Modeling and Optimization in Science and Technologies

Volume 7

Series editors
Srikanta Patnaik, SOA University, Orissa, India
e-mail: patnaik_srikanta@yahoo.co.in
Ishwar K. Sethi, Oakland University, Rochester, USA
e-mail: isethi@oakland.edu
Xiaolong Li, Indiana State University, Terre Haute, USA
e-mail: Xiaolong.Li@indstate.edu

Editorial Board
Li Cheng, The Hong Kong Polytechnic University, Hong Kong
Jeng-Haur Horng, National Formosa University, Yulin, Taiwan
Pedro U. Lima, Institute for Systems and Robotics, Lisbon, Portugal
Mun-Kew Leong, Institute of Systems Science, National University of Singapore
Muhammad Nur, Diponegoro University, Semarang, Indonesia
Luca Oneto, University of Genoa, Italy
Kay Chen Tan, National University of Singapore, Singapore
Sarma Yadavalli, University of Pretoria, South Africa
Yeon-Mo Yang, Kumoh National Institute of Technology, Gumi, South Korea
Liangchi Zhang, The University of New South Wales, Australia
Baojiang Zhong, Soochow University, Suzhou, China
Ahmed Zobaa, Brunel University, Uxbridge, Middlesex, UK
About this Series

The book series *Modeling and Optimization in Science and Technologies (MOST)* publishes basic principles as well as novel theories and methods in the fast-evolving field of modeling and optimization. Topics of interest include, but are not limited to: methods for analysis, design and control of complex systems, networks and machines; methods for analysis, visualization and management of large data sets; use of supercomputers for modeling complex systems; digital signal processing; molecular modeling; and tools and software solutions for different scientific and technological purposes. Special emphasis is given to publications discussing novel theories and practical solutions that, by overcoming the limitations of traditional methods, may successfully address modern scientific challenges, thus promoting scientific and technological progress. The series publishes monographs, contributed volumes and conference proceedings, as well as advanced textbooks. The main targets of the series are graduate students, researchers and professionals working at the forefront of their fields.

More information about this series at http://www.springer.com/series/10577
Xin-She Yang · Gebrail Bekdaş
Sinan Melih Nigdeli
Editors

Metaheuristics and Optimization in Civil Engineering

Springer
Almost all design problems in engineering can be considered as optimization problems and thus require optimization techniques to solve. However, as most real-world problems are highly nonlinear, traditional optimization methods usually do not work well. The current trend is to use evolutionary algorithms and metaheuristic optimization methods to tackle such nonlinear optimization problems. Metaheuristic algorithms have gained huge popularity in recent years. These metaheuristic algorithms include genetic algorithms, particle swarm optimization, bat algorithm, cuckoo search, differential evolution, firefly algorithm, harmony search, flower pollination algorithm, ant colony optimization, bee algorithms, and many others. The popularity of nature-inspired metaheuristic algorithms can be attributed to their good characteristics because these algorithms are simple, flexible, efficient, and adaptable, and yet easy to implement. Such advantages make them versatile to deal with a wide range of optimization problems without much a priori knowledge about the problem to be solved.

Metaheuristic algorithms play an important role in the optimum design of complex engineering problems when analytical approaches and traditional methods are not effective for solving nonlinear design problems in civil engineering. Generally speaking, these design problems are highly nonlinear with complex constraints, and thus are also highly multimodal. These design constraints often come from design requirements and security measures such as the stresses on the members due to external loading, environmental factors, and usability under service loads. A mathematical solution may be the best approach in an ideal world, but in engineering designs, the values of a design variable such as mass or length must be realistic; for example, quantities must be nonnegative. In addition, such design values must correspond to something that can be manufacturable in practice.

For all engineering disciplines, optimization is crucially important in the design process so as to find a good balance between economy and security that are the primary goals of designs. Aesthetics and practicability are also important in real-world applications. Civil engineering is probably the oldest engineering discipline and it has always been linked to the construction and realization of
civilization. In fact, optimization may be more relevant in civil engineering than in other engineering disciplines. For example, in designing a non-critical machine part in mechanical engineering, the stresses on the part must not exceed certain limits. If a stronger part is used, it may become too expensive. On the other hand, a weaker part may still be able to make the machine work properly, but in time such weak parts can be worn off or damaged. However, such parts may be easy to be replaced at low costs. If this is the case, machine serviceability can be maintained in practice. But in civil engineering, structural integrity and safety may impose stringent restrictions on the structural members that may not be easily replaced. In such cases, all design constraints and the best possible balance between security and economy must be found without risking lives. In addition, sometimes, the minor improvement may not be as important as robustness in applications. A robust design should be able to handle uncertainties in terms of material properties, manufacturing tolerance, and load irregularity in service. Due to complexity and a large number of design constraints in civil engineering, traditional methods often struggle to cope with such high nonlinearity and multimodality. Thus, metaheuristic optimization methods have become important tools in the optimum design in civil engineering.

This edited book strives to summarize the latest developments in optimization and metaheuristic algorithms with emphasis on applications in civil engineering. Topics include the overview of metaheuristic algorithms and optimization, structural optimization by flower pollination algorithm, steel design by swarm intelligence, optimum seismic design of steel frames by bat algorithm, 3D truss optimization by genetic algorithms, reactive power optimization by cuckoo search, structural design by harmony search, asphalt pavement management, reinforced concrete beam design, transport infrastructure planning, water distribution networks, capacitated vehicle routing, slope stability problems, and others. Therefore, this timely book can serve as an ideal reference for graduates, lecturers, engineers, and researchers in civil engineering, mechanical engineering, transport and geotechnical engineering. It can also serve as a timely reference for relevant university courses in all disciplines in civil engineering.

We would like to thank the editors and staff at Springer for their help and professionalism. Last but not least, we thank our families for their help and support.

June 2015

Xin-She Yang
Gebrail Bekdaş
Sinan Melih Nigdeli
Contents

Review and Applications of Metaheuristic Algorithms in Civil Engineering .. 1
Xin-She Yang, Gebrail Bekdaş and Sinan Melih Nigdeli

Application of the Flower Pollination Algorithm in Structural Engineering .. 25
Sinan Melih Nigdeli, Gebrail Bekdaş and Xin-She Yang

Use of Swarm Intelligence in Structural Steel Design Optimization 43
Mehmet Polat Saka, Serdar Carbas, Ibrahim Aydogdu and Alper Akin

Metaheuristic Optimization in Structural Engineering 75
S.O. Degertekin and Zong Woo Geem

Performance-Based Optimum Seismic Design of Steel Dual Braced Frames by Bat Algorithm 95
Saeed Gholizadeh and Hamed Poorhoseini

Genetic Algorithms for Optimization of 3D Truss Structures 115
Vedat Toğan and Ayşe Turhan Daloğlu

Hybrid Meta-heuristic Application in the Asphalt Pavement Management System 135
Fereidoon Moghadas Nejad, Ashkan Allahyari Nik and H. Zakeri

Optimum Reinforced Concrete Design by Harmony Search Algorithm ... 165
Gebrail Bekdaş, Sinan Melih Nigdeli and Xin-She Yang

Reactive Power Optimization in Wind Power Plants Using Cuckoo Search Algorithm 181
K.S. Pandya, J.K. Pandya, S.K. Joshi and H.K. Mewada
A DSS-Based Honeybee Mating Optimization (HBMO) Algorithm for Single- and Multi-objective Design of Water Distribution Networks .. 199
Omid Bozorg Haddad, Navid Ghajarnia, Mohammad Solgi, Hugo A. Loáiciga and Miguel Mariño

Application of the Simulated Annealing Algorithm for Transport Infrastructure Planning 235
Ana Laura Costa, Maria Conceição Cunha, Paulo A.L.F. Coelho and Herbert H. Einstein

A Hybrid Bat Algorithm with Path Relinking for the Capacitated Vehicle Routing Problem 255
Yongquan Zhou, Qifang Luo, Jian Xie and Hongqing Zheng

Hybrid Metaheuristic Algorithms in Geotechnical Engineering 277
Y.M. Cheng
Contributors

Alper Akin Thomas & Betts Corporation, Meyer Steel Structures, Memphis, TN, USA

Ashkan Allahyari Nik Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Ibrahim Aydogdu Department of Civil Engineering, Akdeniz University, Antalya, Turkey

Gebrail Bekdaş Department of Civil Engineering, Istanbul University, Avcılar, Istanbul, Turkey

Omid Bozorg Haddad University of Tehran, Tehran, Iran

Serdar Carbas Department of Civil Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey

Y.M. Cheng Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong

Paulo A.L.F. Coelho Department of Civil Engineering, University of Coimbra, Coimbra, Portugal

Ana Laura Costa Department of Civil Engineering, University of Coimbra, Coimbra, Portugal

Maria Conceição Cunha Department of Civil Engineering, University of Coimbra, Coimbra, Portugal

Ayşe Turhan Daloğlu Department of Civil Engineering, Karadeniz Technical University, Trabzon, Turkey

S.O. Degertekin Department of Civil Engineering, Dicle University, Diyarbakir, Turkey
Herbert H. Einstein Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA

Zong Woo Geem Department of Energy IT, Gachon University, Seongnam, South Korea

Navid Ghajarnia University of Tehran, Tehran, Iran

Saeed Gholizadeh Department of Civil Engineering, Urmia University, Urmia, Iran

S.K. Joshi Department of Electrical Engineering, The M.S. University of Baroda, Vadodara, India

Hugo A. Loáiciga University of California, Santa Barbara, Santa Barbara, CA, USA

Qifang Luo College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China

Miguel Mariño University of California, Davis, Davis, CA, USA

H.K. Mewada Department of Electronics and Communications, CSPIT, Charotar University of Science and Technology, Changa, India

Fereidoon Moghadas Nejad Department of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran

Sinan Melih Nigdeli Department of Civil Engineering, Istanbul University, Avciyar, Istanbul, Turkey

J.K. Pandya Department of Civil Engineering, Dharmsinh Desai University, Nadiad, India

K.S. Pandya Department of Electrical Engineering, CSPIT, Charotar University of Science and Technology, Changa, India

Hamed Poorhoseini Department of Civil Engineering, Urmia University, Urmia, Iran

Mehmet Polat Saka Department of Civil Engineering, University of Bahrain, Isa Town, Bahrain

Mohammad Solgi University of Tehran, Tehran, Iran

Vedat Toğan Department of Civil Engineering, Karadeniz Technical University, Trabzon, Turkey

Jian Xie College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China

Xin-She Yang Design Engineering and Mathematics, School of Science and Technology, Middlesex University, The Burroughs, London, UK

Contributors
H. Zakeri Amirkabir Artificial Intelligence and Image Processing Lab (Attain), Department of Civil and Environment Engineering, Amirkabir University of Technology, Tehran, Iran

Hongqing Zheng College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China

Yongquan Zhou College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, China; Guangxi High School Key Laboratory of Complex System and Computational Intelligence, Nanning, China