More information about this series at http://www.springer.com/series/7412

18th International Conference Munich, Germany, October 5–9, 2015 Proceedings, Part III
In 2015, the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) was held in Munich, Germany. It was organized by the Technical University Munich (TUM) and the Friedrich Alexander University Erlangen-Nuremberg (FAU). The meeting took place in the Philharmonic Hall “Gasteig” during October 6-8, one week after the world-famous Oktoberfest. Satellite events associated with MICCAI 2015 took place on October 5 and October 9 in the Holiday Inn Hotel Munich City Centre and Klinikum rechts der Isar. MICCAI 2015 and its satellite events attracted word-leading scientists, engineers, and clinicians, who presented high-standard papers, aiming at uniting the fields of medical image processing, medical image formation, and medical robotics.

This year the triple anonymous review process was organized in several phases. In total, 810 valid submissions were received. The review process was handled by one primary and two secondary Program Committee members for each paper. It was initiated by the primary Program Committee member, who assigned a minimum of three expert reviewers. Based on these initial reviews, 79 papers were directly accepted and 248 papers were rejected. The remaining papers went to the rebuttal phase, in which the authors had the chance to respond to the concerns raised by reviewers. The reviews and associated rebuttals were subsequently discussed in the next phase among the reviewers leading to the acceptance of another 85 papers and the rejection of 118 papers. Subsequently, secondary Program Committee members issued a recommendation for each paper by weighing both the reviewers’ recommendations and the authors’ rebuttals. This resulted in “accept” for 67 papers and in “reject” for 120 papers. The remaining 92 papers were discussed at a Program Committee meeting in Garching, Germany, in May 2015, where 36 out of 75 Program Committee members were present. During two days, the 92 papers were examined by experts in the respective fields resulting in another 32 papers being accepted. In total 263 papers of the 810 submitted papers were accepted which corresponds to an acceptance rate of 32.5%.

The frequency of primary and secondary keywords is almost identical in the submitted, the rejected, and the accepted paper pools. The top five keywords of all submissions were machine learning (8.3%), segmentation (7.1%), MRI (6.6%), and CAD (4.9%).

The correlation between the initial keyword counts by category and the accepted papers was 0.98. The correlation with the keyword distribution of the rejected papers was 0.99. The distributions of the intermediate accept and reject phases was also above 0.9 in all cases, i.e., there was a strong relationship between the submitted paper categories and the finally accepted categories. The keyword frequency was essentially not influenced by the review decisions. As a
VI Preface

conclusion, we believe the review process was fair and the distribution of topics reflects no favor of any particular topic of the conference.

This year we offered all authors the opportunity of presenting their work in a five-minute talk. These talks were organized in 11 parallel sessions setting the stage for further scientific discussions during the poster sessions of the main single-track conference. Since we consider all of the accepted papers as excellent, the selection of long oral presentations representing different fields in a single track was extremely challenging. Therefore, we decided to organize the papers in these proceedings in a different way than in the conference program. In contrast to the conference program, the proceedings do not differentiate between poster and oral presentations. The proceedings are only organized by conference topics. Only for the sake of the conference program did we decide on oral and poster presentations. In order to help us in the selection process, we asked the authors to submit five-minute short presentations. Based on the five-minute presentations and the recommendations of the reviewers and Program Committee members, we selected 36 papers for oral presentation. We hope these papers to be to some extent representative of the community covering the entire MICCAI spectrum. The difference in raw review score between the poster and oral presentations was not statistically significant ($ p > 0.1$). In addition to the oral presentation selection process, all oral presenters were asked to submit their presentations two months prior to the conference for review by the Program Committee who checked the presentations thoroughly and made suggestions for improvement.

Another feature in the conference program is the industry panel that features leading members of the medical software and device companies who gave their opinions and presented their future research directions and their strategies for translating scientific observations and results of the MICCAI community into medical products.

We thank Aslı Okur, who did an excellent job in the preparation of the conference. She took part in every detail of the organization for more than one year. We would also like to thank Andreas Maier, who supported Joachim Hornegger in his editorial tasks following his election as president of the Friedrich Alexander University Erlangen-Nuremberg (FAU) in early 2015. Furthermore, we thank the local Organizing Committee for arranging the wonderful venue and the MICCAI Student Board for organizing the additional student events ranging from a tour to the BMW factory to trips to the world-famous castles of Neuschwanstein and Linderhof. The workshop, challenge, and tutorial chairs did an excellent job in enriching this year’s program. In addition, we thank the MICCAI society for provision of support and insightful comments as well as the Program Committee for their support during the review process. Last but not least, we thank our sponsors for the financial support that made the conference possible.

We look forward to seeing you in Istanbul, Turkey in 2016!

October 2015

Nassir Navab
Joachim Hornegger
William M. Wells
Alejandro F. Frangi
Organization

General Chair
Nassir Navab
Technische Universität München, Germany

General Co-chair
Joachim Hornegger
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Program Chairs
Nassir Navab
Technische Universität München, Germany
Joachim Hornegger
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany
William M. Wells
Harvard Medical School, USA
Alejandro F. Frangi
University of Sheffield, Sheffield, UK

Local Organization Chairs
Ralf Stauder
Technische Universität München, Germany
Ash Okur
Technische Universität München, Germany
Philipp Matthies
Technische Universität München, Germany
Tobias Zobel
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Publication Chair
Andreas Maier
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Sponsorship and Publicity Chairs
Stefanie Demirci
Technische Universität München, Germany
Su-Lin Lee
Imperial College London, UK
Workshop Chairs

Purang Abolmaesumi
University of British Columbia, Canada
Wolfgang Wein
ImFusion, Germany
Bertrand Thirion
Inria, France
Nicolas Padoy
Université de Strasbourg, France

Challenge Chairs

Björn Menze
Technische Universität München, Germany
Lena Maier-Hein
German Cancer Research Center, Germany
Bram van Ginneken
Radboud University, The Netherlands
Valeria De Luca
ETH Zurich, Switzerland

Tutorial Chairs

Tom Vercauteren
University College London, UK
Tobias Heimann
Siemens Corporate Technology, USA
Sonia Pujol
Harvard Medical School, USA
Carlos Alberola
University of Valladolid, Spain

MICCAI Society Board of Directors

Stephen Aylward
Kitware, Inc., NY, USA
Simon Duchesne
Université Laval, Québéc, Canada
Gabor Fichtinger (Secretary)
Queen’s University, Kingston, ON, Canada
Alejandro F. Frangi
University of Sheffield, Sheffield, UK
Polina Golland
MIT, Cambridge, MA, USA
Pierre Jannin
INSERM/INRIA, Rennes, France
Leo Joskowicz
The Hebrew University of Jerusalem
Wiro Niessen
Erasmus MC - University Medical Centre, Rotterdam, The Netherlands
(NeXT)

Nassir Navab
Technische Universität, München, Germany
Alison Noble (President)
University of Oxford, Oxford, UK
Sebastien Ourselin (Treasurer)
University College, London, UK
Xavier Pennec
INRIA, Sophia Antipolis, France
Josien Pluim
Eindhoven University of Technology, The Netherlands
Dinggang Shen
UNC, Chapel Hill, NC, USA
Li Shen
Indiana University, IN, USA
MICCAI Society Consultants to the Board

Alan Colchester
University of Kent, Canterbury, UK

Terry Peters
University of Western Ontario, London, ON, Canada

Richard Robb
Mayo Clinic College of Medicine, MN, USA

MICCAI Society Staff

Society Secretariat
Janette Wallace, Canada

Recording Secretary
Jackie Williams, Canada

Fellows Nomination Coordinator
Terry Peters, Canada

Program Committee

Acar, Burak
Kamen, Ali

Barbu, Adrian
Kobashi, Syoji

Ben Ayed, Ismail
Langs, Georg

Castellani, Umberto
Li, Shuo

Cattin, Philippe C.
Linguraru, Marius George

Chung, Albert C.S.
Liu, Huafeng

Cootes, Tim
Lu, Le

de Bruijne, Marleen
Madabhushi, Anant

Delingette, Hervé
Maier-Hein, Lena

Fahrig, Rebecca
Martel, Anne

Falcão, Alexandre
Masamune, Ken

Fichtinger, Gabor
Moradi, Mehdi

Gerig, Guido
Nielsen, Mads

Gholipour, Ali
Nielsen, Poul

Glocker, Ben
Niethammer, Marc

Greenspan, Hayit
Ourselin, Sebastien

Hager, Gregory D.
Padoy, Nicolas

Hamarneh, Ghassan
Papademetris, Xenios

Handels, Heinz
Paragios, Nikos

Harders, Matthias
Pernus, Franjo

Heinrich, Mattias Paul
Pohl, Kilian

Huang, Junzhou
Preim, Bernhard

Ionasec, Razvan
Prince, Jerry

Isgum, Ivana
Radeva, Petia

Jannin, Pierre
Rohde, Gustavo

Joshi, Sarang
Sabuncu, Mert Rory

Joskowicz, Leo
Sakuma, Ichiro
Salcudean, Tim
Salvado, Olivier
Sato, Yoshinobu
Schnabel, Julia A.
Shen, Li
Stoyanov, Danail
Studholme, Colin
Syeda-Mahmood, Tanveer
Taylor, Zeike
Unal, Gozde
Van Leemput, Koen

Additional Reviewers

Abolmaesumi, Purang
Achterberg, Hakim
Acosta-Tamayo, Oscar
Aerts, Hugo
Afacan, Onur
Afsari, Bijan
Aghanj, Iman
Ahad, Md. Atiquar Rahman
Ahmedi, Narges
Aichert, André
Akbari, Hamed
Akhondi-Asl, Alireza
Aksoy, Murat
Aalam, Saadia
Alberola-López, Carlos
Aljabar, Paul
Allan, Maximilian
Allasonnieres, Stephanie
Antani, Sameer
Antony, Bhavna
Arbel, Tal
Auvray, Vincent
Awate, Suyash
Azzabou, Noura
Bagci, Ulas
Bai, Wenjia
Baka, Nora
Balocco, Simone
Bao, Siqi
Barmpoutis, Angelos

Wassermann, Demian
Weese, Jürgen
Wein, Wolfgang
Wu, Xiaodong
Yang, Guang Zhong
Yap, Pew-Thian
Yin, Zhaozheng
Yuan, Jing
Zheng, Guoyan
Zheng, Yefeng

Bartoli, Adrien
Batmanghelich, Kayhan
Baust, Maximilian
Baxter, John
Bazin, Pierre-Louis
Berger, Marie-Odile
Bernal, Jorge
Bernard, Olivier
Bernardis, Elena
Bhatia, Kanwal
Bieth, Marie
Bilgic, Berkin
Birkfellner, Wolfgang
Blaschko, Matthew
Bloch, Isabelle
Boctor, Emad
Bogunovic, Hrvoje
Bouarfa, Loubna
Bouix, Sylvain
Bourgeat, Pierrick
Brady, Michael
Brost, Alexander
Buerger, Christian
Burgert, Oliver
Burschka, Darius
Caan, Matthan
Cahill, Nathan
Cai, Weidong
Carass, Aaron
Cardenes, Ruben
Fundana, Ketut
Gamarnik, Viktor
Gao, Fei
Gao, Mingchen
Gao, Yaozong
Gao, Yue
Gaonkar, Bilwaj
Garvin, Mona
Gaser, Christian
Gass, Tobias
Gatta, Carlo
Georgescu, Bogdan
Gerber, Samuel
Ghesu, Florin-Cristian
Giannarou, Stamatia
Gibaud, Bernard
Gibson, Eli
Gilles, Benjamin
Ginsburg, Shoshana
Girard, Gabriel
Giusti, Alessandro
Goh, Alvina
Goksel, Orcun
Goldberger, Jacob
Golland, Polina
Gooya, Ali
Grady, Leo
Gray, Katherine
Grbic, Sasa
Grisan, Enrico
Grova, Christophe
Guibert-Mérida, Albert
Guevara, Pamela
Guler, Riza Alp
Guo, Peifang B.
Gur, Yaniv
Gutman, Boris
Gómez, Pedro
Hacihaliloglu, Ilker
Haidegger, Tamas
Hajnal, Joseph
Hamamci, Andac
Hammers, Alexander
Han, Dongfeng
Hargreaves, Brian

Hastreiter, Peter
Hatt, Chuck
Hawkes, David
Hayasaka, Satoru
Haynor, David
He, Huiguang
He, Tiancheng
Heckel, Frank
Heckemann, Rolf
Heimann, Tobias
Heng, Pheng Ann
Hennersperger, Christoph
Holden, Matthew
Hong, Byung-Woo
Honnorat, Nicolas
Hoogendoorn, Cornel
Hossain, Belayat
Hossain, Shahera
Howe, Robert
Hu, Yipeng
Huang, Heng
Huang, Xiaojie
Huang, Xiaolei
Hutter, Jana
Ibragimov, Bulat
Iglesias, Juan Eugenio
Igual, Laura
Iordachita, Iulian
Irving, Benjamin
Jackowski, Marcel
Jacob, Mathews
Jain, Ameet
Janoos, Firdaus
Janowczyk, Andrew
Jerman, Tim
Ji, Shuiwang
Ji, Songbai
Jiang, Hao
Jiang, Wenchao
Jiang, Xi
Jiao, Fangxiang
Jin, Yan
Jolly, Marie-Pierre
Jomier, Julien
Joshi, Anand
Joshi, Shantanu
Jung, Claudio
K.B., Jayanthi
Kabus, Sven
Kadoury, Samuel
Kahl, Fredrik
Kainmueller, Dagmar
Kainz, Bernhard
Kakadiaris, Ioannis
Kandemir, Melih
Kapoor, Ankur
Kapur, Tina
Katouzian, Amin
Kelm, Michael
Kerrien, Erwan
Kersten-Oertel, Marta
Khan, Ali
Khurd, Parmeshwar
Kiai, Bob
Kikinis, Ron
Kim, Boklye
Kim, Edward
Kim, Minjeong
Kim, Sungmin
King, Andrew
Klein, Stefan
Klinder, Tobias
Kluckner, Stefan
Kobayashi, Etsuko
Komukoglu, Ender
Kumar, Puneet
Kunz, Manuela
Köhler, Thomas
Ladikos, Alexander
Landman, Bennett
Lang, Andrew
Lapeer, Rudy
Larrabide, Ignacio
Lasser, Tobias
Lauze, Francois
Lay, Nathan
Le Reste, Pierre-Jean
Lee, Han Sang
Lee, Kangjoo
Lee, Su-Lin
Lefkimmiatis, Stamatis
Lefèvre, Julien
Lekadir, Karim
Lelieveldt, Boudewijn
Lenglet, Christophe
Lepore, Natasha
Lesage, David
Li, Gang
Li, Jiang
Li, Quanzheng
Li, Xiang
Li, Yang
Li, Yeqing
Liang, Liang
Liao, Hongen
Lin, Henry
Lindeman, Robert
Lindner, Claudia
Linte, Cristian
Litjens, Geert
Liu, Feng
Liu, Jiamin
Liu, Jian Fei
Liu, Jundong
Liu, Mingxia
Liu, Sidong
Liu, Tianming
Liu, Ting
Liu, Yinxiao
Lombaert, Herve
Lorenz, Cristian
Lorenzi, Marco
Lou, Xinghua
Lu, Yao
Luo, Xiongbiao
Lv, Jinglei
Lüthi, Marcel
Maass, Nicole
Madooei, Ali
Mahapatra, Dwarikanath
Maier, Andreas
Maier-Hein (né Fritzsche), Klaus Hermann
Majumdar, Angshul
Malandain, Gregoire
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansi, Tommaso</td>
<td>Neumann, Dominik</td>
</tr>
<tr>
<td>Mansoor, Awais</td>
<td>Neumuth, Thomas</td>
</tr>
<tr>
<td>Mao, Hongda</td>
<td>Ng, Bernard</td>
</tr>
<tr>
<td>Mao, Yunxiang</td>
<td>Nguyen Van, Hien</td>
</tr>
<tr>
<td>Marchesseau, Stephanie</td>
<td>Nicolau, stephane</td>
</tr>
<tr>
<td>Margeta, Jan</td>
<td>Ning, Lipeng</td>
</tr>
<tr>
<td>Marini Silva, Rafael</td>
<td>Noble, Alison</td>
</tr>
<tr>
<td>Mariottini, Gian Luca</td>
<td>Noble, Jack</td>
</tr>
<tr>
<td>Marsden, Alison</td>
<td>Noblet, Vincent</td>
</tr>
<tr>
<td>Marsland, Stephen</td>
<td>O’Donnell, Lauren</td>
</tr>
<tr>
<td>Martin-Fernandez, Marcos</td>
<td>O’Donnell, Thomas</td>
</tr>
<tr>
<td>Martí, Robert</td>
<td>Oda, Masahiro</td>
</tr>
<tr>
<td>Masutani, Yoshitaka</td>
<td>Oeltze-Jafra, Steffen</td>
</tr>
<tr>
<td>Mateus, Diana</td>
<td>Oh, Junghwan</td>
</tr>
<tr>
<td>McClelland, Jamie</td>
<td>Oktay, Ayse Betul</td>
</tr>
<tr>
<td>McIntosh, Chris</td>
<td>Okur, Ash</td>
</tr>
<tr>
<td>Medrano-Gracia, Pau</td>
<td>Oliver, Arnau</td>
</tr>
<tr>
<td>Meier, Raphael</td>
<td>Olivetti, Emanuele</td>
</tr>
<tr>
<td>Mendizabal-Ruiz, E. Gerardo</td>
<td>Onofrey, John</td>
</tr>
<tr>
<td>Menegaz, Gloria</td>
<td>Onogi, Shinya</td>
</tr>
<tr>
<td>Menze, Bjoern</td>
<td>Orihuela-Esparina, Felipe</td>
</tr>
<tr>
<td>Meyer, Chuck</td>
<td>Otake, Yoshito</td>
</tr>
<tr>
<td>Miga, Michael</td>
<td>Ou, Yangming</td>
</tr>
<tr>
<td>Mihailef, Viorel</td>
<td>Ozarslan, Evren</td>
</tr>
<tr>
<td>Miller, James</td>
<td>Pace, Danielle</td>
</tr>
<tr>
<td>Miller, Karol</td>
<td>Papa, Joao</td>
</tr>
<tr>
<td>Misaki, Masaya</td>
<td>Parsopoulos, Konstantinos</td>
</tr>
<tr>
<td>Modat, Marc</td>
<td>Paul, Perrine</td>
</tr>
<tr>
<td>Moghari, Mehdi</td>
<td>Paulsen, Rasmus</td>
</tr>
<tr>
<td>Mohamed, Ashraf</td>
<td>Peng, Tingying</td>
</tr>
<tr>
<td>Mohareri, Omid</td>
<td>Pennec, Xavier</td>
</tr>
<tr>
<td>Moore, John</td>
<td>Peruzzo, Denis</td>
</tr>
<tr>
<td>Morales, Hernán G.</td>
<td>Peter, Loic</td>
</tr>
<tr>
<td>Moreno, Rodrigo</td>
<td>Peterlik, Igor</td>
</tr>
<tr>
<td>Mori, Kensaku</td>
<td>Petersen, Jens</td>
</tr>
<tr>
<td>Morimoto, Masakazu</td>
<td>Petitjean, Caroline</td>
</tr>
<tr>
<td>Murphy, Keelin</td>
<td>Peyrat, Jean-Marc</td>
</tr>
<tr>
<td>Müller, Henning</td>
<td>Pham, Dzung</td>
</tr>
<tr>
<td>Nabavi, Arya</td>
<td>Piella, Gemma</td>
</tr>
<tr>
<td>Nakajima, Yoshikazu</td>
<td>Pitiot, Alain</td>
</tr>
<tr>
<td>Nakamura, Ryoichi</td>
<td>Pizzolato, Marco</td>
</tr>
<tr>
<td>Napel, Sandy</td>
<td>Plenge, Esben</td>
</tr>
<tr>
<td>Nappi, Janne</td>
<td>Pluim, Josien</td>
</tr>
<tr>
<td>Nasiriavanaki, Mohammadreza</td>
<td>Poline, Jean-Baptiste</td>
</tr>
<tr>
<td>Nenning, Karl-Heinz</td>
<td>Prasad, Gautam</td>
</tr>
</tbody>
</table>
Prastawa, Marcel
Pratt, Philip
Preiswerk, Frank
Preusser, Tobias
Prevost, Raphael
Prieto, Claudia
Punithakumar, Kumaradevan
Putzer, David
Qian, Xiaoning
Qiu, Wu
Quellec, Gwenole
Rafii-Tari, Hedyeh
Rajchl, Martin
Rajpoot, Nasir
Raniga, Parnesh
Rapaka, Sai Kiran
Rathi, Yogesh
Rathke, Fabian
Rauber, Paulo
Reinertsen, Igerid
Reinhardt, Joseph
Reiter, Austin
Rekik, Islam
Reyes, Mauricio
Richa, Rogério
Rieke, Nicola
Riess, Christian
Riklin Raviv, Tammy
Risser, Laurent
Rit, Simon
Rivaz, Hassan
Robinson, Emma
Roche, Alexis
Rohlhing, Robert
Rohr, Karl
Ropinski, Timo
Roth, Holger
Rousseau, François
Rousson, Mikael
Roy, Snehashis
Rueckert, Daniel
Rueda Olarte, Andrea
Ruijters, Daniel
Samaras, Dimitris
Sarry, Laurent
Sato, Joao
Schaap, Michiel
Scheinost, Dustin
Scherrer, Benoit
Schirmer, Markus D.
Schmidt, Frank
Schmidt-Richberg, Alexander
Schneider, Caitlin
Schneider, Matthias
Schultz, Thomas
Schumann, Steffen
Schwartz, Ernst
Sechopoulos, Ioannis
Seiler, Christof
Seitel, Alexander
Sermesant, Maxime
Seshamani, Sharmishtaa
Shahzad, Rahil
Shamir, Reuben R.
Sharma, Puneet
Shen, Xilin
Shi, Feng
Shi, Kuangyu
Shi, Wenzhe
Shi, Yinghuan
Shi, Yonggang
Shin, Hoo-Chang
Simpson, Amber
Singh, Vikas
Sinkus, Ralph
Slabaugh, Greg
Smeets, Dirk
Sona, Diego
Song, Yang
Sotiras, Aristeidis
Speidel, Michael
Speidel, Stefanie
Špiclin, Žiga
Staib, Lawrence
Stamm, Aymeric
Staring, Marius
Stauder, Ralf
Stayman, J. Webster
Steinman, David
Stewart, James
XVI Organization

Styles, Iain
Styner, Martin
Su, Hang
Suiinesiaputra, Avan
Suk, Heung-II
Summers, Ronald
Sun, Shanhui
Szekely, Gabor
Sznitman, Raphael
Takeda, Takahiro
Talbot, Hugues
Tam, Roger
Tamura, Manabu
Tang, Lisa
Tao, Lingling
Tasdizen, Tolga
Taylor, Russell
Thirion, Bertrand
Thung, Kim-Han
Tiwari, Pallavi
Toews, Matthew
Toh, Kim-Chuan
Tokuda, Junichi
Tong, Yubing
Tornai, Gábor János
Tosun, Duygu
Totz, Johannes
Tourrier, J-Donald
Toussaint, Nicolas
Traub, Joerg
Troccaz, Jocelyne
Tustison, Nicholas
Twinanda, Andru Putra
Twining, Carole
Ukwatta, Eranga
Umadevi Venkataraman, Kannan
Unay, Devrim
Urschler, Martin
Uzunbas, Mustafa
Vaillant, Régis
Vallin Spina, Thiago
Vallotton, Pascal
Van assen, Hans
Van Ginneken, Bram
Van Tulder, Gijs
Van Walsum, Theo
Vandini, Alessandro
Vannier, Michael
Varoquaux, Gael
Vegas-Sánchez-Ferrero, Gonzalo
Venkataraman, Archana
Vercauteren, Tom
Veta, Mtiko
Vignon-Clementel, Irene
Villard, Pierre-Frederic
Visentini-Scarzanella, Marco
Viswanath, Satish
Vitanovski, Dime
Voigt, Ingmar
Von Berg, Jens
Voros, Sandrine
Vrtovec, Tomaz
Wachinger, Christian
Waechter-Stehle, Irina
Wahle, Andreas
Wang, Ancong
Wang, Chaohui
Wang, Haibo
Wang, Hongzhi
Wang, Junchen
Wang, Li
Wang, Liansheng
Wang, Lichao
Wang, Linwei
Wang, Qian
Wang, Qiu
Wang, Song
Wang, Yalin
Wang, Yuanquan
Wee, Chong-Yaw
Wei, Liu
Wels, Michael
Werner, Rene
Wesarg, Stefan
Westin, Carl-Fredrik
Whitaker, Ross
Whitney, Jon
Wiles, Andrew
Wörz, Stefan
Wu, Guorong
Wu, Haiyong
Wu, Yu-Chien
Xie, Yuchen
Xing, Fuyong
Xu, Yanwu
Xu, Ziyue
Xue, Zhong
Yagi, Naomi
Yamazaki, Takaharu
Yan, Pingkun
Yang, Lin
Yang, Ying
Yao, Jianhua
Yaqub, Mohammad
Ye, Dong Hye
Yeo, B.T. Thomas
Ynnermann, Anders
Young, Alistair
Yushkevich, Paul
Zacharaki, Evangelia
Zacur, Ernesto
Zelmann, Rina
Zeng, Wei
Zhan, Liang
Zhan, Yiqiang
Zhang, Daoqiang
Zhang, Hui
Zhang, Ling
Zhang, Miaomiao
Zhang, Pei
Zhang, Shaoting
Zhang, Tianhao
Zhang, Tuo
Zhang, Yong
Zhao, Bo
Zhao, Wei
Zhijun, Zhang
Zhou, jinghao
Zhou, Luping
Zhou, S. Kevin
Zhou, Yan
Zhu, Dajiang
Zhu, Hongtu
Zhu, Yuemin
Zhuang, ling
Zhuang, Xiahai
Zuluaga, Maria A.
Quantitative Image Analysis I: Segmentation and Measurement

Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation

Tom Brosch, Youngjin Yoo, Lisa Y.W. Tang, David K.B. Li, Anthony Traboulsee, and Roger Tam

Unsupervised Myocardial Segmentation for Cardiac MRI

Anirban Mukhopadhyay, Ilkay Oksuz, Marco Bevilacqua, Rohan Dharmakumar, and Sotirios A. Tsaftaris

Multimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity

Chendi Wang, Burak Yoldemir, and Rafeef Abugharbieh

Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribbles and Online Learning

Guotai Wang, Maria A. Zuluaga, Rosalind Pratt, Michael Aertsen, Anna L. David, Jan Deprest, Tom Vercauteren, and Sébastien Ourselin

GPSSI: Gaussian Process for Sampling Segmentations of Images

Matthieu Lê, Jan Unkelbach, Nicholas Ayache, and Hervé Delingette

Multi-level Parcellation of the Cerebral Cortex Using Resting-State fMRI

Salim Arslan and Daniel Rueckert

Interactive Multi-organ Segmentation Based on Multiple Template Deformation

Romane Gauriau, David Lesage, Mélanie Chiaradia, Baptiste Morel, and Isabelle Bloch

Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data

Yanrong Guo, Guorong Wu, Pew-Thian Yap, Valerie Jewells, Weili Lin, and Dinggang Shen

Measuring Cortical Neurite-Dispersion and Perfusion in Preterm-Born Adolescents Using Multi-modal MRI

Andrew Melbourne, Zach Eaton-Rosen, David Owen, Jorge Cardoso, Joanne Beckmann, David Atkinson, Neil Marlow, and Sebastien Ourselin
Interactive Whole-Heart Segmentation in Congenital Heart Disease
Danielle F. Pace, Adrian V. Dalca, Tal Geva, Andrew J. Powell, Mehdi H. Moghari, and Polina Golland

Automatic 3D US Brain Ventricle Segmentation in Pre-Term Neonates Using Multi-phase Geodesic Level-Sets with Shape Prior
Wu Qiu, Jing Yuan, Jessica Kishimoto, Yimin Chen, Martin Rajchl, Eranga Ukwatta, Sandrine de Ribaupierre, and Aaron Fenster

Multiple Surface Segmentation Using Truncated Convex Priors
Abhay Shah, Junjie Bai, Zhihong Hu, Srinivas Sadda, and Xiaodong Wu

Eli Gibson, Henkjan J. Huisman, and Dean C. Barratt

Joint Learning of Image Regressor and Classifier for Deformable Segmentation of CT Pelvic Organs
Yaozong Gao, Jun Lian, and Dinggang Shen

Corpus Callosum Segmentation in MS Studies Using Normal Atlases and Optimal Hybridization of Extrinsic and Intrinsic Image Cues
Lisa Y.W. Tang, Ghassan Hamarneh, Anthony Traboulsee, David Li, and Roger Tam

Brain Tissue Segmentation Based on Diffusion MRI Using ℓ_0 Sparse-Group Representation Classification
Pew-Thian Yap, Yong Zhang, and Dinggang Shen

A Latent Source Model for Patch-Based Image Segmentation
George H. Chen, Devavrat Shah, and Polina Golland

Multi-organ Segmentation Using Shape Model Guided Local Phase Analysis
Chunliang Wang and Ørjan Smedby

Filling Large Discontinuities in 3D Vascular Networks Using Skeleton- and Intensity-Based Information
Russell Bates, Laurent Risser, Benjamin Irving, Bartłomiej W. Papież, Pavitra Kannan, Veerle Kersemans, and Julia A. Schnabel

A Continuous Flow-Maximisation Approach to Connectivity-Driven Cortical Parcellation
Sarah Parisot, Martin Rajchl, Jonathan Passerat-Palmbach, and Daniel Rueckert
A 3D Fractal-Based Approach Towards Understanding Changes in the Infarcted Heart Microvasculature .. 173
Polyxeni Gkontra, Magdalena M. Žak, Kerri-Ann Norton, Andrés Santos, Aleksander S. Popel, and Alicia G. Arroyo

Segmenting the Uterus in Monocular Laparoscopic Images without Manual Input .. 181
Toby Collins, Adrien Bartoli, Nicolas Bourdel, and Michel Canis

Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution ... 190
Yantao Song, Guorong Wu, Quansen Sun, Khosro Bahrami, Chunming Li, and Dinggang Shen

Multi-atlas Based Segmentation Editing with Interaction-Guided Constraints ... 198
Sang Hyun Park, Yaozong Gao, and Dinggang Shen

Quantitative Image Analysis II: Microscopy, Fluorescence and Histological Imagery

Improving Convenience and Reliability of 5-ALA-Induced Fluorescent Imaging for Brain Tumor Surgery 209
Hiroki Taniguchi, Noriko Kohira, Takashi Ohnishi, Hiroshi Kawahira, Mikael von und zu Fraunberg, Juha E. Jääskeläinen, Markku Hauta-Kasari, Yasuo Iwadate, and Hideaki Haneishi

Analysis of High-Throughput Microscopy Videos: Catching Up with Cell Dynamics ... 218
A. Arbelle, N. Drayman, M. Bray, U. Alon, A. Carpenter, and T. Riklin Raviv

Neutrophils Identification by Deep Learning and Voronoi Diagram of Clusters ... 226
Jiazhuo Wang, John D. MacKenzie, Rageshree Ramachandran, and Danny Z. Chen

U-Net: Convolutional Networks for Biomedical Image Segmentation .. 234
Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Co-restoring Multimodal Microscopy Images 242
Mingzhong Li and Zhaozheng Yin

A 3D Primary Vessel Reconstruction Framework with Serial Microscopy Images ... 251
Yanhui Liang, Fusheng Wang, Darren Treanor, Derek Magee, George Teodoro, Yangyang Zhu, and Jun Kong
Part III

Adaptive Co-occurrence Differential Texton Space for HEp-2 Cells

Classification .. 260

Xiang Xu, Feng Lin, Carol Ng, and Khai Pang Leong

Learning to Segment: Training Hierarchical Segmentation under a Topological Loss .. 268

Jan Funke, Fred A. Hamprecht, and Chong Zhang

You Should Use Regression to Detect Cells 276

Philipp Kainz, Martin Urschler, Samuel Schulter, Paul Wohlhart, and Vincent Lepetit

A Hybrid Approach for Segmentation and Tracking of *Mycococcus Xanthus* Swarms ... 284

Jianxu Chen, Shant Mahserejian, Mark Alber, and Danny Z. Chen

Fast Background Removal in 3D Fluorescence Microscopy Images Using One-Class Learning .. 292

Lin Yang, Yizhe Zhang, Ian H. Guldner, Siyuan Zhang, and Danny Z. Chen

Motion Representation of Ciliated Cell Images with Contour-Alignment for Automated CBF Estimation 300

Fan Zhang, Yang Song, Siqi Liu, Paul Young, Daniela Traini, Lucy Morgan, Hui-Xin Ong, Lachlan Buddle, Sidong Liu, Dagan Feng, and Weidong Cai

Multimodal Dictionary Learning and Joint Sparse Representation for HEp-2 Cell Classification .. 308

Ali Taalimi, Shahab Ensafi, Hairong Qi, Shijian Lu, Ashraf A. Kassim, and Chew Lim Tan

Cell Event Detection in Phase-Contrast Microscopy Sequences from Few Annotations ... 316

Melih Kandemir, Christian Wojek, and Fred A. Hamprecht

Robust Muscle Cell Quantification Using Structured Edge Detection and Hierarchical Segmentation 324

Fujun Liu, Fuyong Xing, Zizhao Zhang, Mason Mcgough, and Lin Yang

Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-Approximated Active Contour 332

Fuyong Xing and Lin Yang

Restoring the Invisible Details in Differential Interference Contrast Microscopy Images ... 340

Wenchao Jiang and Zhaozheng Yin
A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set 349
Fujun Liu and Lin Yang

Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network .. 358
Yuanpu Xie, Fuyong Xing, Xiangfei Kong, Hai Su, and Lin Yang

Joint Kernel-Based Supervised Hashing for Scalable Histopathological Image Analysis ... 366
Menglin Jiang, Shaoting Zhang, Junzhou Huang, Lin Yang, and Dimitris N. Metaxas

Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images ... 374
Yuanpu Xie, Xiangfei Kong, Fuyong Xing, Fujun Liu, Hai Su, and Lin Yang

Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders 383
Hai Su, Fuyong Xing, Xiangfei Kong, Yuanpu Xie, Shaoting Zhang, and Lin Yang

Automatic in Vivo Cell Detection in MRI .. 391
Muhammad Jamal Afridi, Xiaoming Liu, Erik Shapiro, and Arun Ross

Quantitative Image Analysis III: Motion, Deformation, Development and Degeneration

Automatic Vessel Segmentation from Pulsatile Radial Distension 403
Alborz Amir-Khalili, Ghassan Hamarneh, and Rafeef Abgharbieh

A Sparse Bayesian Learning Algorithm for Longitudinal Image Data 411
Mert R. Sabuncu

Descriptive and Intuitive Population-Based Cardiac Motion Analysis via Sparsity Constrained Tensor Decomposition 419
K. McLeod, M. Sermesant, P. Beerbaum, and X. Pennec

Liver Motion Estimation via Locally Adaptive Over-Segmentation Regularization ... 427
Bartłomiej W. Papieć, Jamie Franklin, Mattias P. Heinrich, Fergus V. Gleeson, and Julia A. Schnabel

Motion-Corrected, Super-Resolution Reconstruction for High-Resolution 3D Cardiac Cine MRI .. 435
Freddy Odille, Aurélien Bustin, Bailiang Chen, Pierre-André Vuissoz, and Jacques Felblinger
Motion Estimation of Common Carotid Artery Wall Using a H$_\infty$ Filter
Zhifan Gao, Huahua Xiong, Heye Zhang, Dan Wu, Minhua Lu, Wangqing Wu, Kelvin K.L. Wong, and Yuan-Ting Zhang

Gated-Tracking: Estimation of Respiratory Motion with Confidence
Valeria De Luca, Gábor Székely, and Christine Tanner

Solving Logistic Regression with Group Cardinality Constraints for Time Series Analysis
Yong Zhang and Kilian M. Pohl

Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery
Borislav Antic, Uta Büchler, Anna-Sophia Wahl, Martin E. Schwab, and Björn Ommer

Longitudinal Analysis of Pre-term Neonatal Brain Ventricle in Ultrasound Images Based on Convex Optimization
Wu Qiu, Jing Yuan, Jessica Kishimoto, Yimin Chen, Martin Rajchl, Eranga Ukwatta, Sandrine de Ribaupierre, and Aaron Fenster

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI
Tran Minh Quan, Sohyun Han, Hyungjoon Cho, and Won-Ki Jeong

Prospective Identification of CRT Super Responders Using a Motion Atlas and Random Projection Ensemble Learning
Devis Peressutti, Wenjia Bai, Thomas Jackson, Manav Sohal, Aldo Rinaldi, Daniel Rueckert, and Andrew King

Motion Compensated Abdominal Diffusion Weighted MRI by Simultaneous Image Registration and Model Estimation (SIR-ME)
Sila Kurugol, Moti Freiman, Onur Afacan, Liran Domachovsky, Jeannette M. Perez-Rossello, Michael J. Callahan, and Simon K. Warfield

Fast Reconstruction of Accelerated Dynamic MRI Using Manifold Kernel Regression
Kanwal K. Bhatia, Jose Caballero, Anthony N. Price, Ying Sun, Jo V. Hajnal, and Daniel Rueckert

Predictive Modeling of Anatomy with Genetic and Clinical Data
Adrian V. Dalca, Ramesh Sridharan, Mert R. Sabuncu, and Polina Golland
Joint Diagnosis and Conversion Time Prediction of Progressive Mild Cognitive Impairment (pMCI) Using Low-Rank Subspace Clustering and Matrix Completion .. 527
 Kim-Han Thung, Pew-Thian Yap, Ehsan Adeli-M., and Dinggang Shen

Learning with Heterogeneous Data for Longitudinal Studies 535
 Letizia Squarcina, Cinzia Perlini, Marcella Bellani, Antonio Lasalvia, Mirella Ruggeri, Paolo Brambilla, and Umberto Castellani

Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes .. 543
 Gang Li, Li Wang, John H. Gilmore, Weili Lin, and Dinggang Shen

Graph-Based Motion-Driven Segmentation of the Carotid Atherosclerotic Plaque in 2D Ultrasound Sequences 551
 Aimilia Gastounioti, Aristeidis Sotiras, Konstantina S. Nikita, and Nikos Paragios

Cortical Surface-Based Construction of Individual Structural Network with Application to Early Brain Development Study 560
 Yu Meng, Gang Li, Weili Lin, John H. Gilmore, and Dinggang Shen

Quantitative Image Analysis IV: Classification, Detection, Features, and Morphology

NEOCIVET: Extraction of Cortical Surface and Analysis of Neonatal Gyrification Using a Modified CIVET Pipeline 571
 Hosung Kim, Claude Lepage, Alan C. Evans, A. James Barkovich, and Duan Xu

Learning-Based Shape Model Matching: Training Accurate Models with Minimal Manual Input .. 580
 Claudia Lindner, Jessie Thomson, The arcOGEN Consortium, and Tim F. Cootes

Scale and Curvature Invariant Ridge Detector for Tortuous and Fragmented Structures .. 588
 Roberto Annunziata, Ahmad Kheirkhah, Pedram Hamrah, and Emanuele Trucco

Boosting Hand-Crafted Features for Curvilinear Structure Segmentation by Learning Context Filters 596
 Roberto Annunziata, Ahmad Kheirkhah, Pedram Hamrah, and Emanuele Trucco
Kernel-Based Analysis of Functional Brain Connectivity on Grassmann Manifold .. 604
Luca Dodero, Fabio Sambataro, Vittorio Murino, and Diego Sona

A Steering Engine: Learning 3-D Anatomy Orientation Using Regression Forests .. 612
 Fitsum A. Reda, Yiqiang Zhan, and Xiang Sean Zhou

Automated Localization of Fetal Organs in MRI Using Random Forests with Steerable Features .. 620
Kevin Keraudren, Bernhard Kainz, Ozan Oktay, Vanessa Kyriakopoulou, Mary Rutherford, Joseph V. Hajnal, and Daniel Rueckert

A Statistical Model for Smooth Shapes in Kendall Shape Space 628
Akshay V. Gaikwad, Saurabh J. Shigwan, and Suyash P. Awate

A Cross Saliency Approach to Asymmetry-Based Tumor Detection 636
Miri Erihov, Sharon Alpert, Pavel Kisilev, and Sharbell Hashoul

Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum .. 644
Da Ma, Manuel J. Cardoso, Maria A. Zuluaga, Marc Modat, Nick Powell, Frances Wiseman, Victor Tybulewicz, Elizabeth Fisher, Mark F. Lythgoe, and Sébastien Ourselin

Unregistered Multiview Mammogram Analysis with Pre-trained Deep Learning Models ... 652
Gustavo Carneiro, Jacinto Nascimento, and Andrew P. Bradley

Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model 661
Jun Zhang, Yaozong Gao, Li Wang, Zhen Tang, James J. Xia, and Dinggang Shen

Automatic Feature Learning for Glaucoma Detection Based on Deep Learning .. 669
Xiangyu Chen, Yanwu Xu, Shuicheng Yan, Damon Wing Kee Wong, Tien Yin Wong, and Jiang Liu

Fast Automatic Vertebrae Detection and Localization in Pathological CT Scans - A Deep Learning Approach 678
Amin Suzani, Alexander Seitel, Yuan Liu, Sidney Fels, Robert N. Rohling, and Purang Abolmaesumi

Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans 687
Mohammad Yaqub, Brenda Kelly, A.T. Papageorghiou, and J. Alison Noble
Dempster-Shafer Theory Based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy
 Chunfeng Lian, Su Ruan, Thierry Denœux, Hua Li, and Pierre Vera

Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation
 Fitsum Mesadi, Mujdat Cetin, and Tolga Tasdizen

Positive Delta Detection for Alpha Shape Segmentation of 3D Ultrasound Images of Pathologic Kidneys
 Juan J. Cerrolaza, Christopher Meyer, James Jago, Craig Peters, and Marius George Linguraru

Non-local Atlas-Guided Multi-channel Forest Learning for Human Brain Labeling
 Guangkai Ma, Yaozong Gao, Guorong Wu, Ligang Wu, and Dinggang Shen

Model Criticism for Regression on the Grassmannian
 Yi Hong, Roland Kwitt, and Marc Niethammer

Structural Edge Detection for Cardiovascular Modeling
 Jameson Merkow, Zhuowen Tu, David Kriegman, and Alison Marsden

Sample Size Estimation for Outlier Detection
 Timothy Gebhard, Inga Koerte, and Sylvain Bouix

Multi-scale Heat Kernel Based Volumetric Morphology Signature
 Gang Wang and Yalin Wang

Structural Brain Mapping
 Muhammad Razib, Zhong-Lin Lu, and Wei Zeng

Author Index