Tumors and Tumor-Like Lesions of the Hepatobiliary Tract
Tumors and Tumor-Like Lesions of the Hepatobiliary Tract

General and Surgical Pathology

With 880 Figures and 199 Tables
I dedicate this textbook to my wife, Geneviève, who for many years of preparatory work endured much and offered continued interest, help, and compassion while I was creating this work. She accompanied me with great loyalty in this endeavor. I also dedicate this book to my children, Laxmi and Tristan, who have given so much meaning to my life, and to my venerated late teacher in pathology, Professor Hans Cottier.
This textbook is designed to be a comprehensive assessment of current knowledge regarding the surgical and general pathology of hepatobiliary tumors and tumor-like lesions. The scope of the book is broad and provides an up-to-date source for the wide-ranging tumor pathology of the entire hepatobiliary tract. In the planning phase of this work, the question had arisen as to the purpose and need of such a book, in the light of numerous excellent monographs and textbooks that have been published in this field during the last years, but a major justification for a new book relates to the rapid change in the role of pathology in the investigation of hepatobiliary tumors and related lesions. Therefore, an update of the dramatic changes that have taken place in the discovery and application of several lines of knowledge referring to hepatobiliary tumor pathology in a broader sense was regarded a worthwhile task. Notwithstanding the impressive increase in diagnostic precision of modern imaging and other, in particular various molecular, methods, tumor biopsy and its morphological interpretation based on complex techniques is still a central diagnostic instrument that serves refined diagnosis and classification, risk stratification, and therapy planning, also in the light of future personalized treatment strategies. A combined approach by using conventional, fine structural, immunohistochemical and hybridization morphological studies, and molecular techniques generated a new concept of the tight correlation between structure and function in tumor pathology, contributing to advanced modes of diagnosis. Apart from information on a given diagnostic tumor entity, differential diagnosis is discussed in depth as a most critical issue.

The main reason for integrating several important issues of general pathology is based on the rapidly evolving and continued changes that are occurring in the disciplines of tumor biology, genomics, and associated molecular features that characterize tumors. The concept of the present work in fact aims at concentrating detailed aspects of surgical pathology needed for diagnosis and the pathogenic mechanisms behind disease in one source with ample color illustrations and a detailed reference corpus.

In the light of refined imaging techniques and other modern diagnostic approaches that can uncover a host of previously undetectable hepatobiliary lesions, a significant part of the textbook is dedicated to an extensive range of tumor-like lesions, pathologies that may, in a clinical-radiological setting, be confounded with true hepatobiliary neoplasms. Part of the tumor-like lesions, including mass-forming infections and infestations, are common entities
world-wide, while others may appear as unexpected or incidental findings, or rare and “exotic” disorders.

This text has been planned to serve hepatopathologists, hepatologists, and others interested and involved in this field, and it is the author’s hope that the book is a comprehensive account on the surgical and general pathology of hepatobiliary tumors and their tumor-like mimics. The book is also hoped to be a useful source of information for basic scientists active in the field of liver pathophysiology.

To provide a systematic review of the immense field of hepatobiliary tumors and tumor-like lesions, the textbook has been divided into 39 parts, each covering one to several chapters, in order to assist the reader in locating topics of interest. In what follows, brief overviews on the contents of each chapter are presented.

Part 1 starts off with a series of chapters that supply comprehensive information on tumors characterized by a hepatocyte-derived lineage and its precursors. Chapter ▶ 1 deals with the role of hepatic stem and progenitor cells in hepatocarcinogenic pathways. Hepatocytes were perceived to represent the major cells of origin for numerous neoplasms of the liver, but stem and progenitor cells have been identified as important sources. The chapter addresses issues of hepatic stem cell niches, types of stem/progenitor cells found in these niches, interactions of stem cells with other cells, changes of their microenvironment, and mechanisms involved in a stem cell-cancer sequence. As cancer initiating cells and cancer-associated stem cells can circulate in blood, the significance of cycling clonogenic cells with longevity and remote spread for tumor progression is discussed. Chapter ▶ 2 provides an in-depth description of ordinary hepatocellular carcinoma (HCC), including classification of gross phenotypes, macroscopic growth patterns, pertinent histologic and diagnostic features, and tumor grading. In Chap. ▶ 3, the numerous immunohistochemical features characterizing ordinary HCC are discussed in detail. Chapter ▶ 4 focuses on invasion and metastatic patterns of ordinary HCC. Patterns of macrovascular and microvascular invasion and the features of intrahepatic and remote metastasis are explained and illustrated. This part also provides information on risk factors for metastasis and on the presentation and frequency of extrahepatic organ metastases. In Chap. ▶ 5, secondary changes that develop in HCCs, and in particular the interesting phenomenon of spontaneous tumor regression, are highlighted. Progression and recurrence of HCC are major elements of the tumor’s biology of disease. Numerous prognostic factors for the natural course of HCC have been delineated, discussed in detail in Chap. ▶ 6. The issues of Chap. ▶ 7 are the various types of HCC precursor lesions that can develop in cirrhotic livers, including small and large cell change, dysplastic foci, and dysplastic nodules. There is a group of ordinary HCCs characterized by small size at the time point of diagnosis, lesions that are more frequently diagnosed due to improved imaging techniques. These intriguing lesions, specifically their morphology, classification, biology, and relationship to early cancer are dealt with in Chap. ▶ 8. The chapters on neoplasms of the hepatocyte lineage are considerably extended to reflect the growing importance of special types of liver cell cancers in the setting of clinical presentation, detectability by modern imaging techniques,
molecular features, and biology of disease (Chaps. 9, 10, 11, 12, and 13). Chapter 9 deals with clear cell HCC, a group of neoplasms that belong to a growing spectrum of epithelial clear cell tumors of the alimentary tract with a distinct biology of disease. A heterogeneous group of HCCs is characterized by the accumulation of neutral fat, including steatotic HCC and its inflammatory variant, steatohepatitic HCC, tumors that also develop in the setting of nonalcoholic and alcoholic fatty liver disease. Part of these tumors are rich in Mallory-Denk bodies (Chap. 10). A rare group of HCCs is characterized by the presence of an abundant desmoplastic stroma, similar to cholangiocarcinoma (sclerosing and scirrhous HCCs; Chap. 11). A further unusual subset of HCCs shows dense infiltrates of mononuclear leukocytes (inflammatory HCCs). One variant of these neoplasms reflects a morphology similar to lymphoepithelial carcinoma, with or without association with EBV virus infection, and another rare variant exhibits a plasmacellular infiltrate and signs of regression (medullary HCC; Chap. 12). Very rare forms of HCCs are characterized by peliotic change, multinucleated giant cells, chromophobe cells, oxyphilic/oncocytic cells, or cells with a Dubin-Johnson-like pigment (Chap. 13). An interesting group of liver cell tumors displays the presence of progenitor cells or stem-like cells. Part of these HCCs with progenitor cell features express cytokeratin 19, a feature conferring a more aggressive course (Chap. 14). A clinically and radiologically intriguing situation is produced by HCCs arising in an ectopic, extrahepatic location (Chap. 15). HCCs also occur in infancy and childhood (pediatric HCC). It is not yet clarified whether these unusual malignancies are the same or different from their adult counterparts (Chap. 16). A neoplasm that in several respects mimics HCC is hepatoid carcinoma, which can develop in numerous organs, but is usually manifest in the liver in the form of metastases (Chap. 17). An intriguing variant of HCC is fibrolamellar HCC, a tumor mainly occurring in younger individuals, showing a biology similar to that of ordinary HCC, and associated with a typical recurrent chimeric transcript (Chap. 18). A rare group of neoplasms composed of immature hepatocyte progenitors (embryonal and fetal hepatocytes) is formed by the various types and subtypes of hepatoblastoma and related neoplasms (Chap. 19). The majority of these cancers develops in children younger than 5 years, but rarely also develop in adults. Unusual variants of hepatoblastoma with aberrant differentiation patterns are treated in Chap. 20, including tumors with a bile duct cell differentiation. The focus of Chap. 21 relates to the biology and prognostic factors of hepatoblastoma, while Chap. 22 treats risk factors and pathogenic pathways of neoplasms of the hepatoblastoma tumor family. An intriguing neoplasm related to hepatoblastoma and associated with an interesting clinical presentation and unique molecular features, nested stromal epithelial tumor, is the theme of Chap. 23. A benign tumor of the hepatocyte lineage is hepatocellular adenoma, which has recently been subdivided into several molecular subtypes associated with distinct morphologic patterns. The discussion of this important hepatic tumor and its variants is found in Chaps. 24 and 25. A rare group of neoplasms containing hepatocyte-like cells is combined hepatocellular-cholangiocarcinoma, malignancies that display a biphenotypic histologic picture. In contrast to HCC, these highly aggressive
neoplasms occur in cirrhotic and noncirrhotic livers with almost the same frequency (Chap. ▶ 26).

Part 2 of the textbook relates to benign and malignant neoplasms of the cholangiocyte lineage. Cholangiocarcinomas (CC) are divided into two major groups, extrahepatic and intrahepatic bile duct cancers. Among the former, hilar and perihilar CC form a distinct clinicopathologic entity different from CC originating in the mid-region and distal parts of the large bile duct. Intrahepatic CC is a malignancy that can present in three major gross growth patterns and originates from both small or large intrahepatic bile ducts. CC are malignancies of adult patients, but very rarely also develop in the pediatric age group (Chaps. ▶ 27, ▶ 28, ▶ 29, ▶ 30, ▶ 31, and ▶ 32). A distinct group of bile duct neoplasms is formed by intraductal neoplasms, tumors that resemble their pancreatic counterparts. They display a phase of intraluminal, often papillary noninvasive growth and a later high risk of transition into invasive CC (Chap. ▶ 33). In addition to classical forms of CC, there are tumors developing in the setting of hepatobiliary cystic disease, or exhibit distinct differentiation patterns different from those observed in ordinary CC (Chaps. ▶ 34, ▶ 35, ▶ 36, ▶ 37, and ▶ 38). A rare subset of bile duct tumors is characterized by cysts lined by a mucin-producing epithelium, frequently associated with a subepithelial ovarian-like stroma and expression of sex steroid receptors. These mucinous cystic neoplasms (MCN) can undergo a dysplasia-carcinoma sequence (Chap. ▶ 39). Both the intrahepatic and extrahepatic biliary tree can be the site of several types of benign epithelial neoplasms and hamartomas, including tubular and papillary adenomas, peribiliary gland hamartomas, biliary microhamartoma, and neoplasms and hyperplasias of peribiliary glands (Chaps. ▶ 40 and ▶ 41).

Part 3 covers a heterogeneous group of liver tumors derived from other epithelial lineages. Some hepatobiliary carcinomas are characterized by varying proportions of squamous epithelial cells, including squamous cell carcinoma, adenosquamous carcinoma, and mucoepidermoid carcinoma, or acinar cell and adenoid cystic components (Chaps. ▶ 42 and ▶ 43). Rare carcinomas of the biliary tract are undifferentiated neoplasms, such as nonendocrine small cell and spindle cell carcinomas, and carcinomas with rhabdoid features (Chap. ▶ 44). In a small group of hepatobiliary neoplasms, the cells of origin are not yet fully clarified. These lesions mainly comprise hepatic adrenal rest tumor and progenitor cell neoplasms (Chap. ▶ 45).

Part 4 of the textbook refers to mixed epithelial-mesenchymal tumors of the hepatobiliary tract. Chapter ▶ 46 highlights an intriguing group of hepatobiliary malignancies that are composed of a complex mixture of various neoplastic tissue types. These tumors are classified as carcinosarcomas and carcinomas with sarcomatoid features. Few primary hepatic tumors are characterized by the presence of multinucleated, osteoclast-like giant cells with a macrophage/histiocyte lineage (Chap. ▶ 47). Apart from carcinosarcomas, rare hepatic tumors present a mixed cellular phenotype that is still difficult to classify, including malignant mixed tumors, adenosarcomas, stromal tumors, and adult-type mixed hepatoblastomas (Chap. ▶ 48).

Part 5 focuses on the predominant group of hepatobiliary mesenchymal tumors, i.e., vascular tumors. The most important type of primary hepatic
vascular neoplasm is cavernous hemangioma with its various phenotypes and associations with extrahepatic vascular tumors (Chap. ▶ 49). Less common hepatic vascular tumors include several forms of hemangiomatosis, hemangioblastoma, epithelioid hemangioendothelioma, infantile hepatic hemangioma/hemangioendothelioma, kaposiform hemangioendothelioma, angiosarcoma, Kaposi’s sarcoma, glomus tumors, myopericytoma, and glomangiopericytoma (Chaps. ▶ 50, ▶ 51, ▶ 52, ▶ 53, ▶ 54, ▶ 55, ▶ 56, and ▶ 57). Unusual vascular malformations, which may be part of complex inborn syndromes, can mimic true vascular neoplasms, such as Klippel-Trenaunay syndrome (Chap. ▶ 58). A second group of reactive vascular lesions that can cause tumor-like hepatic manifestations include bacillary angiomatosis and peliosis hepatis (Chap. ▶ 59).

Part 6 refers to tumors and tumor-like lesions of lymph vessels. In the hepatobiliary tract, these are very rare conditions which include cystic and noncystic lymphangioma, capillary lymphangioma, lymphangiomatosis, hepatic lymphangiectasis, and lymphocele (Chap. ▶ 60).

Part 7 is exclusively dedicated to solitary fibrous tumor and tumors with a hemangiopericytoma-like pattern. These lesions now include at least part of the former hemangiopericytomas and are characterized by a distinct somatic fusion of two genes, NAB2 and STAT6 (Chap. ▶ 61).

Part 8 discusses the complex spectrum of nonvascular mesenchymal tumors of the hepatobiliary tract. All these neoplasm are rare lesions and include fibrolamellar and myofibrolamellar neoplasms, leiomyoma and leiomyosarcomas, rhabdomyosarcomas, lipoma, liposarcoma, myelolipoma, hibernoma, tumors with osteosarcomatous and chondrosarcomatous components, gastrointestinal stromal tumors, benign and malignant nerve sheath tumors, granular cell tumors, synovial sarcoma, and undifferentiated high-grade pleomorphic sarcomas (Chaps. ▶ 62, ▶ 63, ▶ 64, ▶ 65, ▶ 66, ▶ 67, ▶ 68, ▶ 69, ▶ 70, and ▶ 71).

Part 9 summarizes tumors with a mesothelial cell lineage. Primary mesotheliomas of the liver are very rare, but characteristic neoplasms mimic mesothelial tumors in other locations. A unique mesothelial tumor occurring also in the liver is adenomatoid tumor (Chap. ▶ 72).

The theme of Part 10 is a heterogeneous group of neoplasms that are derived from, or related to, perivascular epithelioid cells. The liver is the primary site of various perivascular epithelioid cell tumors or PEComas, all with complex cellular compositions. They include PEComa proper, angiomyolipoma with its various subtypes, clear cell myomelanocytic tumors, clear cell and sugar tumors, and lymphangiomymomatosis (Chap. ▶ 73).

Part 11 presents hepatobiliary tumors of neuroendocrine lineages. Chapter ▶ 74 provides pertinent information regarding extraadrenal paraganglioma, neoplasms that also in the liver range in biology from a benign to frankly malignant behavior. In Chap. ▶ 75, the various types and subtypes of hepatobiliary neuroendocrine tumors are treated, emphasis being placed on novel classifications and grading systems.

In Part 12, a rare group of small tumors that also originate in the liver are discussed. The lesions comprise various small cell blue tumors, such as primitive neuroectodermal tumors (PNET), desmoplastic small round cell tumor, NUT midline carcinoma, and hepatic neuroblastoma (Chap. ▶ 76).
Part 13 refers to the interesting group of primary and secondary melanotic tumors of the hepatobiliary tract. Emphasis is placed on primary and metastatic melanoma, in particular also metastatic ocular melanoma, melanotic progonoma, and manifestations of melanoma of soft parts (Chap. ▶ 77).

Part 14 focuses on hepatic tumors with a rhabdoid cell lineage. Liver and bile duct tumors with rhabdoid cell components are, at least in part, associated with absence of the chromatin remodeling factor SRF5/INI1 and include malignant rhabdoid tumor proper, carcinomas with rhabdoid features, and a subset of small cell hepatoblastoma (Chap. ▶ 78).

In Part 15, primary and metastatic germ cell tumors are treated. Most germ cell tumors occurring in the gonads can occur as primary lesions in the liver, but teratomas, yolk sac tumor, and choriocarcinoma prevail, also in the pediatric age group. The liver is a well-known site of metastatic germ cell tumors and can be the site of growing teratoma syndrome (Chap. ▶ 79).

Part 16 summarizes the pathology of hepatic manifestations of myeloid neoplasms. With the exception of granulocytic sarcomas, these neoplasms cause diffuse infiltration of the liver substance. The conditions discussed comprise polycythemia vera, several types of myeloproliferative syndrome, chronic eosinophilic leukemia and idiopathic hypereosinophilia, mast cell neoplasms, acute leukemias, myeloid neoplasms with a monocytoid lineage, and blastic plasmacytoid dendritic cell neoplasms (Chaps. ▶ 80, ▶ 81, ▶ 82, ▶ 83, ▶ 84, ▶ 85, ▶ 86, and ▶ 87).

Part 17 refers to the complex pathology of hepatobiliary Hodgkin’s disease. This disorder causes, on the one hand, tumorous hepatic lesions that can clinically be confounded with liver cancer, but on the other hand also reveals associations with paraneoplastic changes, including vanishing bile duct syndrome (Chap. ▶ 88).

Part 18 covers the large field of hepatobiliary non-Hodgkin’s lymphomas, other lymphoproliferative disorders, and neoplasms of dendritic and histiocytic cell systems. Major groups comprise B-cell and T-cell neoplasms that occur in numerous extrahepatic sites, but pseudolymphomas, neoplasms of the Langerhans cell and histiocytic systems, dendritic cell neoplasms, and reactive histiocytic syndromes (such as Rosai-Dorfman syndrome) are also discussed (Chaps. ▶ 89, ▶ 90, ▶ 91, ▶ 92, ▶ 93, ▶ 94, ▶ 95, ▶ 96, ▶ 97, ▶ 98, ▶ 99, ▶ 100, ▶ 101, ▶ 102, and ▶ 103).

Part 19 treats mesenchymal hamartoma of the liver and related neoplasms. Mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver are typical pediatric hepatic neoplasms, but they have rare counterparts in adult patients (Chaps. ▶ 104 and ▶ 105).

Part 20 is a large complex of chapters that relates to the very important issue of metastatic liver disease. The chapters discuss in detail aspects of gross and microscopic pathology of liver metastases in general, a specific chapter on colorectal cancer metastases, other common and rare metastatic cancers, secondary changes that frequently develop in hepatic metastases, secondary spread of metastatic disease into locoregional lymph nodes, associated liver lesions, growth and regrowth of metastases, and pathogenic features of liver metastasis (Chaps. ▶ 106, ▶ 107, ▶ 108, ▶ 109, ▶ 110, ▶ 111, ▶ 112, ▶ 113, ▶ 114, and ▶ 115).
In Part 21, a small theme of liver tumor pathology is addressed, tumors and tumor-like lesions of hepatic ligaments. Falciform and round hepatic ligaments are the site of rare primary benign and malignant neoplasms, metastases, and various types of cysts (Chap. ▶ 116).

Part 22 contains chapters on reactive nodular hyperplastic hepatocyte lesions of the liver. Focal nodular hyperplasia (FNH) of the liver is an important mass-forming regenerative condition that often develops secondary to localized vascular and circulatory abnormalities of the liver. After hemangiomas, FNH is the second most common benign hepatic tumorous lesion (Chap. ▶ 117). A second important regenerative condition of the liver is nodular regenerative hyperplasia, which is associated with a broad array of causative factors (Chap. ▶ 118).

In Part 23, pseudotumors of the hepatobiliary tract are discussed. Pseudotumors and inflammatory pseudotumors form a heterogeneous group of lesions that share spindle cell proliferations and inflammatory infiltrates of variable density. Inflammatory myofibroblastic tumors is a lesion that contains a subset with neoplastic features and aberrant ALK expression (Chap. ▶ 119).

Part 24 relates to nonneoplastic tumor-like lesions of the liver. The liver is the site of tumor-like ectopias and heterotopias, mass-forming malformations, solitary necrotic nodule, various types of dust-induced nodular lesions, tumor-like lesions caused by gallstones and foreign bodies, pseudotumors consisting of reactive proliferations of hematopoietic cells and macrophages, pyogenic liver abscesses mimicking cancer, numerous hepatic bacterial, fungal, and protozoal infections causing tumor-like hepatic masses (tuberculosis, syphilis, brucellosis, and amebiasis representing prominent examples), tumor-like parasitic lesions (mainly echinococcosis), and liver infarcts (Chaps. ▶ 120, ▶ 121, ▶ 122, ▶ 123, ▶ 124, ▶ 125, ▶ 126, ▶ 127, ▶ 128, ▶ 129, ▶ 130, ▶ 131, ▶ 132, ▶ 133, ▶ 134, ▶ 135, ▶ 136, and ▶ 137).

Part 25 refers to reactive cystic lesions of the liver that may mimic cystic neoplasms. They include simple nonparasitic cysts, ciliated foregut cyst, pancreatitic pseudocysts, and cerebrospinal fluid pseudocysts (Chap. ▶ 138).

Part 26 provides information related to hepatic mass lesions caused by noninfectious granulomas. The main disorder is sarcoidosis that can also cause a complex form of sclerosing bile duct disease with bile duct loss. Blau syndrome and complex inflammatory disorders in part involving deregulated inflammasome function are also discussed (Chap. ▶ 139). A small chapter refers to chronic granulomatous disease (Chap. ▶ 140).

Part 27 presents the hepatic pathology of interesting fibrosclerotic disorders. The conditions include idiopathic retroperitoneal fibrosis and its variants, and the complex spectrum of IgG4-associated systemic sclerosing disease (Chap. ▶ 141).

In Part 28, numerous reactive bile duct alterations that can mimic biliary neoplasms are discussed. Intrahepatic and extrahepatic bile ducts can be involved with inflammatory stenosing polyps, granulomatous cholangitis, follicular cholangitis, oriental cholangitis, xanthogranulomatous cholangitis, bile duct cholesterolosis, sclerosing eosinophilic cholangitis, mechanical and anatomical bile duct alterations, bile duct stenosis caused by congenital
anomalies and acquired disorders of the splanchnic arterial tree and the portal vein, and postcholecystectomy changes (Chaps. ▶ 142, ▶ 143, ▶ 144, ▶ 145, and ▶ 146).

Part 29 addresses the important issue of gallbladder cancer and other tumors and tumor-like lesions of this organ. Ordinary gallbladder carcinoma usually develops in a gallbladder that has undergone secondary changes related to longstanding cholelithiasis and associated inflammations. This neoplasm, an adenocarcinoma, can be associated with epithelial precursor lesions and presents in the form of distinct growth patterns (Chap. ▶ 147). Biology of disease, prognosticators, staging, risk factors, and pathogenic pathways of gallbladder carcinoma are treated in more detail in Chaps. ▶ 148 and ▶ 149. Apart from the common ordinary adenocarcinoma of the gallbladder, several rare variants with other differentiation patterns are recognized, including mucinous, signet ring cell, and squamous cell carcinomas (Chaps. ▶ 150 and ▶ 151). The gallbladder is also the site of rare cystic and mixed neoplasms, such as cystadenoma and cystadenocarcinoma (Chap. ▶ 152). As outlined in Chap. ▶ 153, the gallbladder can give rise to a spectrum of adenomatous, borderline, and dysplastic lesions. Of differential diagnostic importance is the observation of various types of hyperplastic and metaplastic lesions in the gallbladder mucosa (Chap. ▶ 154). Similar to the bile duct system and liver, the gallbladder is a well-known origin of diverse types of neuroendocrine tumors, mesenchymal neoplasms, malignant melanoma, and a wide spectrum of other, however very rare, neoplasms (Chaps. ▶ 155, ▶ 156, and ▶ 157). A broad array of reactive, inflammatory, and noninflammatory alterations of the gallbladder can result in mass lesions that mimic neoplasms, and in particular gallbladder cancer (Chaps. ▶ 158, ▶ 159, ▶ 160, and ▶ 161). A rare group of malignant and benign tumors takes its origin in the cystic duct (Chap. ▶ 162).

Part 30 refers to a heterogeneous group of tumorous and tumor-like peritoneal lesions that may involve the liver surface. They include several primary carcinomas and other malignancies, pseudomyxoma peritonei, gliomatosis peritonei, and various forms of metaplasia, granulomas, endometriosis, and decidualis (Chap. ▶ 163).

Part 31 is the first part of the textbook referring to aspects of general pathology of hepatobiliary tumors, specifically etiology and pathogenesis of hepatocellular carcinoma (HCC). A first chapter discusses in depth inflammatory and toxic causes, in particular the role of hepatitis virus infections, fatty liver and steatohepatitis, and nutritional and other toxins in hepatocarcinogenic pathways (Chap. ▶ 164). The following chapter (Chap. ▶ 165) discusses HCC that arises in the setting of inborn errors of metabolism, in particular various forms of chronic hepatic iron overload. Chapter ▶ 166 focuses on chromosomal alterations, oncogenes, tumor suppressors, and associated signaling networks that are involved in tumorigenesis, while Chap. ▶ 167 puts emphasis on the roles of transcription factors, regulators of growth and apoptosis, and telomere homeostasis. Finally, Chap. ▶ 168 is an overview on the etiologic and pathogenic significance of epigenetic mechanisms in hepatocarcinogenesis (the epigenome).

Part 32 contains an important chapter on the general pathology of structural and functional nuclear changes in hepatobiliary cancer. In Chap. ▶ 169,
relevant diagnostic and theoretical aspects of nuclear and nucleolar abnormalities, anaplasia, and chromatin alterations are addressed. Numerous types of structural abnormalities of cancer cell nuclei are directly associated with functional disorders of nuclear homeostasis, DNA replication, cell division, and organization of chromatin superstructures during interphase. Abnormal heterochromatin generation, a deranged production of euchromatin strings, malposition of interphase chromosomes, and anomalies of intranuclear chromosome movements are hallmarks of nuclear function failure in cancer cells (Chap. ▶ 170).

Part 33 addresses mitochondrial structure and function in normal and malignant neoplastic cells. Apart from their central role in energy production, mitochondria play a significant role within carcinogenic pathways involving abnormal stress responses and deregulation of cell death pathways. This role has led to the “mitochondrial malignancy theory.” Mitochondria hold a central position in apoptosis induction, but they also modulate cell shape and engage in complex interactions with other organelles. Cancer cells exhibit various types of structural abnormalities of mitochondria and may show changes in mitochondrial number, mitochondrial fission, and elimination of this organelle. Part of these alterations are associated with losses and mutations of mitochondrial DNA (Chap. ▶ 171).

The contents of Part 34 pertain to tumor growth and its regulation. Uncontrolled, progressive growth is a key feature of cancers. Net mass increase of tumors not only depends on cell proliferation, but also on cell loss caused by various forms of apoptosis and necrosis and the contribution of nonneoplastic tissues and cells accompanying neoplasms, in particular stroma, blood vessels, and leukocytes. Cell proliferation in liver cell cancer reflects features of normal liver regeneration which is therefore discussed in some detail. The aberrant proliferation of liver cancer cells is related to deranged functions of factors orchestrating cell division, checkpoint regulators, proteins involved in DNA synthesis, proteins of the mitotic apparatus, and the numerous components of the cytoskeleton. Similar to the regenerating liver, growth of liver neoplasm is regulated by numerous growth factors and their receptors, including factors produced by platelets and antagonists of proliferation. Furthermore, hepatobiliary cancers reveal abnormal expression patterns of proteins that control entry into and passage through the cell division cycle, including cyclins and cyclin-dependent kinases. Finally, regulation of tumor growth strongly depends on various epigenetic mechanisms, specifically on complex expression patterns of microRNAs and other RNA classes (Chaps. ▶ 172, ▶ 173, ▶ 174, and ▶ 175).

Part 35 informs the reader about important aspects of the necrobiology of hepatobiliary cancer. An intricate process to control tumor cell mass is apoptosis, a complex form of tightly controlled cell death. Growth caused by proliferation is also counteracted by necrosis which, in contrast to traditional views, is a controlled process rather than a passive phenomenon. In liver cancer, apoptosis can be assessed by immunohistochemical and molecular methods. In addition to classical apoptosis, necrobio logic processes active in cancer also include various forms of cell death related to, but not identical with, apoptosis. These pathways may play a significant role for future novel
therapies (Chaps. ▶ 176 and ▶ 177). A special chapter is dedicated to the pathophysiology of classical (passive) necrosis in comparison with regulated necrosis (necroptosis). The latter involves a complex signaling platform, the necrosome, a molecular machine that senses ATP depletion and transmits this signal into kinase execution switches (Chap. ▶ 178). An important role in cancer cell biology is played by autophagy, a process involved in the maintenance of cell and tissue homeostasis, control of the protein composition of cells, aging, senescence, and neoplastic transformation. Autophagy is the instrument to eliminate altered proteins, damaged or superfluous organelles, and pathogens, and is a complex system connected with inflammasome function, inflammation, immunogenic cell death, and cell senescence. Special forms of autophagy in cancer cells include mitophagy and nucleophagy (Chap. ▶ 179).

Part 36 covers several important aspects of cancer invasion and metastasis. Invasion and metastatic spread of cancer cells involve a highly complex sequence of events that comprise tumor cell individualization, tumor cell polarization, migration, and the acquisition of a secretory phenotype, with release of histolytic enzymes. It is not yet fully known how these features are acquired by cancer cells in a seemingly concerted fashion. For being able to locomote, cancer cells, similar to leukocytes, must be able to undergo shape change and polarization, a process that requires numerous cytoskeletal components and specific polarity proteins. The invasive process strongly depends on the generation of invadosomes, including podosomes and invadopodia, matrix-degrading adhesive, and actin-dependent dynamic cellular structures or “organelles” that can also extend through endothelial linings and mediate extravasation of tumor cells. An important role for the invasion of carcinomas is the distinct tumor stroma. Stroma is composed of cancer-associated fibroblasts/CAFs, myofibroblasts, mesenchymal stem cells, stellate cells, blood vessel cells, extracellular matrix, and several classes of infiltrating leukocytes. The interaction of stromal cells with cancer cells affects invasive functions and modulates epithelial-mesenchymal transition (Chaps. ▶ 180, ▶ 181, ▶ 182, and ▶ 183). Metastatic spread of cancer cells, preceded by invasion, is a process that depends on the construction of premetastatic niches, the expression of distinct prometastatic genes and metastasis suppressors, on numerous microRNAs, and on the exchange of cellular information through exosomes and other vehicles that transfer signal cargo and extracellular nucleic acids (Chap. ▶ 184).

Part 37 is reserved for a distinct tumor tissue that affects numerous biologic functions of neoplasms, i.e., tumor stroma. Stroma forms a specific microenvironment that critically regulates the development and behavior of malignant neoplasms. Stromal cells interact with tumor cells directly, in part through cell fusion, and via molecular signals, resulting in a complex signal platform that expands in parallel with tumor growth. Stroma regulates tumor growth, differentiation, invasion, and metastatic spread. The various types of leukocytes present in stroma, in particular tumor-associated macrophages, myeloid-derived suppressor cells, lymphocytes, and neutrophils, create a unique inflammatory microenvironment which, through chemokines and other signal substances, significantly affects tumor biology (Chap. ▶ 185).
Part 38 shows how tumor angiogenesis functions and how it is an essential process in many aspects of liver tumor invasion and progression. Angiogenesis, the formation of new tumor blood vessels, is a critical mechanism for the development and progression of hepatobiliary tumors, which are often highly vascular lesions. In contrast to normal tissues, tumor blood vessels often form highly atypical branching patterns, with irregular diameters and abrupt changes from large to small diameters. The cells mediating tumor angiogenesis are endothelial cells and auxiliary cells that modulate the biology of endothelial cells, in particular perivascular cells, stromal cells, and tumor-associated macrophages and other leukocytes. As in normal tissue, initiation and progression of angiogenesis in tumors involve the action of numerous angiogenic factors, but neoplasms also produce several antiangiogenic factors. Tumor angiogenesis is modulated by epigenetic mechanisms, mainly microRNAs expressed by tumor cells and stromal cells (Chap. ▶ 186). This chapter is supplemented by a chapter that addresses basic questions of vasculogenesis, angiogenesis, and lymphangiogenesis (Chap. ▶ 187).

The last part of the present book, Part 39, provides a summary of current systems of tumor staging. As with other cancers, staging of hepatobiliary cancers is critical for prognostication and optimal treatment planning. Staging is a complex task that depends on multiple factors. In recent years, several staging systems have been developed and markedly improved the methods to arrive at optimal risk stratification procedures. Apart from hepatocellular carcinoma, highly reproducible staging systems have been developed for extrahepatic and intrahepatic cholangiocarcinoma and for hepatoblastoma (Chap. ▶ 188).

Arthur Zimmermann
Bern, Switzerland
It is both a great honor and pleasure to thank all those who encouraged me to be involved in this endeavor and offered me continuous advice, support, and help. In fact, the present textbook could only be created thanks to numerous persons who have contributed in several ways to make this work possible. First of all, I express my deep gratitude to my former and venerated teacher in pathology, the late Professor Hans Cottier of the Berne University who, when I was still a beginner in surgical pathology and research, inspired me and filled his young disciple with enthusiasm to engage in a mode of thinking that was strongly based on science. Specifically, it was he who so clearly showed me the uppermost significance of basic science in pathology and, by doing this, kindled my strong desire to follow this path of thinking and acting. Later in my professional life as a pathologist I had the privilege to chair the Berne Institute of Pathology together with an outstanding partner, Professor Thomas Schaffner, whose critical mind in science and the highly stimulating interaction with him as a really good friend will remain unforgettable and irreplaceable. In regard to my early and continued interest in hepatology, I am indebted to all those who uncovered this fascinating field for me, in particular Professors Preisig, Reichen, Lauterburg, and Dufour of the Berne University. In the field of surgery, I have profited a lot from intense contacts with Professors Blumgart and Büchler, with whom I had the great chance to cooperate in various scientific projects and who converted me to bring hepatobiliary pathology to the bedside. In the field of pediatric hepatobiliary oncology, I would like to acknowledge the stimulating influence and help of all my professional friends of the international SIOPEL study group, with whom I had a very fruitful interaction for so many years. Having had access to large numbers of hepatobiliary tumor specimens deserves special thanks for the enthusiasm and tireless work of the laboratory crew of the Berne pathology institute, in particular I remain indebted to the wonderful support I have received from the histopathology staff with its chief, Mary Economou. A hearty thanks also goes to all who so often served me with special methods in diagnostic pathology, particularly Andreas Kappeler and his crew. A central place in the project of this book is held by my outstanding scientific secretary, Erna Kramel. I am highly grateful for the excellent secretarial help and the skillful illustration work performed by Erna, who spared no effort in seeing the preparatory work being completed. I also deeply acknowledge the outstanding librarian work of Sibylle Graf and Irene Marconi who, during many years, competently
provided me with large numbers of scientific articles and books and performed literature search with great motivation and innovation. I extend my appreciation to Alexander Grossniklaus for his continued help in matters of informatics. The significance of the contributions of all these persons cannot be overestimated. The author has been fortunate in having a continued and outstanding relationship with his publisher and his Springer partners associated with and enthusiastically accompanying him in this fascinating project, in particular Daniela Graf who offered continued excellent support and advice. Finally, the creation of this work would have been inconceivable without the continued interest, help, and compassion of my wife, Geneviève, who endured much in all these years of hard work and who accompanied me with great loyalty in this endeavor.
Contents

Volume 1

Part I Tumors of the Hepatocyte Lineage and Its Precursors

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liver Cancer: Stem and Progenitor Cells</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Hepatocellular Carcinoma (Ordinary Hepatocellular Carcinoma)</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Immunohistochemistry of Hepatocellular Carcinoma</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Invasion Patterns and Metastatic Patterns of Hepatocellular Carcinoma</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>Secondary Alterations of Hepatocellular Carcinoma</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>Hepatocellular Carcinoma: Prognostic Factors</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>Precursor Lesions of Hepatocellular Carcinoma</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>Early or Small Hepatocellular Carcinoma</td>
<td>195</td>
</tr>
<tr>
<td>9</td>
<td>Clear Cell Hepatocellular Carcinoma and Related Tumors</td>
<td>215</td>
</tr>
<tr>
<td>10</td>
<td>Steatotic and Steatohepatitic Hepatocellular Carcinomas and Related Neoplasms</td>
<td>229</td>
</tr>
<tr>
<td>11</td>
<td>Hepatocellular Carcinomas with Increased Stromal Reactions</td>
<td>251</td>
</tr>
<tr>
<td>12</td>
<td>Inflammatory Hepatic Carcinomas</td>
<td>261</td>
</tr>
<tr>
<td>13</td>
<td>Variants of Hepatocellular Carcinoma</td>
<td>275</td>
</tr>
<tr>
<td>14</td>
<td>Hepatocellular Carcinoma with Progenitor Cell Features</td>
<td>293</td>
</tr>
<tr>
<td>15</td>
<td>Ectopic Hepatocellular Carcinoma</td>
<td>305</td>
</tr>
<tr>
<td>16</td>
<td>Pediatric Hepatocellular Carcinoma</td>
<td>317</td>
</tr>
</tbody>
</table>
17 Hepatoid Carcinomas (Adenocarcinomas with Hepatoid Features) .. 329
18 Fibrolamellar Hepatocellular Carcinoma 335
19 Hepatoblastoma and the Hepatoblastoma Family of Tumors 357
20 Variants of the Hepatoblastoma Tumor Family 395
21 Hepatoblastomas: Biology of Disease and Prognostic Factors .. 405
22 Hepatoblastoma Family of Tumors: Risk Factors and Pathogenic Pathways 411
23 Nested Stromal-Epithelial Tumor of the Liver 435
24 Hepatocellular Adenoma 443
25 Variants of Hepatocellular Adenoma 473
26 Combined Hepatocellular-Cholangiocarcinoma 481

Part II Tumors of the Cholangiocyte Lineage 499
27 Hilar/Perihilar Cholangiocarcinoma (Klatskin Tumor) 501
28 Extrahepatic Cholangiocarcinoma: Carcinoma of the Middle and Distal Common Bile Duct (Middle and Lower Bile Duct Carcinomas) 527
29 Intrahepatic Cholangiocarcinomas (ICCs) 549
30 Biology of Disease and Prognostic Factors of Cholangiocarcinomas 587
31 Etiology and Pathogenic Pathways of Cholangiocarcinoma .. 605
32 Pediatric and Adolescent Cholangiocarcinoma and Related Lesions 639
33 Intraductal Neoplasms of the Biliary Tract 645
34 Cholangiocarcinomas Arising in Cystic Lesions of the Hepatobiliary Tract and in Pancreatobiliary Maljunction ... 669
35 Bile Duct Carcinomas with Marked Extracellular or Intracellular Mucin Accumulation: Mucinous and Signet Ring Cell Carcinomas .. 687
36 Special Variants of Cholangiocarcinoma 699
37 Clear Cell Carcinomas of the Bile Ducts 717
38 Bile Duct Tumors with Oncocytic Features 721

39 Mucinous Cystic Neoplasms (MCN) and Related Cystic Neoplasms of the Hepatobiliary Tract 727

40 Benign Epithelial Tumors and Hamartomas of the Biliary Tract ... 749

41 Tumors and Tumor-like Lesions of Peribiliary Glands 779

Part III Hepatobiliary Tumors Derived from Other Epithelial Lineages ... 789

42 Carcinomas with a Squamous Cell Lineage 791

43 Hepatobiliary Tumors with Acinar Cell and Adenoid Cystic Cell Lineages ... 813

44 Rare Malignant and Semimalignant Epithelial Neoplasms of the Biliary Tract ... 819

45 Epithelial Tumors of the Liver of Uncertain Lineage 831

Part IV Mixed Epithelial-Mesenchymal Tumors of the Hepatobiliary Tract (Tumors with Epithelial-Mesenchymal Transition) .. 841

46 Hepatobiliary Carcinosarcomas and Related Neoplasms ... 843

47 Giant Cell Tumors of the Hepatobiliary Tract 859

48 Mixed Tumors of the Liver and Related Neoplasms 865

Volume 2

Part V Vascular Tumors of the Hepatobiliary Tract 873

49 Cavernous and Small Vessel Hemangiomas of the Hepatobiliary Tract ... 875

50 Variants of Hepatobiliary Angiomatous Tumors 907

51 Hepatic Epithelioid Hemangioendothelioma 927

52 Infantile Hepatic Hemangioma/Hemangioendothelioma ... 937

53 Variants of Hemangioendotheliomas of the Hepatobiliary Tract ... 959

54 Angiosarcoma of the Liver .. 965

55 Pediatric Hepatic Angiosarcomas 989

56 Hepatic Kaposi’s Sarcoma ... 997
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Glomus Tumor and Glomangiopericytic Tumors of the Liver</td>
<td>Part VI Tumors and Tumor-Like Lesions of Lymph Vessels of the Hepatobiliary Tract</td>
<td>1003</td>
</tr>
<tr>
<td>58</td>
<td>Tumor-Like Vascular Malformations</td>
<td></td>
<td>1009</td>
</tr>
<tr>
<td>59</td>
<td>Bacillary Angiomatosis and Peliosis Hepatis</td>
<td></td>
<td>1023</td>
</tr>
<tr>
<td>60</td>
<td>Lymph Vessel Tumors of the Hepatobiliary Tract</td>
<td>Part VII Solitary Fibrous Tumor and Tumors with a Hemangiopericytoma-Like Pattern</td>
<td>1041</td>
</tr>
<tr>
<td>61</td>
<td>Solitary Fibrous Tumor/Hemangiopericytoma of the Liver</td>
<td></td>
<td>1057</td>
</tr>
<tr>
<td>62</td>
<td>Fibroblastoid and Myofibroblastoid Tumors of the Liver and Bile Ducts</td>
<td>Part VIII Mesenchymal Tumors of the Hepatobiliary Tract</td>
<td>1069</td>
</tr>
<tr>
<td>63</td>
<td>Leiomyomatous Tumors of the Hepatobiliary Tract</td>
<td></td>
<td>1087</td>
</tr>
<tr>
<td>64</td>
<td>Tumors of the Striated Muscle Cell Lineage: Hepatobiliary Rhabdomyosarcoma and Rhabdomyoma</td>
<td></td>
<td>1117</td>
</tr>
<tr>
<td>65</td>
<td>Lipomatous Tumors, Liposarcoma, Benign Adipocyte-Containing Nonneoplastic Lesions, and Focal Fatty Changes of the Liver</td>
<td></td>
<td>1133</td>
</tr>
<tr>
<td>66</td>
<td>Tumors of Osseous and Chondroid Cell Lineages</td>
<td></td>
<td>1155</td>
</tr>
<tr>
<td>67</td>
<td>Gastrointestinal Stromal Tumors (GISTs) of the Liver</td>
<td></td>
<td>1161</td>
</tr>
<tr>
<td>68</td>
<td>Tumors and Tumor-Like Lesions of the Schwann Cell Lineage and the Nerve Sheath</td>
<td></td>
<td>1173</td>
</tr>
<tr>
<td>69</td>
<td>Tumors of a Granular Cell Lineage</td>
<td></td>
<td>1193</td>
</tr>
<tr>
<td>70</td>
<td>Synovial-Like Neoplasms (Synovial Sarcoma) of the Liver</td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>71</td>
<td>Malignant Fibrous Histiocytoma of the Liver: A Neoplasm of the Undifferentiated High-Grade Pleomorphic Sarcoma Group</td>
<td></td>
<td>1215</td>
</tr>
<tr>
<td>72</td>
<td>Hepatic Mesotheliomas and Related Neoplasms</td>
<td>Part IX Tumors of the Mesothelial Lineage</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1227</td>
</tr>
</tbody>
</table>
Part X Tumors of the Perivascular Epithelioid Cell (PEC) System

73 Perivascular Epithelioid Cell Tumors .. 1241

Part XI Hepatobiliary Tumors of Neuroendocrine Lineages

74 Paraganglioma of the Hepatobiliary Tract 1267
75 Neuroendocrine Tumors of the Hepatobiliary Tract 1279

Part XII Hepatobiliary Tumors with a Small Cell Undifferentiated Lineage

76 Undifferentiated Small Cell Tumors of the Hepatobiliary Tract 1309

Part XIII Hepatobiliary Melanotic Tumors

77 Primary and Secondary Malignant Melanoma, and Other Melanotic Tumors, of the Hepatobiliary Tract 1331

Part XIV Hepatobiliary Tumors with a Rhabdoid Cell Lineage

78 Malignant Rhabdoid Tumors and Tumors with Rhabdoid Features 1359

Part XV Hepatobiliary Germ Cell Tumors

79 Germ Cell Tumors of the Liver .. 1387

Part XVI Hepatobiliary Myeloid Neoplasms

80 Myeloid Neoplasms with an Erythroid Cell Lineage 1413
81 Myeloproliferative Syndromes and Thrombocythemia 1427
82 Myeloid Neoplasms with Eosinophil Lineage 1455
83 Systemic Mastocytosis and Mast Cell Tumors 1469
84 Acute Leukemias of Granulocytic, Erythroid, and Megakaryocytic Lineages .. 1487
85 Myeloid Neoplasms with a Monocytoid Lineage 1511
86 Malignant and Benign Extramedullary Tumor-Forming Myeloid Proliferations .. 1523
87 Blastic Plasmacytoid Dendritic Cell Neoplasm 1535
<table>
<thead>
<tr>
<th>Part XVII</th>
<th>Hepatobiliary Hodgkin’s Disease</th>
<th>1539</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Hodgkin Lymphoma of the Hepatobiliary Tract</td>
<td>1541</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part XVIII</th>
<th>Hepatobiliary Non-Hodgkin’s Lymphomas, Other Lymphoproliferative Disorders, and Neoplasms/Proliferations of the Dendritic and Histiocytic Systems</th>
<th>1577</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>B-Cell Non-Hodgkin’s Lymphomas with a Small Cell to Intermediate Cell Phenotype</td>
<td>1579</td>
</tr>
<tr>
<td>90</td>
<td>B-Cell Non-Hodgkin’s Lymphomas with a Small Cell to Intermediate Cell Phenotype: Special Phenotypes</td>
<td>1601</td>
</tr>
<tr>
<td>91</td>
<td>B-Cell Non-Hodgkin’s Lymphomas with a Blastic/Large Cell Phenotype</td>
<td>1617</td>
</tr>
<tr>
<td>92</td>
<td>B-Cell Non-Hodgkin’s Lymphomas with Lymphoplasmacytoid and Plasmacytic Features</td>
<td>1637</td>
</tr>
<tr>
<td>93</td>
<td>Amyloidogenic Immunoglobulin Chain and Non-amyloidogenic Immunoglobulin Chain Diseases</td>
<td>1659</td>
</tr>
<tr>
<td>94</td>
<td>B-Cell Non-Hodgkin’s Lymphomas Associated with Viral Infections</td>
<td>1671</td>
</tr>
<tr>
<td>95</td>
<td>T-Cell Non-Hodgkin’s Lymphomas</td>
<td>1683</td>
</tr>
<tr>
<td>96</td>
<td>T-Cell Non-Hodgkin’s Lymphomas: Variant Forms</td>
<td>1711</td>
</tr>
<tr>
<td>97</td>
<td>Posttransplant Lymphoproliferative Disorders (PTLDs)</td>
<td>1721</td>
</tr>
<tr>
<td>98</td>
<td>Hepatobiliary Castleman Disease</td>
<td>1729</td>
</tr>
<tr>
<td>99</td>
<td>Lymphoid Hyperplasia and Pseudolymphomas of the Hepatobiliary Tract</td>
<td>1745</td>
</tr>
<tr>
<td>100</td>
<td>Tumors of the Langerhans Cell System</td>
<td>1757</td>
</tr>
<tr>
<td>101</td>
<td>Neoplasms of Histiocyte/Macrophage Lineage: Histiocytic Sarcoma and Similar Neoplasms</td>
<td>1785</td>
</tr>
<tr>
<td>102</td>
<td>Tumors of the Dendritic Cell System</td>
<td>1795</td>
</tr>
<tr>
<td>103</td>
<td>Histiocytic Syndromes</td>
<td>1807</td>
</tr>
</tbody>
</table>

Volume 3

<table>
<thead>
<tr>
<th>Part XIX</th>
<th>Mesenchymal Hamartoma and Related Neoplasms</th>
<th>1835</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Mesenchymal Hamartoma of the Liver</td>
<td>1837</td>
</tr>
</tbody>
</table>
105 Undifferentiated (Embryonal) Sarcoma (UES) 1857

Part XX Metastatic Liver Disease 1877

106 Metastatic Liver Disease: Pathological Aspects 1879
107 Metastatic Liver Disease: Colorectal Carcinomas 1907
108 Metastatic Liver Disease: Tumors Other Than
 Colorectal Carcinoma 1927
109 Metastatic Liver Disease: Secondary Alterations of
 Hepatic Metastases ... 1947
110 Metastatic Liver Disease: Hepatic Lymph Node
 Involvement .. 1965
111 Metastatic Liver Disease: Associated Liver Lesions 1973
112 Pathogenic Features of Liver Metastasis: Growth,
 Regrowth, Stem Cells, and Circulating Tumor Cells 1989
113 Pathogenic Features of Liver Metastasis: Mechanisms
 Involving Platelets, Tumor Stroma, Epithelial-Mesenchymal
 Transition, and the Premetastatic Niche 1997
114 Pathogenic Features of Liver Metastasis: The Complex
 Cancer Cell–Cancer Cell, and Cancer
 Cell–Microenvironment Interactomes 2019
115 Pathogenic Features of Colorectal Liver Metastasis:
 Prometastatic and Antimetastatic Genes 2035

Part XXI Tumors and Tumor-Like Lesions of the Hepatic
 Ligaments .. 2043

116 Tumors and Tumor-Like Lesions of the Hepatic
 Ligaments ... 2045

Part XXII Nodular Hyperplastic Lesions of the Liver 2055

117 Focal Nodular Hyperplasia (FNH) of the Liver 2057
118 Nodular Regenerative Hyperplasia and Other Noncirrhotic
 Nodular Hyperplastic Lesions of the Liver 2091

Part XXIII Hepatobiliary Pseudotumors 2117

119 Pseudotumors and Related Lesions of the
 Hepatobiliary Tract ... 2119
Part XXIV Nonneoplastic Mass Lesions of the Hepatobiliary Tract .. 2143

120 Ectopias and Heterotopies as Tumor-Like Lesions of the Hepatobiliary Tract 2145

121 Tumor-Like Lesions of the Hepatobiliary Tract: Anatomical Variations and Malformations Resulting in Hepatic Mass Effects or Focal Defects 2171

122 Solitary Necrotic Nodule of the Liver 2183

123 Hepatic and Perihepatic Involvement in Pneumokonioses and Other Mineral-Induced Diseases 2191

124 Tumor-Like Lesions of the Hepatobiliary Tract Caused by Gallstones, Foreign Bodies, and Bile 2219

125 Hepatobiliary Pseudotumors Consisting of Nonneoplastic Hematopoietic Cells and Cells of the Macrophage Lineage ... 2227

126 Liver Abscesses as Pseudotumoral Lesions 2255

127 Tumor-Like Lesions of the Hepatobiliary Tract Caused by Mycobacterial Infections: Tuberculosis and Lepra 2279

128 Tumor-Like Lesions of the Hepatobiliary Tract Caused by Actinomycosis, Nocardiosis, and Botryomycosis 2311

129 Tumor-Like Lesions of the Hepatobiliary Tract: Granulomatous Masses in Syphilis, Brucellosis, and Cat-Scratch Disease .. 2329

130 Tumor-Like Lesions of the Hepatobiliary Tract: Specific Abscess-Forming Bacterial Infections 2347

131 Tumor-Like Lesions of the Hepatobiliary Tract Caused by Fungal Infections 2363

132 Tumor-Like Protozoal Infections of the Hepatobiliary Tract ... 2389

133 Tumor-Like Parasitic Lesions of the Hepatobiliary Tract: Liver Flukes and Other Trematodes 2399

134 Tumor-Like Parasitic Lesions of the Hepatobiliary Tract: Echinococcosis and Cysticercosis 2417

135 Tumor-Like Parasitic Lesions of the Hepatobiliary Tract: Round Worm Infestations 2433

136 Tumor-Like Parasitic Lesions of the Hepatobiliary Tract: Pentastomiasis 2439
137 Tumor-Like Necroses of the Liver: Liver Infarct and Hepatic Pseudo-infarct (Zahn’s Infarct) 2445

Part XXV Reactive Cystic Lesions of the Liver 2455

138 Cystic Hepatobiliary Lesions Mimicking Cystic Neoplasms .. 2457

Part XXVI Hepatobiliary Mass Lesions Caused by Noninfectious Granulomas 2473

139 Tumor-Like Granulomatous Disorders of the Hepatobiliary Tract .. 2475

140 Hepatobiliary Manifestations of Chronic Granulomatous Diseases of Childhood 2501

Part XXVII Hepatobiliary Mass Lesions Caused by Fibrosclerotic Lesions 2509

141 Tumor-Like Fibrosclerotic Lesions of the Hepatobiliary Tract .. 2511

Part XXVIII Reactive Bile Duct Alterations Mimicking Biliary Tumors .. 2531

142 Reactive Bile Duct Alterations Mimicking Biliary Cancer: Inflammatory Conditions 2533

143 Reactive Bile Duct Alterations Mimicking Biliary Cancer: Eosinophilic Cholangitis/Cholangiopathy and Other Eosinophilic Disorders .. 2551

144 Mechanical and Anatomical Causes of Bile Duct Obstruction .. 2561

145 Bile Duct Compression and Stenosis Due to Anomalies and Acquired Disorders of the Splanchnic Arterial Tree and the Portal Venous System .. 2585

146 Postcholecystectomy Changes, Biliary Tract Mineralizations, and Intrabiliary Foreign Bodies 2609

Volume 4

Part XXIX Tumors and Pseudotumors of the Gallbladder .. 2623

147 Adenocarcinoma of the Gallbladder (Classical Gallbladder Cancer) .. 2625
Adenocarcinoma of the Gallbladder: Biology of Disease, Prognosticators, and Staging

Adenocarcinoma of the Gallbladder: Risk Factors and Pathogenic Pathways

Variant Adenocarcinomas of the Gallbladder

Gallbladder Carcinomas Not Related to Glandular Epithelia

Cystic Epithelial Tumors and Mixed Neoplasms of the Gallbladder

Benign/Borderline Epithelial Tumors and Dysplastic Alterations of the Gallbladder

Hyperplastic Lesions and Metaplastic Changes of the Gallbladder

Neuroendocrine Tumors of the Gallbladder

Mesenchymal Tumors of the Gallbladder

Melanocytic, Neuroectodermal, Germ Cell, Rhabdoid, Perivascular Epithelioid Cell, Hemolymphatic, and Metastatic Tumors of the Gallbladder

Tumor-Like Inflammatory Changes of the Gallbladder

Noninflammatory Tumor-Like Changes of the Gallbladder

Cysts of the Gallbladder

Tumor-Like Infections and Infestations of the Gallbladder (Infectious and Parasitic Pseudotumors)

Tumors and Tumor-Like Lesions of the Cystic Duct

Part XXX Peritoneal Tumors and Tumor-Like Lesions

Tumors, Tumor-Like Lesions, and Metaplastic Lesions of the Peritoneum

Part XXXI General Pathology of Hepatobiliary Tumors: Etiology and Pathogenesis of Hepatocellular Carcinoma

Etiology and Pathogenesis of Hepatocellular Carcinoma: Inflammatory and Toxic Causes

Etiology and Pathogenesis of Hepatocellular Carcinoma: Hepatocellular Carcinoma Associated with Inborn Errors of Metabolism and Hepatobiliary Malformations
Contents

166 Etiology and Pathogenesis of Hepatocellular Carcinoma: Chromosomal Alterations, Oncogenes, Tumor Suppressors, and Associated Signaling Networks 2987

167 Etiology and Pathogenesis of Hepatocellular Carcinoma: Transcription Factors, Signal Pathways Regulating Proliferation and Apoptosis, and Telomeres/Telomerases 3007

168 Etiology and Pathogenesis of Hepatocellular Carcinoma: Epigenetic Mechanisms ... 3029

Part XXXII General Pathology of Hepatobiliary Tumors: Structural and Functional Changes of Nuclei 3041

169 Nucleus, Nuclear Structure, and Nuclear Functional Changes in Liver Cancer .. 3043

170 Nucleus, Nuclear Structure, and Nuclear Functions: Pathogenesis of Nuclear Abnormalities in Cancer 3071

Part XXXIII General Pathology of Hepatobiliary Tumors: Mitochondrial Biology .. 3089

171 Mitochondrial Biology in Hepatobiliary Tumors: Changes of the Cellular Energy Factory 3091

Part XXXIV General Pathology of Hepatobiliary Tumors: Growth and Its Regulation ... 3125

172 General Aspects of Liver Regeneration and Hepatobiliary Cancer Growth .. 3127

173 Growth Regulation in Hepatobiliary Cancer: Involvement of Growth Factors .. 3159

174 Growth Regulation in Hepatobiliary Cancer: Regulators of the Cell Division Cycle 3173

175 Growth Regulation in Hepatobiliary Cancer: Epigenetic Mechanisms ... 3203

Part XXXV General Pathology of Hepatobiliary Tumors: Necrobiology of Liver Cancer 3215

176 Necrobiology of Liver Cancer: Apoptosis and Related Forms of Cell Death .. 3217

177 Necrobiology of Liver Cancer: Other Forms of Cell Death Related or Not Related to Apoptosis 3245

178 Necrobiology of Liver Cancer: Necrosis and Necroptosis 3263
179 Necrobiology of Liver Cancer: Autophagy and Cellular Senescence .. 3271

Part XXXVI General Pathology of Hepatobiliary Tumors: Invasion and Metastasis 3293

180 Mechanisms of Invasion and Metastasis: General Aspects and the Role of Cell Juncions, Adhesion, and Extracellular Matrix .. 3295
181 Mechanisms of Invasion and Metastasis: Cell Migration and Chemotaxis .. 3323
182 Mechanisms of Invasion and Metastasis: Tissue Invasion ... 3351
183 Mechanisms of Invasion and Metastasis: Role of the Stromal Liver Cancer Microenvironment, Epithelial-Mesenchymal Transition, and the Tumor Vascular Bed 3375
184 Mechanisms of Invasion and Metastasis: Prometastatic and Antimetastatic Factors 3399

Part XXXVII General Pathology of Hepatobiliary Tumors: Tumor Stroma .. 3407

185 Tumor Stroma, Desmoplasia, and Stromagenesis 3409

Part XXXVIII General Pathology of Hepatobiliary Tumors: Angiogenesis ... 3441

186 Angiogenesis in Liver Cancer 3443
187 Angiogenesis in Liver Cancer: General Aspects and Cellular Sources of Normal Angiogenesis 3473

Part XXXIX Staging of Liver Cancer 3499

188 Staging of Hepatocellular Carcinoma, Hepatoblastoma, and Cholangiocarcinomas .. 3501

Index .. 3517
About the Author

Professor Arthur Zimmermann is an internationally known specialist in hepatobiliary tumor pathology. Following his training as MD and pathologist at the University of Berne, Switzerland, he worked in basic research for several years, focusing on tumor cell growth regulation, tumor cell locomotion, and cell cycle mutants of cancer cells. In surgical pathology, he analyzed more than 20,000 liver specimens, described new tumor entities, and was an author or coauthor of more than 500 publications in his field of interest. As chapter author, he participated in several well-known books on liver and biliary tract disease, including the 2010 edition of the *WHO Classification of Tumors of the Digestive System*, and was one of the editors of the book, *Pediatric Liver Tumors* (Pediatric Oncology Series, Springer). Professor Zimmermann developed the pathology review center for the multinational SIOPEL pediatric liver cancer treatment studies and was involved in the formulation of the new classification of pediatric liver tumors.