpha(T)$ The temperature reduction function in the Simulated Annealing Algorithm

$\delta(f)$ Application completion time under a fault scenario f

δ_G Completion time of application G

Δ Cost increase from previous solution to current solution, s the initial solution is denoted with s_0

Ψ Implementation model

ΔV_R Change in overlap among flow channels in the architecture
Notations

η Control logic (valve actuation sequence)
ϕ Mapping of the application (binding and scheduling) onto A
θ_i Set of available components for O_i
ρ_i Rounding error for mixing
σ_E Cumulative rounding error in fluid ratios for mixing
σ_R Sum of rounding fluid ratios for mixing