Multispectral Biometrics
David Zhang · Zhenhua Guo
Yazhuo Gong

Multispectral Biometrics
Systems and Applications

Springer
Recently, biometrics technology has been one of the hot research topics in the IT field, because of the demands for accurate personal identification or verification to solve security problems in various applications, such as e-commerce, Internet banking, access control, immigration, and law enforcement. In particular, after the 9/11 terrorist attacks, the interest in biometrics-based security solutions and applications has increased dramatically.

Although a lot of traditional biometrics technologies and systems such as fingerprint, face, palmprint, voice, and signature have been greatly development in the past decades, they are application dependent and still have some limitations. Multispectral biometrics technologies are emerging for high security requirement for their advantages: multispectral biometrics could offer a richer information source for feature extraction; multispectral biometrics is more robust to spoof attack since it is more difficult to be duplicated or counterfeited.

With the development of multispectral imaging techniques, it is possible to capture multispectral biometrics characteristics in real time. Recently, multispectral techniques have been used in biometrics authentication, such as multispectral face, multispectral iris, multispectral palmprint, and multispectral fingerprint recognition, and some commercial multispectral biometrics systems have been pushed into the market already.

Our team certainly regards multispectral biometrics as a very potential research field and has worked on it since 2008. We are the first group that developed the multispectral hand dorsal technology and system. We built a large multispectral palmprint database (PolyU multispectral Palmprint Database), which contains 6,000 samples collected from 500 different palms, and then published it online since 2010. Until now, this database has been downloaded by many researchers. This work was followed with more extensive investigations into multispectral palmprint technology, and this research has now evolved to other multispectral biometrics field. Then, a number of algorithms have been proposed for these multispectral biometrics technologies, including segmentation approaches, feature extraction methodologies, matching strategies, and classification ideas. Both this explosion of
interest and this diversity of approaches have been reflected in the wide range of recently published technical papers.

This book seeks to gather and present current knowledge relevant to the basic concepts, definition, and characteristic features of multispectral biometrics technology in a unified way, and demonstrates some multispectral biometric identification system prototypes. We hope thereby to provide readers with a concrete survey of the field in one volume. Selected chapters provide in-depth guides to specific multispectral imaging methods, algorithm designs, and implementations.

This book provides a comprehensive introduction to multispectral biometrics technologies. It is suitable for different levels of readers: Those who want to learn more about multispectral biometrics technology, and those who wish to understand, participate in, and/or develop a multispectral biometrics authentication system. We have tried to keep explanations elementary without sacrificing depth of coverage or mathematical rigor. The first part of this book explains the background of multispectral biometrics. Multispectral iris recognition is introduced in Part II. Part III presents multispectral palmprint technologies. Multispectral hand dorsal recognition is developed in Part IV.

This book is a comprehensive introduction to both theoretical and practical issues in multispectral biometrics authentication. It would serve as a textbook or as a useful reference for graduate students and researchers in the fields of computer science, electrical engineering, systems science, and information technology. Researchers and practitioners in industry and R&D laboratories’ working security system design, biometrics, immigration, law enforcement, control, and pattern recognition would also find much of interest in this book.

December 2014
David Zhang
Zhenhua Guo
Yazhuo Gong
Contents

Part I Background of Multispectral Biometrics

1 Overview ... 3
 1.1 The Need for Biometrics ... 3
 1.1.1 Biometrics System Architecture 4
 1.1.2 Operation Mode of a Biometrics System 4
 1.1.3 Evaluation of Biometrics and Biometrics System 6
 1.2 Different Biometrics Technologies 7
 1.2.1 Voice Recognition Technology 8
 1.2.2 Signature Recognition Technology 8
 1.2.3 Iris Recognition Technology 10
 1.2.4 Face Recognition Technology 12
 1.2.5 Fingerprint Recognition Technology 13
 1.2.6 Palmprint Recognition Technology 14
 1.2.7 Hand Geometry Recognition Technology 15
 1.2.8 Palm Vein Recognition Technology 18
 1.3 A New Trend: Multispectral Biometrics 18
 1.4 Arrangement of This Book 20
 References ... 20

2 Multispectral Biometrics Systems 23
 2.1 Introduction ... 23
 2.2 Different Biometrics Technologies 24
 2.2.1 Multispectral Iris ... 25
 2.2.2 Multispectral Fingerprint 28
 2.2.3 Multispectral Face ... 29
 2.2.4 Multispectral Palmprint 30
 2.2.5 Multispectral Dorsal Hand 31
 2.3 Security Applications ... 32
 2.4 Summary .. 33
 References ... 33
Part II Multispectral Iris Recognition

3 Multispectral Iris Acquisition System ... 39
3.1 System Requirements ... 39
3.2 Parameter Selection ... 42
 3.2.1 Capture Unit ... 43
 3.2.2 Illumination Unit .. 46
 3.2.3 Interaction Unit .. 48
 3.2.4 Control Unit ... 50
3.3 System Performance Evaluation .. 52
 3.3.1 Proposed Iris Image Capture Device 52
 3.3.2 Iris Database ... 53
 3.3.3 Image Fusion and Recognition .. 55
3.4 Summary .. 61
References ... 62

4 Feature Band Selection for Multispectral Iris Recognition 63
4.1 Introduction ... 63
4.2 Data Collection ... 66
 4.2.1 Overall Design ... 66
 4.2.2 Checkerboard Stimulus .. 67
 4.2.3 Data Collection ... 69
4.3 Feature Band Selection ... 70
 4.3.1 Data Organization of Dissimilarity Matrix 70
 4.3.2 Improved (2D)^2PCA .. 71
 4.3.3 Low-Quality Evaluation ... 73
 4.3.4 Agglomerative Clustering Based on the Global Principle 74
4.4 Experimental Results and Analysis .. 77
4.5 Summary .. 86
References ... 87

5 The Prototype Design of Multispectral Iris Recognition System 89
5.1 Introduction ... 89
5.2 System Framework ... 94
 5.2.1 Overall Design ... 94
 5.2.2 Illumination Unit .. 98
 5.2.3 Interaction Unit ... 99
 5.2.4 Control Unit ... 101
5.3 Multispectral Image Fusion ... 103
 5.3.1 Proposed Iris Image Capture Device 103
 5.3.2 Iris Database ... 105
5.3.3 Score Fusion and Recognition 105
5.3.4 Experimental Results and Analysis 108
5.4 Summary .. 112
References .. 113

Part III Multispectral Palmprint Recognition

6 An Online System of Multispectral Palmprint Verification 117
 6.1 Introduction ... 117
 6.2 The Online Multispectral Palmprint System Design 119
 6.3 Multispectral Palmprint Image Analysis 123
 6.3.1 Feature Extraction and Matching for Each Band 123
 6.3.2 Inter-spectral Correlation Analysis 125
 6.3.3 Score-Level Fusion Scheme 126
 6.4 Experimental Results .. 129
 6.4.1 Multispectral Palmprint Database 129
 6.4.2 Palmprint Verification on Each Band 130
 6.4.3 Palmprint Verification by Fusion 133
 6.4.4 Anti-spoofing Test ... 134
 6.4.5 Speed ... 134
 6.5 Summary ... 135
References .. 136

7 Empirical Study of Light Source Selection for Palmprint
 Recognition .. 139
 7.1 Introduction .. 139
 7.2 Multispectral Palmprint Data Collection 141
 7.3 Feature Extraction Methods 143
 7.3.1 Wide Line Detection 143
 7.3.2 Competitive Coding 144
 7.3.3 (2D)²PCA .. 144
 7.4 Analyses of Light Source Selection 145
 7.4.1 Database Description 145
 7.4.2 Palmprint Verification Results by Wide Line Detection 146
 7.4.3 Palmprint Verification Results by Competitive Coding 147
 7.4.4 Palmprint Identification Results by (2D)²PCA 148
 7.4.5 Discussions .. 149
 7.5 Conclusion .. 149
References .. 150
8 Feature Band Selection for Online Multispectral Palmprint Recognition
8.1 Introduction .. 153
8.2 Hyperspectral Palmprint Data Collection 154
8.3 Feature Band Selection by Clustering 156
8.4 Clustering Validation by Verification Test 159
8.5 Summary .. 161
References ... 161

Part IV Multispectral Hand Dorsal Recognition

9 Dorsal Hand Recognition .. 165
9.1 Introduction ... 165
9.2 Multispectral Acquisition System and Database 167
 9.2.1 Image Acquisition System 168
 9.2.2 ROI Database .. 169
9.3 Feature Representation ... 173
 9.3.1 Introduction of Dorsal Hand Feature Representation 173
 9.3.2 (2D)^2PCA ... 174
 9.3.3 CompCode .. 175
 9.3.4 MFRAT .. 176
9.4 Optimal Band Selection ... 178
 9.4.1 Left–Right Comparison 178
 9.4.2 Feature Comparison Result 179
 9.4.3 Feature Estimation ... 181
 9.4.4 Feature Fusion ... 182
 9.4.5 Optimal Single Band 184
9.5 Summary .. 185
References ... 185

10 Multiple Band Selection of Multispectral Dorsal Hand 187
10.1 Introduction ... 187
10.2 Correlation Measure ... 190
 10.2.1 Feature Representation 190
 10.2.2 Pearson Correlation 192
10.3 Band Clustering .. 192
 10.3.1 Correlation Map Analysis 192
 10.3.2 Model Setup ... 194
 10.3.3 Clustering Methodology 196
 10.3.4 Clustering Result .. 199
 10.3.5 Parameter Analysis 201