More information about this series at http://www.springer.com/series/7412
Advances in Visual Computing

11th International Symposium, ISVC 2015
Las Vegas, NV, USA, December 14–16, 2015
Proceedings, Part I

Springer
Preface

It is with great pleasure that we welcome you to the proceedings of the 11th International Symposium on Visual Computing (ISVC 2015), which was held in Las Vegas, Nevada, USA. ISVC provides a common umbrella for the four main areas of visual computing including vision, graphics, visualization, and virtual reality. The goal is to provide a forum for researchers, scientists, engineers, and practitioners throughout the world to present their latest research findings, ideas, developments, and applications in the broader area of visual computing.

This year, the program consisted of 16 oral sessions, one poster session, eight special tracks, and six keynote presentations. The response to the call for papers was very good; we received over 260 submissions for the main symposium from which we accepted 80 papers for oral presentation and 35 papers for poster presentation. Special track papers were solicited separately through the Organizing and Program Committees of each track. A total of 43 papers were accepted for oral presentation in the special tracks.

All papers were reviewed with an emphasis on the potential to contribute to the state of the art in the field. Selection criteria included accuracy and originality of ideas, clarity and significance of results, and presentation quality. The review process was quite rigorous, involving two to three independent blind reviews followed by several days of discussion. During the discussion period we tried to correct anomalies and errors that might have existed in the initial reviews. Despite our efforts, we recognize that some papers worthy of inclusion may have not been included in the program. We offer our sincere apologies to authors whose contributions might have been overlooked.

We wish to thank everybody who submitted their work to ISVC 2015 for review. It was because of their contributions that we succeeded in having a technical program of high scientific quality. In particular, we would like to thank the ISVC 2015 area chairs, the organizing institutions (UNR, DRI, LBNL, and NASA Ames), the industrial sponsors (BAE Systems, Intel, Ford, Hewlett Packard, Mitsubishi Electric Research Labs, Toyota, General Electric), the international Program Committee, the special track organizers and their Program Committees, the keynote speakers, the reviewers, and especially the authors who contributed their work to the symposium. In particular, we would like to express our appreciation to MERL and Drs. Jay Thornton and Mike Jones for sponsoring the “best” paper award this year.

We sincerely hope that ISVC 2015 offered participants opportunities for professional growth.

October 2015

George Bebis

ISVC’15 Steering Committee and Area Chairs
Organization

Steering Committee

Bebis George  University of Nevada, Reno, USA
Boyle Richard  NASA Ames Research Center, USA
Parvin Bahram  Lawrence Berkeley National Laboratory, USA
Koracin Darko  Desert Research Institute, USA

Area Chairs

Computer Vision
Pavlidis Ioannis  University of Houston, USA
Feris Rogerio  IBM, USA

Computer Graphics
McGraw Tim  Purdue University, USA
Elendt Mark  Side Effects Software Inc., USA

Virtual Reality
Kopper Regis  Duke University, USA
Ragan Eric  Texas A&M University, USA

Visualization
Ye Zhao  Kent State University, USA
Weber Gunther  Lawrence Berkeley National Laboratory, USA

Publicity
Erol Ali  Eksperta Software, Turkey

Local Arrangements
Morris Brendan  University of Nevada, Las Vegas, USA

Special Tracks
Wang Junxian  Microsoft, USA
Keynote Speakers

Ravi Ramamoorthi  University of California, San Diego, USA
Benjamin Kimia  Brown University, USA
Claudio Silva  New York University, USA
Oncel Tuzel  Mitsubishi Electric Research Laboratories, USA
Evan Suma  University of Southern California, USA
Luc Vincent  Google, USA

International Program Committee

(Area 1) Computer Vision

Abidi Besma  University of Tennessee at Knoxville, USA
Abou-Nasr Mahmoud  Ford Motor Company, USA
Aboutajdine Driss  National Center for Scientific and Technical Research, Morocco
Aggarwal J.K.  University of Texas, Austin, USA
Albu Branzan Alexandra  University of Victoria, Canada
Amayeh Gholamreza  Foveon, USA
Ambardekar Amol  Microsoft, USA
Angelopoulou Elli  University of Erlangen-Nuremberg, Germany
Agouris Peggy  George Mason University, USA
Argyros Antonis  University of Crete, Greece
Asari Vijayan  University of Dayton, USA
Athitsos Vassilis  University of Texas at Arlington, USA
Basu Anup  University of Alberta, Canada
Bekris Kostas  Rutgers University, USA
Bhatia Sanjiv  University of Missouri – St. Louis, USA
Bimber Oliver  Johannes Kepler University Linz, Austria
Bourbakis Nikolaos  Wright State University, USA
Brinkov Valentin  State University of New York, USA
Cavallaro Andrea  Queen Mary, University of London, UK
Charalampidis Dimitrios  University of New Orleans, USA
Chellappa Rama  University of Maryland, USA
Chen Yang  HRL Laboratories, USA
Cheng Hui  Sarnoff Corporation, USA
Cheng Shinko  HRL Labs, USA
Cui Jinshi  Peking University, China
Dagher Issam  University of Balamand, Lebanon
Darbon Jerome  CNRS-Ecole Normale Superieure de Cachan, France
Demirdjian David  Vecna Robotics, USA
Diamantatas Sotirios  Ecole Nationale Superieure de Mecanique et des Microtechniques, France
Duan Ye  University of Missouri – Columbia, USA
Doulamis Anastasios  
Technical University of Crete, Greece

Dowdall Jonathan  
Google, USA

El-Ansari Mohamed  
Ibn Zohr University, Morocco

El-Gammal Ahmed  
University of New Jersey, USA

Eng How Lung  
Institute for Infocomm Research, Singapore

Erol Ali  
ASELSAN, Turkey

Fan Guoliang  
Oklahoma State University, USA

Fan Jialue  
Northwestern University, USA

Ferri Francesc  
Universitat de Valencia, Spain

Ferzli Rony  
Intel, USA

Ferryman James  
University of Reading, UK

Foresti GianLuca  
University of Udine, Italy

Fowlkes Charless  
University of California, Irvine, USA

Fukui Kazuhiro  
The University of Tsukuba, Japan

Galata Aphrodite  
The University of Manchester, UK

Georgescu Bogdan  
Siemens, USA

Goh Wooi-Boon  
Nanyang Technological University, Singapore

Ghouzali Sanna  
King Saud University, Saudi Arabia

Guerra-Filho Gutemberg  
Intel, USA

Guevara Angel Miguel  
University of Porto, Portugal

Gustafson David  
Kansas State University, USA

Hammoud Riad  
BAE Systems, USA

Harville Michael  
Hewlett Packard Labs, USA

He Xiangjian  
University of Technology, Sydney, Australia

Heikkil Janne  
University of Oulu, Finland

Hongbin Zha  
Peking University, China

Hou Zujun  
Institute for Infocomm Research, Singapore

Hua Gang  
IBM T.J. Watson Research Center, USA

and Stevens Institute, USA

Huang Yongzhen  
Chinese Academy of Sciences, China

Imiya Atsushi  
Chiba University, Japan

Kamberov George  
Stevens Institute of Technology, USA

Kampel Martin  
Vienna University of Technology, Austria

Kamberova Gerda  
Hofstra University, USA

Kakadiaris Ioannis  
University of Houston, USA

Kettebekov Sanzhar  
Keane Inc., USA

Kimia Benjamin  
Brown University, USA

Kisacanin Branislav  
Texas Instruments, USA

Klette Reinhard  
Auckland University of Technology, New Zealand

Kokkinos Iasonas  
Ecole Centrale de Paris, France

Kollias Stefanos  
National Technical University of Athens, Greece

Komodakis Nikos  
Ecole Centrale de Paris, France

Kosmopoulos Dimitrios  
Technical Educational Institute of Crete, Greece

Kozintsev Igor  
Intel, USA

Kuno Yoshinori  
Saitama University, Japan

Kim Kyungnam  
HRL Laboratories, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latecki Longin Jan</td>
<td>Temple University, USA</td>
</tr>
<tr>
<td>Lee D.J.</td>
<td>Brigham Young University, USA</td>
</tr>
<tr>
<td>Levine Martin</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Li Baoxin</td>
<td>Arizona State University, USA</td>
</tr>
<tr>
<td>Li Chunming</td>
<td>Vanderbilt University, USA</td>
</tr>
<tr>
<td>Li Xiaowei</td>
<td>Google Inc., USA</td>
</tr>
<tr>
<td>Lim Ser N.</td>
<td>GE Research, USA</td>
</tr>
<tr>
<td>Lisin Dima</td>
<td>VidoeIQ, USA</td>
</tr>
<tr>
<td>Lee Hwee Kuan</td>
<td>Bioinformatics Institute, A*STAR, Singapore</td>
</tr>
<tr>
<td>Lee Seong-Whan</td>
<td>Korea University, Korea</td>
</tr>
<tr>
<td>Li Shuo</td>
<td>GE Healthcare, Canada</td>
</tr>
<tr>
<td>Lourakis Manolis</td>
<td>ICS-FORTH, Greece</td>
</tr>
<tr>
<td>Loss Leandro</td>
<td>Lawrence Berkeley National Laboratory, USA</td>
</tr>
<tr>
<td>Luo Gang</td>
<td>Harvard University, USA</td>
</tr>
<tr>
<td>Ma Yunqian</td>
<td>Honeywell Labs, USA</td>
</tr>
<tr>
<td>Maeder Anthony</td>
<td>University of Western Sydney, Australia</td>
</tr>
<tr>
<td>Makrogiannis Sokratis</td>
<td>Delaware State University, USA</td>
</tr>
<tr>
<td>Maltoni Davide</td>
<td>University of Bologna, Italy</td>
</tr>
<tr>
<td>Maroulis Dimitris</td>
<td>National University of Athens, Greece</td>
</tr>
<tr>
<td>Maybank Steve</td>
<td>Birkbeck College, UK</td>
</tr>
<tr>
<td>Medioni Gerard</td>
<td>University of Southern California, USA</td>
</tr>
<tr>
<td>Melenchn Javier</td>
<td>Universitat Oberta de Catalunya, Spain</td>
</tr>
<tr>
<td>Metaxas Dimitris</td>
<td>Rutgers University, USA</td>
</tr>
<tr>
<td>Ming Wei</td>
<td>Konica Minolta Laboratory, USA</td>
</tr>
<tr>
<td>Mirmehdi Majid</td>
<td>Bristol University, UK</td>
</tr>
<tr>
<td>Morris Brendan</td>
<td>University of Nevada, Las Vegas, USA</td>
</tr>
<tr>
<td>Mueller Klaus</td>
<td>Stony Brook University, USA</td>
</tr>
<tr>
<td>Muhammad Ghulam</td>
<td>King Saud University, Saudi Arabia</td>
</tr>
<tr>
<td>Mulligan Jeff</td>
<td>NASA Ames Research Center, USA</td>
</tr>
<tr>
<td>Murray Don</td>
<td>Point Grey Research, Canada</td>
</tr>
<tr>
<td>Nait-Charif Hammadi</td>
<td>Bournemouth University, UK</td>
</tr>
<tr>
<td>Nefian Ara</td>
<td>NASA Ames Research Center, USA</td>
</tr>
<tr>
<td>Nguyen Quang Vinh</td>
<td>University of Western Sydney, Australia</td>
</tr>
<tr>
<td>Nicolescu Mircea</td>
<td>University of Nevada, Reno, USA</td>
</tr>
<tr>
<td>Nixon Mark</td>
<td>University of Southampton, UK</td>
</tr>
<tr>
<td>Nolle Lars</td>
<td>The Nottingham Trent University, UK</td>
</tr>
<tr>
<td>Ntalianis Klimis</td>
<td>National Technical University of Athens, Greece</td>
</tr>
<tr>
<td>Or Siu Hang</td>
<td>The Chinese University of Hong Kong, Hong Kong, SAR China</td>
</tr>
<tr>
<td>Papadourakis George</td>
<td>Technological Education Institute, Greece</td>
</tr>
<tr>
<td>Papanikolopoulos Nikolaos</td>
<td>University of Minnesota, USA</td>
</tr>
<tr>
<td>Pati Peeta Basa</td>
<td>CoreLogic, India</td>
</tr>
<tr>
<td>Patras Ioannis</td>
<td>Queen Mary University, London, UK</td>
</tr>
<tr>
<td>Pavlidis Ioannis</td>
<td>University of Houston, USA</td>
</tr>
<tr>
<td>Petrakis Euripides</td>
<td>Technical University of Crete, Greece</td>
</tr>
<tr>
<td>Peyronnet Sylvain</td>
<td>LRI, University of Paris-Sud, France</td>
</tr>
</tbody>
</table>
Tsui T.J. Chinese University of Hong Kong, Hong Kong, SAR China
Trucco Emanuele University of Dundee, UK
Tubaro Stefano Politecnico di Milano, Italy
Uhl Andreas Salzburg University, Austria
Velastin Sergio Kingston University London, UK
Veropoulos Kostantinos GE Healthcare, Greece
Verri Alessandro Università di Genova, Italy
Wang Junxian Microsoft, USA
Wang Song University of South Carolina, USA
Wang Yunhong Beihang University, China
Webster Michael University of Nevada, Reno, USA
Wolff Larry Equinox Corporation, USA
Wong Kenneth The University of Hong Kong, Hong Kong, SAR China
Xiang Tao Queen Mary, University of London, UK
Xu Meihe University of California at Los Angeles, USA
Yang Ming-Hsuan University of California at Merced, USA
Yang Ruigang University of Kentucky, USA
Yin Lijun SUNY at Binghamton, USA
Yu Ting GE Global Research, USA
Yu Zeyun University of Wisconsin-Milwaukee, USA
Yuan Chunrong University of Tübingen, Germany
Zabulis Xenophon ICS-FORTH, Greece
Zervakis Michalis Technical University of Crete, Greece
Zhang Jian Wake Forest University, USA
Zheng Yuanjie University of Pennsylvania, USA
Zhang Yan Delphi Corporation, USA
Ziou Djemel University of Sherbrooke, Canada

(Area 2) Computer Graphics

Abd Rahni Mt. Piah Universiti Sains Malaysia, Malaysia
Abram Greg Texas Advanced Computing Center, USA
Adamo-Villani Nicoletta Purdue University, USA
Agu Emmanuel Worcester Polytechnic Institute, USA
Andres Eric Laboratory XLIM-SIC, University of Poitiers, France
Artusi Alessandro GiLab, Universitat de Girona, Spain
Bacic George Hong Kong Poly, Hong Kong, SAR China
Balcisoy Selim Saffet Sabanci University, Turkey
Barneva Reneta State University of New York, USA
Belyaev Reneta Heriot-Watt University, UK
Benes Bedrich Purdue University, USA
Berberich Eric Max Planck Institute, Germany
Bilalis Nicholas Technical University of Crete, Greece
Bimber Oliver Johannes Kepler University Linz, Austria
Rudomin Isaac
Barcelona Supercomputing Center, Spain

Rushmeier Holly
Yale University, USA

Sander Pedro
The Hong Kong University of Science and Technology, Hong Kong, SAR China

Sapidis Nickolas
University of Western Macedonia, Greece

Sarfraz Muhammad
Kuwait University, Kuwait

Scateni Riccardo
University of Cagliari, Italy

Sequin Carlo
University of California – Berkeley, USA

Shead Timothy
Sandia National Laboratories, USA

Sourin Alexei
Nanyang Technological University, Singapore

Stamminger Marc
REVES/Inria, France

Su Wen-Poh
Griffith University, Australia

Szumilas Lech
Research Institute for Automation and Measurements, Poland

Tan Kar Han
Hewlett Packard, USA

Tarini Marco
University of Insubria (Varese), Italy

Teschner Matthias
University of Freiburg, Germany

Tong Yiying
Michigan State University, USA

Torchelsen Rafael Piccin
Universidade Federal da Fronteira Sul, Brazil

Umlauf Georg
HTWG Constance, Germany

Vanegas Carlos
University of California at Berkeley, USA

Wald Ingo
University of Utah, USA

Walter Marcelo
UFRGS, Brazil

Wimmer Michael
Technical University of Vienna, Austria

Wylie Brian
Sandia National Laboratory, USA

Wyman Chris
University of Calgary, Canada

Wyvill Brian
University of Iowa, USA

Yang Qing-Xiong
University of Illinois at Urbana, Champaign, USA

Yang Ruigang
University of Kentucky, USA

Ye Duan
University of Missouri – Columbia, USA

Yi Beifang
Salem State University, USA

Yin Lijun
Binghamton University, USA

Yoo Terry
National Institutes of Health, USA

Yuan Xiaoru
Peking University, China

Zhang Jian Jun
Bournemouth University, UK

Zeng Jianmin
Nanyang Technological University, Singapore

Zara Jiri
Czech Technical University in Prague, Czech Republic

Zeng Wei
Florida Institute of Technology, USA

Zordan Victor
University of California at Riverside, USA

(Area 3) Virtual Reality

Alcaniz Mariano
Technical University of Valencia, Spain

Arns Laura
Purdue University, USA

Bacim Felipe
Virginia Tech, USA

Balcisoy Selim
Sabanci University, Turkey
Behringer Reinhold
Leeds Metropolitan University, UK
Benes Bedrich
Purdue University, USA
Bilalis Nicholas
Technical University of Crete, Greece
Billinghurst Mark
HIT Lab, New Zealand
Blach Roland
Fraunhofer Institute for Industrial Engineering, Germany
Blom Kristopher
University of Barcelona, Spain
Bogdanovych Anton
University of Western Sydney, Australia
Brady Rachael
Duke University, USA
Brega Jose Remo Ferreira
Universidade Estadual Paulista, Brazil
Brown Ross
Queensland University of Technology, Australia
Bues Matthias
Fraunhofer IAO in Stuttgart, Germany
Capin Tolga
Bilkent University, Turkey
Chen Jian
Brown University, USA
Cooper Matthew
University of Linkoping, Sweden
Coquillart Sabine
Inria, France
Craig Alan
NCSA University of Illinois at Urbana-Champaign, USA

Cremer Jim
University of Iowa, USA
Edmunds Timothy
University of British Columbia, Canada
Egges Arjan
Universiteit Utrecht, The Netherlands
Encarnaio L. Miguel
ACT Inc., USA
Figueroa Pablo
Universidad de los Andes, Colombia
Friedman Doron
IDC, Israel
Fuhrmann Anton
VRVis Research Center, Austria
Gregory Michelle
Pacific Northwest National Lab, USA
Gupta Satyandra K.
University of Maryland, USA
Haller Michael
FH Hagenberg, Austria
Hamza-Lup Felix
Armstrong Atlantic State University, USA
Herbelin Bruno
EPFL, Switzerland
Hinkenjann Andre
Bonn-Rhein-Sieg University of Applied Sciences, Germany

Hollerer Tobias
University of California at Santa Barbara, USA
Huang Jian
University of Tennessee at Knoxville, USA
Huang Zhiyong
Institute for Infocomm Research (I2R), Singapore
Julier Simon J.
University College London, UK
Johnsen Kyle
University of Georgia, USA
Jones Adam
Clemson University, USA
Kiyokawa Kiyoshi
Osaka University, Japan
Klosowski James
AT&T Labs, USA
Kohli Luv
InnerOptic, USA
Kopper Regis
Duke University, USA
Kozintsev Igor
Samsung, USA
Kuhlen Torsten
RWTH Aachen University, Germany
Laha Bireswar
Stony Brook University, USA
Lee Cha
University of California, Santa Barbara, USA
Liere Robert van CWI, The Netherlands
Livingston A. Mark Naval Research Laboratory, USA
Luo Xun Qualcomm Research, USA
Malzbender Tom Hewlett Packard Labs, USA
MacDonald Brendan National Institute for Occupational Safety and Health, USA
Molineros Jose Teledyne Scientific and Imaging, USA
Muller Stefan University of Koblenz, Germany
Owen Charles Michigan State University, USA
Paelke Volker University of Ostwestfalen-Lippe, Germany
Peli Eli Harvard University, USA
Pettifer Steve The University of Manchester, UK
Pronost Nicolas Utrecht University, The Netherlands
Pugmire Dave Los Alamos National Lab, USA
Qian Gang Arizona State University, USA
Raffin Bruno Inria, France
Ragan Eric Oak Ridge National Laboratory, USA
Rodello Ildeberto University of Sao Paulo, Brazil
Roth Thorsten Bonn-Rhein-Sieg University of Applied Sciences, Germany
Sandor Christian Nara Institute of Science and Technology, Japan
Sapidis Nickolas University of Western Macedonia, Greece
Schulze Jurgen University of California – San Diego, USA
Sherman Bill Indiana University, USA
Singh Gurjot Virginia Tech, USA
Slavik Pavel Czech Technical University in Prague, Czech Republic
Sourin Alexei Nanyang Technological University, Singapore
Steinicke Frank University of Würzburg, Germany
Suma Evan University of Southern California, USA
Stamminger Marc REVES/Inria, France
Srikanth Manohar Indian Institute of Science, India
Wald Ingo University of Utah, USA
Whitted Turner TWI Research, UK
Wong Kin Hong The Chinese University of Hong Kong, Hong Kong, SAR China
Yu Ka Chun Denver Museum of Nature and Science, USA
Yuan Chunrong University of Tübingen, Germany
Zachmann Gabriel Clausthal University, Germany
Zara Jiri Czech Technical University in Prague, Czech Republic
Zhang Hui Indiana University, USA
Zhao Ye Kent State University, USA

(Area 4) Visualization
AAndrienko Gennady Fraunhofer Institute IAIS, Germany
Avila Lisa Kitware, USA
Apperley Mark  University of Waikato, New Zealand
Balizs Csibfalvi  Budapest University of Technology and Economics, Hungary
Brady Rachael  Duke University, USA
Benes Bedrich  Purdue University, USA
Bilalis Nicholas  Technical University of Crete, Greece
Bonneau Georges-Pierre  Grenoble University, France
Bruckner Stefan  Vienna University of Technology, Austria
Brown Ross  Queensland University of Technology, Australia
Bihler Katja  VRVis Research Center, Austria
Burch Michael  University of Stuttgart, Germany
Callahan Steven  University of Utah, USA
Chen Jian  Brown University, USA
Chen Min  University of Oxford, UK
Chevalier Fanny  Inria, France
Chiang Yi-Jen  New York University, USA
Cooper Matthew  University of Linkoping, Sweden
Chourasia Amit  University of California – San Diego, USA
Crossno Patricia  Sandia National Laboratories, USA
Daniels Joel  University of Utah, USA
Dick Christian  Technical University of Munich, Germany
Duan Ye  University of Missouri-Columbia, USA
Dwyer Tim  Monash University, Australia
Entezari Alireza  University of Florida, USA
Ertl Thomas  University of Stuttgart, Germany
De Floriani Leila  University of Maryland, USA
Geist Robert  Clemson University, USA
Gotz David  University of North Carolina at Chapel Hill, USA
Grinstein Georges  University of Massachusetts Lowell, USA
Goebel Randy  University of Alberta, Canada
Gregory Michelle  Pacific Northwest National Lab, USA
Hadwiger Helmut Markus  KAUST, Saudi Arabia
Hagen Hans  Technical University of Kaiserslautern, Germany
Hamza-Lup Felix  Armstrong Atlantic State University, USA
Healey Christopher  North Carolina State University at Raleigh, USA
Hochheiser Harry  University of Pittsburgh, USA
Hollerer Tobias  University of California at Santa Barbara, USA
Hong Lichan  University of Sydney, Australia
Hong Seokhee  Palo Alto Research Center, USA
Hotz Ingrid  Zuse Institute Berlin, Germany
Huang Zhiyong  Institute for Infocomm Research (I2R), Singapore
Jiang Ming  Lawrence Livermore National Laboratory, USA
Joshi Alark  Yale University, USA
Julier Simon J.  University College London, UK
Koch Steffen  University of Stuttgart, Germany
Laramee Robert  Swansea University, UK
Weinkauf Tino  
Max-Planck-Institut für Informatik, Germany

Weiskopf Daniel  
University of Stuttgart, Germany

Wischgoll Thomas  
Wright State University, USA

Wongsuphasawat Krist  
Twitter Inc., USA

Wylie Brian  
Sandia National Laboratory, USA

Wu Yin  
Indiana University, USA

Xu Wei  
Brookhaven National Lab, USA

Yeasin Mohammed  
Memphis University, USA

Yuan Xiaoru  
Peking University, China

Zachmann Gabriel  
Clausthal University, Germany

Zhang Hui  
Indiana University, USA

Zhao Jian  
University of Toronto, USA

Zhao Ye  
Kent State University, USA

Zheng Ziyi  
Stony Brook University, USA

Zhukov Leonid  
Caltech, USA

Special Tracks

1. Computational Bioimaging Organizers
   Tavares João Manuel R.S.  
   University of Porto, Portugal
   Natal Jorge Renato  
   University of Porto, Portugal

2. 3D Surface Reconstruction, Mapping, and Visualization Organizers
   Nefian Ara  
   Carnegie Mellon University/NASA Ames Research Center, USA
   Edwards Laurence  
   NASA Ames Research Center, USA
   Huertas Andres  
   NASA Jet Propulsion Lab, USA

3. Observing Humans Organizers
   Savakis Andreas  
   Rochester Institute of Technology, USA
   Argyros Antonis  
   University of Crete, Greece
   Asari Vijay  
   University of Dayton, USA

4. Advancing Autonomy for Aerial Robotics Organizers
   Alexis Kostas  
   ETH Zurich, Switzerland
   Chli Margarita  
   University of Edinburgh, UK
   Achtelik Markus  
   ETH Zurich, Switzerland
   Kottas Dimitrios  
   University of Minnesota, USA
   Bebis George  
   University of Nevada, Reno, USA

5. Spectral Imaging Processing and Analysis for Environmental, Engineering and Industrial Applications Organizers
   Doulamis Anastasios  
   (Tasos)  
   National Technical University of Athens, Greece
   Loupos Konstantinos  
   Institute of Communications and Computer Systems, Greece
6. Unconstrained Biometrics: Challenges and Applications
Organizers
Proena Hugo  University of Beira Interior, Portugal
Ross Arun     Michigan State University, USA

7. Intelligent Transportation Systems
Organizers
Ambardekar  Amol, Microsoft, USA
Morris Brendan University of Nevada, Las Vegas, USA

8. Visual Perception and Robotic Systems
Organizers
La Hung      University of Nevada, Reno, USA
Sheng Weihua Oklahoma State University, USA
Fan Guoliang Oklahoma State University, USA
Kuno Yoshinori Saitama University, Japan
Ha Quang     University of Technology Sydney, Australia
Tran Anthony (Tri) Nanyang Technological University, Singapore
Dinh Kien    Rutgers University, USA

Organizing Institutions and Sponsors

![Institution Logos]
Contents – Part I

ST: Computational Bioimaging

Graph-Based Visualization of Neuronal Connectivity Using Matrix Block Partitioning and Edge Bundling ................................................................. 3
Tim McGraw

Fuzzy Skeletonization Improves the Performance of Characterizing Trabecular Bone Micro-architecture ................................................................. 14
Cheng Chen, Dakai Jin, and Punam K. Saha

Thermal Infrared Image Processing to Assess Heat Generated by Magnetic Nanoparticles for Hyperthermia Applications ............................ 25
Raquel O. Rodrigues, Helder T. Gomes, Rui Lima, Adrián M.T. Silva,
Pedro J.S. Rodrigues, Pedro B. Tavares, and João Manuel R.S. Tavares

Visualization Techniques for the Developing Chicken Heart .................. 35
Ly Phan, Cindy Grimm, and Sandra Rugonyi

InVesalius: An Interactive Rendering Framework for Health Care Support . . . 45
Paulo Amorim, Thiago Moraes, Jorge Silva, and Helio Pedrini

Computer Graphics

As-Rigid-As-Possible Character Deformation Using Point Handles .......... 57
Zhiping Luo, Remco C. Veltkamp, and Arjan Egges

Image Annotation Incorporating Low-Rankness, Tag and Visual Correlation and Inhomogeneous Errors ........................................... 71
Yuqing Hou

Extracting Surface Geometry from Particle-Based Fracture Simulations ..... 82
Chakrit Watcharopas, Yash Sapra, Robert Geist, and Joshua A. Levine

Time-Varying Surface Reconstruction of an Actor’s Performance .......... 92
Ludovic Blache, Mathieu Desbrun, Céline Loscos, and Laurent Lucas

Interactive Procedural Building Generation Using Kaleidoscopic
Iterated Function Systems ................................................................. 102
Tim McGraw
## Motion and Tracking

Motion Priors Estimation for Robust Matching Initialization in Automotive Applications ........................................ 115
\textit{Nolang Fanani, Marc Barnada, and Rudolf Mester}

Multi-target Tracking Using Sample-Based Data Association for Mixed Images ........................................ 127
\textit{Ting-hao Zhang, Hsiao-Tzu Chen, and Chih-Wei Tang}

A Hierarchical Frame-by-Frame Association Method Based on Graph Matching for Multi-object Tracking ........................................ 138
\textit{Sourav Garg, Ehtesham Hassan, Swagat Kumar, and Prithwijit Guha}

Experimental Evaluation of Rigid Registration Using Phase Correlation Under Illumination Changes ................. 151
\textit{Alfonso Alba and Edgar Arce-Santana}

Multi-modal Computer Vision for the Detection of Multi-scale Crowd Physical Motions and Behavior in Confined Spaces ............................. 162
\textit{Zoheir Sabeur, Nikolaos Doulamis, Lee Middleton, Banafshe Arbab-Zavar, Gianluca Correndo, and Aggelos Amditis}

HMM Based Evaluation of Physical Therapy Movements Using Kinect Tracking ........................................ 174
\textit{Carlos Palma, Augusto Salazar, and Francisco Vargas}

## Segmentation

Segmentation of Partially Overlapping Nanoparticles Using Concave Points ... 187
\textit{Sahar Zafari, Tuomas Eerola, Jouni Sampo, Heikki Kälviäinen, and Heikki Haario}

Temporally Object-Based Video Co-segmentation .............................. 198
\textit{Michael Ying Yang, Matthias Reso, Jun Tang, Wentong Liao, and Bodo Rosenhahn}

An Efficient Non-parametric Background Modeling Technique with CUDA Heterogeneous Parallel Architecture .............. 210
\textit{Brandon Wilson and Alireza Tavakkoli}

Finding the N-cuts of Watershed Partitions for Image Segmentation ..... 221
\textit{Chao Zhang and Sokratis Makrogiannis}

A Novel Word Segmentation Method Based on Object Detection and Deep Learning ........................................ 231
\textit{Tomas Wilkinson and Anders Brun}
## Recognition

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating the Dominant Orientation of an Object Using Image</td>
<td>243</td>
</tr>
<tr>
<td>Segmentation and Principal Component Analysis</td>
<td></td>
</tr>
<tr>
<td>Sravan Bhagavatula and Nashlie Sephus</td>
<td></td>
</tr>
<tr>
<td>Label Propagation for Large Scale 3D Indoor Scenes</td>
<td>253</td>
</tr>
<tr>
<td>Keke Tang, Zhe Zhao, and Xiaoping Chen</td>
<td></td>
</tr>
<tr>
<td>Symmetry Similarity of Human Perception to Computer Vision Operators</td>
<td>265</td>
</tr>
<tr>
<td>Peter M. Forrest and Mark S. Nixon</td>
<td></td>
</tr>
<tr>
<td>UT-MARO: Unscented Transformation and Matrix Rank Optimization for Moving Objects Detection in Aerial Imagery</td>
<td>275</td>
</tr>
<tr>
<td>Agwad ElTantawy and Mohamed S. Shehata</td>
<td></td>
</tr>
<tr>
<td>Architectural Style Classification of Building Facade Towers</td>
<td>285</td>
</tr>
<tr>
<td>Gayane Shalunts</td>
<td></td>
</tr>
</tbody>
</table>

## Visualization

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualizing Document Image Collections Using Image-Based Word Clouds</td>
<td>297</td>
</tr>
<tr>
<td>Tomas Wilkinson and Anders Brun</td>
<td></td>
</tr>
<tr>
<td>Guided Structure-Aligned Segmentation of Volumetric Data</td>
<td>307</td>
</tr>
<tr>
<td>Michelle Holloway, Anahita Sanandaji, Deniece Yates, Amali Krigger, Ross Sowell, Ruth West, and Cindy Grimm</td>
<td></td>
</tr>
<tr>
<td>Examining Classic Color Harmony Versus Translucency Color Guidelines for Layered Surface Visualization</td>
<td>318</td>
</tr>
<tr>
<td>Sussan Einakian and Timothy S. Newman</td>
<td></td>
</tr>
<tr>
<td>Guidance on the Selection of Central Difference Method Accuracy in Volume Rendering</td>
<td>328</td>
</tr>
<tr>
<td>Kazuhiro Nagai and Paul Rosen</td>
<td></td>
</tr>
<tr>
<td>Deep Learning of Neuromuscular Control for Biomechanical Human Animation</td>
<td>339</td>
</tr>
<tr>
<td>Masaki Nakada and Demetri Terzopoulos</td>
<td></td>
</tr>
<tr>
<td>NEURONAV: A Tool for Image-Guided Surgery - Application to Parkinson’s Disease</td>
<td>349</td>
</tr>
<tr>
<td>José Bestier Padilla, Ramiro Arango, Hernán F. García, Hernán Dario Vargas Cardona, Álvaro A. Orozco, Mauricio A. Álvarez, and Enrique Guijarro</td>
<td></td>
</tr>
</tbody>
</table>
XXVI  Contents – Part I

ST: 3D Mapping, Modeling and Surface Reconstruction

Generation of 3D/4D Photorealistic Building Models. The Testbed Area for 4D Cultural Heritage World Project: The Historical Center of Calw (Germany) .......................... 361
José Balsa-Barreiro and Dieter Fritsch

Visual Autonomy via 2D Matching in Rendered 3D Models ............... 373
D. Tenorio, V. Rivera, J. Medina, A. Leondar, M. Gaumer, and Z. Dodds

Reconstruction of Face Texture Based on the Fusion of Texture Patches .... 386
Jérôme Manceau, Renaud Séguier, and Catherine Soladié

Human Body Volume Recovery from Single Depth Image .................. 396
Jaeho Yi, Seungkyu Lee, Sujung Bae, and Moonsik Jeong

Dense Correspondence and Optical Flow Estimation Using Gabor,
Schmid and Steerable Descriptors ........................................ 406
Ahmadreza Baghaie, Roshan M. D’Souza, and Zeyun Yu

ST: Advancing Autonomy for Aerial Robotics

Efficient Algorithms for Indoor MAV Flight Using Vision and Sonar Sensors .................................................. 419
Kyungnam Kim, David J. Huber, Jiejun Xu, and Deepak Khosla

Victim Detection from a Fixed-Wing UAV: Experimental Results ........ 432
Anurag Sai Vempati, Gabriel Agamennoni, Thomas Stastny, and Roland Siegwart

Autonomous Robotic Aerial Tracking, Avoidance, and Seeking of a Mobile Human Subject ........................................ 444
Christos Papachristos, Dimos Tzoumanikas, Kostas Alexis, and Anthony Tzes

Inspection Operations Using an Aerial Robot Powered-over-Tether by a Ground Vehicle ............................................. 455
Lida Zikou, Christos Papachristos, Kostas Alexis, and Anthony Tzes

Autonomous Guidance for a UAS Along a Staircase ....................... 466
Olivier De Meyst, Thijs Goethals, Haris Balta, Geert De Cubber, and Rob Haelterman

Nonlinear Controller of Quadcopters for Agricultural Monitoring ........ 476
Víctor H. Andaluz, Edison López, David Manobanda, Franklin Guamushig, Fernando Chicaiza, Jorge S. Sánchez, David Rivas, Fabricio Pérez, Carlos Sánchez, and Vicente Morales
Medical Imaging

Groupwise Shape Correspondences on 3D Brain Structures
Using Probabilistic Latent Variable Models ........................................ 491
Hernán F. García, Mauricio A. Álvarez, and Álvaro Orozco

Automatic Segmentation of Extraocular Muscles Using Superpixel
and Normalized Cuts ................................................................. 501
Qi Xing, Yifan Li, Brendan Wiggins, Joseph L. Demer, and Qi Wei

More Usable V-EGI for Volumetric Dataset Registration .................. 511
Chun Dong and Timothy S. Newman

A Robust Energy Minimization Algorithm for MS-Lesion Segmentation .... 521
Zhaoxuan Gong, Dazhe Zhao, Chunming Li, Wenjun Tan, and Christos Davatzikos

Impact of the Number of Atlases in a Level Set Formulation
of Multi-atlas Segmentation ...................................................... 531
Yihua Song, Zhaoxuan Gong, Dazhe Zhao, Chaolu Feng, and Chunming Li

Probabilistic Labeling of Cerebral Vasculature on MR Angiography .... 538
Benjamin Quachtran, Sunil Sheth, Jeffrey L. Saver, David S. Liebeskind, and Fabien Scalzo

Virtual Reality

Lateral Touch Detection and Localization for Interactive,
Augmented Planar Surfaces ......................................................... 551
A. Ntelidakis, X. Zabulis, D. Grammenos, and P. Koutlemanis

A Hybrid Real-Time Visual Tracking Using Compressive RGB-D Features . 561
Mengyuan Zhao, Heng Luo, Ahmad P. Tafti, Yuanchang Lin, and Guotian He

High-Quality Consistent Illumination in Mobile Augmented Reality
by Radiance Convolution on the GPU ......................................... 574
Peter Kän, Johannes Unterguggenberger, and Hannes Kaufmann

Efficient Hand Articulations Tracking Using Adaptive Hand Model
and Depth Map ................................................................. 586
Byeongkeun Kang, Yeejin Lee, and Truong Q. Nguyen

Eye Gaze Correction with a Single Webcam Based on Eye-Replacement ... 599
Yalun Qin, Kuo-Chin Lien, Matthew Turk, and Tobias Höllerer
### ST: Observing Humans

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Local Auto-Correlations and Extreme Learning Machine for Depth-Based Activity Recognition</td>
<td>613</td>
</tr>
<tr>
<td><em>Chen Chen, Zhenjie Hou, Baochang Zhang, Junjun Jiang, and Yun Yang</em></td>
<td></td>
</tr>
<tr>
<td>An RGB-D Camera Based Walking Pattern Detection Method for Smart Rollators</td>
<td>624</td>
</tr>
<tr>
<td><em>He Zhang and Cang Ye</em></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Vision-Based Human Activity Recognition in Dense Trajectory Framework</td>
<td>634</td>
</tr>
<tr>
<td><em>Hirokatsu Kataoka, Yoshimitsu Aoki, Kenji Iwata, and Yutaka Satoh</em></td>
<td></td>
</tr>
<tr>
<td>Analyzing Activities in Videos Using Latent Dirichlet Allocation and Granger Causality</td>
<td>647</td>
</tr>
<tr>
<td><em>Dalwinder Kular and Eraldo Ribeiro</em></td>
<td></td>
</tr>
<tr>
<td>Statistical Adaptive Metric Learning for Action Feature Set Recognition in the Wild.</td>
<td>657</td>
</tr>
<tr>
<td><em>Shuanglu Dai and Hong Man</em></td>
<td></td>
</tr>
</tbody>
</table>

### ST: Spectral Imaging Processing

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Discriminative Spectral Bands for Material Classification</td>
<td>671</td>
</tr>
<tr>
<td><em>Chao Liu, Sandra Skaff, and Manuel Martinello</em></td>
<td></td>
</tr>
<tr>
<td>A Deep Belief Network for Classifying Remotely-Sensed Hyperspectral Data .............................</td>
<td>682</td>
</tr>
<tr>
<td><em>Justin H. Le, Ali Pour Yazdanpanah, Emma E. Regentova, and Venkatesan Muthukumar</em></td>
<td></td>
</tr>
<tr>
<td>Variational Inference for Background Subtraction in Infrared Imagery ...................................</td>
<td>693</td>
</tr>
<tr>
<td><em>Konstantinos Makantasis, Anastasios Doulamis, and Konstantinos Loupos</em></td>
<td></td>
</tr>
<tr>
<td>Image Based Approaches for Tunnels’ Defects Recognition via Robotic Inspectors ........................</td>
<td>706</td>
</tr>
<tr>
<td><em>Eftychios Protopapadakis and Nikolaos Doulamis</em></td>
<td></td>
</tr>
<tr>
<td>Deep Learning-Based Man-Made Object Detection from Hyperspectral Data ...................................</td>
<td>717</td>
</tr>
<tr>
<td><em>Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios Doulamis, and Konstantinos Loupos</em></td>
<td></td>
</tr>
<tr>
<td>Hyperspectral Scene Analysis via Structure from Motion ....................................................</td>
<td>728</td>
</tr>
<tr>
<td><em>Corey A. Miller and Thomas J. Walls</em></td>
<td></td>
</tr>
</tbody>
</table>
### ST: Intelligent Transportation Systems

Detecting Road Users at Intersections Through Changing Weather Using RGB-Thermal Video .......................... 741  
*Chris Bahnsen and Thomas B. Moeslund*

Safety Quantification of Intersections Using Computer Vision Techniques . . . 752  
*Mohammad Shokrolah Shirazi and Brendan Morris*

Vehicles Detection in Stereo Vision Based on Disparity Map Segmentation and Objects Classification ................................. 762  
*Djamila Dekkiche, Bastien Vincke, and Alain Mérigot*

Traffic Light Detection at Night: Comparison of a Learning-Based Detector and Three Model-Based Detectors .......................... 774  
*Morten B. Jensen, Mark P. Philipsen, Chris Bahnsen, Andreas Møgelmose, Thomas B. Moeslund, and Mohan M. Trivedi*

Modelling and Experimental Study for Automated Congestion Driving . . . . . 784  
*Joseph A. Urhahne, Patrick Piastowski, and Mascha C. van der Voort*

### Visualization

Aperio: A System for Visualizing 3D Anatomy Data Using Virtual Mechanical Tools ................................. 797  
*T. McInerney and D. Tran*

Quasi-Conformal Hybrid Multi-modality Image Registration and its Application to Medical Image Fusion .......................... 809  
*Ka Chun Lam and Lok Ming Lui*

CINAPACT-Splines: A Family of Infinitely Smooth, Accurate and Compactly Supported Splines ................................. 819  
*Bita Akram, Usman R. Alim, and Faramarz F. Samavati*

Vis3D+: An Integrated System for GPU-Accelerated Volume Image Processing and Rendering .......................... 830  
*I. Nisar and T. McInerney*

Ontology-Based Visual Query Formulation: An Industry Experience . . . . . 842  
*Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov, Ernesto Jimenez-Ruiz, Martin Giese, and Ian Horrocks*

### ST: Visual Perception and Robotic Systems

Dynamic Target Tracking and Obstacle Avoidance using a Drone . . . . . 857  
*Alexander C. Woods and Hung M. La*
An Interactive Node-Link Visualization of Convolutional Neural Networks . . . 867
	Adam W. Harley

DPN-LRF: A Local Reference Frame for Robustly Handling Density Differences and Partial Occlusions .................. 878
	Shuichi Akizuki and Manabu Hashimoto

3D Perception for Autonomous Robot Exploration .................. 888
	Jiejun Xu, Kyungnam Kim, Lei Zhang, and Deepak Khosla

Group Based Asymmetry--A Fast Saliency Algorithm ................. 901
	Puneet Sharma and Oddmar Eiksund

Prototype of Super-Resolution Camera Array System ............... 911
	Daiki Hirao and Hitoshi Iyatomi

Author Index ....................................................... 921
## Contents – Part II

### Applications

Hybrid Example-Based Single Image Super-Resolution ................................. 3  
*Yang Xian, Xiaodong Yang, and Yingli Tian*

Automated Habit Detection System: A Feasibility Study ............................... 16  
*Hiroki Misawa, Takashi Obara, and Hitoshi Iyatomi*

Conductor Tutoring Using the Microsoft Kinect ........................................... 24  
*Andrea Salgian, Leighanne Hsu, Nathaniel Milkosky, and David Vickerman*

Lens Distortion Rectification Using Triangulation Based Interpolation ......... 35  
*Burak Benligiray and Cihan Topal*

A Computer Vision System for Automatic Classification of Most Consumed Brazilian Beans ................................................................. 45  
*S.A. Araújo, W.A.L. Alves, P.A. Belan, and K.P. Anselmo*

### 3D Computer Vision

Stereo-Matching in the Context of Vision-Augmented Vehicles .................. 57  
*Waqar Khan and Reinhard Klette*

A Real-Time Depth Estimation Approach for a Focused Plenoptic Camera  .... 70  
*Ross Vasko, Niclas Zeller, Franz Quint, and Uwe Stilla*

Range Image Processing for Real Time Hospital-Room Monitoring .......... 81  
*Alessandro Mecocci, Francesco Micheli, and Claudia Zoppetti*

Real-Time 3-D Surface Reconstruction from Multiple Cameras .................. 93  
*Yongchun Liu, Huajun Gong, and Zhaoxing Zhang*

Stereo Correspondence Evaluation Methods: A Systematic Review ............ 102  
*Camilo Vargas, Ivan Cabezas, and John W. Branch*

### Computer Graphics

Guided High-Quality Rendering ................................................................. 115  
*Thorsten Roth, Martin Weier, Jens Maiero, André Hinkenjann, and Yongmin Li*
User-Assisted Inverse Procedural Facade Modeling and Compressed Image Rendering .................................................. 126
   Huilong Zhuo, Shengchuan Zhou, Bedrich Benes, and David Whittinghill

Facial Fattening and Slimming Simulation Based on Skull Structure .......... 137
   Masahiro Fujisaki and Shigeo Morishima

Many-Lights Real Time Global Illumination Using Sparse Voxel Octree .... 150
   Che Sun and Emmanuel Agu

WebPhysics: A Parallel Rigid Body Simulation Framework for Web Applications ......................................................... 160
   Robert (Bo) Li, Tasneem Brutch, Guodong Rong, Yi Shen, and Chang Shu

Segmentation

A Markov Random Field and Active Contour Image Segmentation Model for Animal Spots Patterns ................................ 173
   Alexander Gómez, German Diez, Jhony Giraldo, Augusto Salazar, and Juan M. Daza

Segmentation of Building Facade Towers ................................................. 185
   Gayane Shalunts

Effective Information and Contrast Based Saliency Detection ................. 195
   Aditi Kapoor, K.K. Biswas, and M. Hanmandlu

Edge Based Segmentation of Left and Right Ventricles Using Two Distance Regularized Level Sets .................................... 205
   Yu Liu, Yue Zhao, Shuxu Guo, Shaoxiang Zhang, and Chunming Li

Automatic Crater Detection Using Convex Grouping and Convolutional Neural Networks .................................................. 213
   Ebrahim Emami, George Bebis, Ara Nefian, and Terry Fong

ST: Biometrics

Segmentation of Saimaa Ringed Seals for Identification Purposes .......... 227
   Artem Zhelezniakov, Tuomas Eerola, Meeri Koivuniemi, Miina Auttila, Riikka Levänen, Marja Niemi, Mervi Kunnarsanta, and Heikki Kälviäinen

Fingerprint Matching with Optical Coherence Tomography .................. 237
   Yaseen Moolla, Ann Singh, Ebrahim Saith, and Sharat Akhoury
Improve Non-graph Matching Feature-Based Face Recognition
Performance by Using a Multi-stage Matching Strategy ......................... 248
   Xianming Chen, Wenyin Zhang, Chaoyang Zhang, and Zhaoxian Zhou

Neighbors Based Discriminative Feature Difference Learning
for Kinship Verification ......................................................... 258
   Xiaodong Duan and Zheng-Hua Tan

A Comparative Analysis of Two Approaches to Periocular Recognition
in Mobile Scenarios ............................................................... 268
   João C. Monteiro, Rui Esteves, Gil Santos, Paulo Torrão Fiadeiro,
   Joana Lobo, and Jaime S. Cardoso

Applications

Visual Perception and Analysis as First Steps Toward Human–Robot
Chess Playing ................................................................. 283
   Andreas Schwenk and Chunrong Yuan

A Gaussian Mixture Representation of Gesture Kinematics for On-Line
Sign Language Video Annotation ........................................... 293
   Fabio Martínez, Antoine Manzanera, Michèle Gouiffès,
   and Annelies Braffort

Automatic Affect Analysis: From Children to Adults ......................... 304
   Rizwan Ahmed Khan, Alexandre Meyer, and Saida Bouakaz

A Study of Hand Motion/Posture Recognition in Two-Camera Views ...... 314
   Jingya Wang and Shahram Payandeh

Pattern Recognition

Automatic Verification of Properly Signed Multi-page Document Images .... 327
   Marçal Rusiñol, Dimosthenis Karatzas, and Josep Lladós

CRFs and HCRFs Based Recognition for Off-Line Arabic Handwriting .... 337
   Moftah Elzobi, Ayoub Al-Hamadi, Laslo Dings, and Sherif El-etriby

Classifying Frog Calls Using Gaussian Mixture Models ...................... 347
   Dalwinderjeet Kular, Kathryn Hollowood, Olatide Ommojaro,
   Katrina Smart, Mark Bush, and Eraldo Ribeiro

Ice Detection on Electrical Power Cables .................................. 355
   Binglin Li, Gabriel Thomas, and Dexter Williams
Facial Landmark Localization Using Robust Relationship Priors and Approximative Gibbs Sampling ........................................ 365
  Karsten Vogt, Oliver Müller, and Jörn Ostermann

Recognition

Off-the-Shelf CNN Features for Fine-Grained Classification of Vessels in a Maritime Environment ........................................ 379
  Fouad Bousetouane and Brendan Morris

Joint Visual Phrase Detection to Boost Scene Parsing ..................... 389
  Keke Tang, Zhe Zhao, and Xiaoping Chen

If We Did Not Have ImageNet: Comparison of Fisher Encodings and Convolutional Neural Networks on Limited Training Data .......... 400
  Christian Hentschel, Timur Pratama Wiradarma, and Harald Sack

Investigating Pill Recognition Methods for a New National Library of Medicine Image Dataset ............................................ 410
  Daniela Ushizima, Allan Carneiro, Marcelo Souza, and Fatima Medeiros

Realtime Face Verification with Lightweight Convolutional Neural Networks ................................................................. 420
  Nhan Dam, Vinh-Tiep Nguyen, Minh N. Do, Anh-Duc Duong, and Minh-Triet Tran

Virtual Reality

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment ............................................................. 433
  Yohei Ogura and Hideo Saito

Evaluation of Fatigue Measurement Using Human Motor Coordination for Gesture-Based Interaction in 3D Environments ................. 443
  Neera Pradhan, Angela Benavides, Qin Zhu, and Amy Ulinski Banic

JackVR: A Virtual Reality Training System for Landing Oil Rigs .......... 453
  Ahmed E. Mostafa, Kazuki Takashima, Mario Costa Sousa, and Ehud Sharlin

DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition ................................. 463
  Aleksandr Setkov, Fabio Martinez Carillo, Michèle Gouiffès, Christian Jacquemin, Maria Vanrell, and Ramon Baldrich
Use of a Large Image Repository to Enhance Domain Dataset for Flyer Classification. ......................................................... 609
    Payam Pourashraf and Noriko Tomuro

Illumination Invariant Robust Likelihood Estimator for Particle Filtering Based Target Tracking. ........................................... 618
    Buti Al Delail, Harish Bhaskar, M. Jamal Zemerly, and Mohammed Al-Mualla

Adaptive Flocking Control of Multiple Unmanned Ground Vehicles by Using a UAV ......................................................... 628
    Mohammad Jafari, Shamik Sengupta, and Hung Manh La

Basic Study of Automated Diagnosis of Viral Plant Diseases Using Convolutional Neural Networks ................................. 638
    Yusuke Kawasaki, Hiroyuki Uga, Satoshi Kagiwada, and Hitoshi Iyatomi

Efficient Training of Evolution-Constructed Features ................................................................. 646
    Meng Zhang and Dah-Jye Lee

Ground Extraction from Terrestrial LiDAR Scans Using 2D-3D Neighborhood Graphs ......................................................... 655
    Yassine Belkhouche, Prakash Duraisamy, and Bill Buckles

Mass Segmentation in Mammograms Based on the Combination of the Spiking Cortical Model (SCM) and the Improved CV Model ..... 664
    Xiaoli Gao, Keju Wang, Yanan Guo, Zhen Yang, and Yide Ma

High Performance and Efficient Facial Recognition Using Norm of ICA/Multiwavelet Features ........................................... 672
    Ahmed Aldhahab, George Atia, and Wasfy B. Mikhael

Dynamic Hand Gesture Recognition Using Generalized Time Warping and Deep Belief Networks ........................................ 682
    Cristian A. Torres-Valencia, Hernán F. García, Germán A. Holguín, Mauricio A. Álvarez, and Álvaro Orozco

Gaussian Processes for Slice-Based Super-Resolution MR Images ................................................................. 692
    Hernán Darío Vargas Cardona, Andrés F. López-Lopera, Álvaro A. Orozco, Mauricio A. Álvarez, Juan Antonio Hernández Tamames, and Norberto Malpica

Congestion-Aware Warehouse Flow Analysis and Optimization ................................................................. 702
    Sawsan AlHalawani and Niloy J. Mitra
Building of Readable Decision Trees for Automated Melanoma Discrimination ................................................................. 712
Keiichi Ohki, M. Emre Celebi, Gerald Schaefer, and Hitoshi Iyatomi

A Novel Infrastructure for Supporting Display Ecologies .............. 722
Christian Eichner, Martin Nyolt, and Heidrun Schumann

Visualizing Software Metrics in a Software System Hierarchy ........ 733
Michael Burch

Region Growing Selection Technique for Dense Volume Visualization .... 745
Lionel B. Sakou, Daniel Wilches, and Amy Banic

Computing Voronoi Diagrams of Line Segments in in O(n log n) Time .... 755
Jeffrey W. Holcomb and Jorge A. Cobb

Visualizing Aldo Giorgini’s Ideal Flow ..................................... 767
Esteban Garcia Bravo and Tim McGraw

Restoration of Blurred-Noisy Images Through the Concept of Bilevel Programming ......................................................... 776
Jessica Soo Mee Wong and Chee Seng Chan

Free-Form Tetrahedron Deformation ........................................ 787
Ben Kenwright

Innovative Virtual Reality Application for Road Safety Education of Children in Urban Areas ..................................................... 797
Taha Ridene, Laure Leroy, and Safwan Chendeb

Vision-Based Vehicle Counting with High Accuracy for Highways with Perspective View ......................................................... 809
Mohammad Shokrolah Shirazi and Brendan Morris

Automatic Motion Classification for Advanced Driver Assistance Systems ... 819
Alok Desai, Dah-Jye Lee, and Shreeya Mody

Shared Autonomy Perception and Manipulation of Physical Device Controls ................................................................. 830
Matthew Rueben and William D. Smart

Condition Monitoring for Image-Based Visual Servoing Using Kalman Filter ................................................................. 842
Mien Van, Denglu Wu, Shuzi Sam Ge, and Hongliang Ren

Author Index ........................................................................... 851