Cancer Drug Discovery and Development

Volume 83

Series Editor
Beverly A. Teicher
Bethesda, Maryland, USA
Cancer Drug Discovery and Development, the Springer series headed by Beverly A. Teicher, is the definitive book series in cancer research and oncology. Volumes cover the process of drug discovery, preclinical models in cancer research, specific drug target groups, and experimental and approved therapeutic agents. The volumes are current and timely, anticipating areas where experimental agents are reaching FDA approval. Each volume is edited by an expert in the field covered, and chapters are authored by renowned scientists and physicians in their fields of interest.

For more information about this series, go to http://www.springer.com/series/7625
PARP Inhibitors for Cancer Therapy
Preface

The history of poly ADP ribose polymerase (PARP) research dates back more than 50 years to the first identification of the polymer in 1963. One might argue that the connection of PARP to cancer therapy goes back even further to the 1950s when the first cytotoxic agents the nitrogen mustards and other DNA alkylating agents inhibited glycolysis by depleting the cell of NAD. Of course, as some of these publications preceded or coincided with the discovery of DNA, the mechanism of alkylating agent cytotoxicity was thought to be through inhibition of glycolysis.

When inviting contributions for this volume, we were exceptionally fortunate to receive acceptances from two authors who were there in those early days of the discovery of the ADP-ribose polymer, the biochemical reaction, the enzyme that catalysed it and the development of the first benzamide inhibitors to elucidate its cellular function. Their insight into how the exploration of fundamental biology underpins future discoveries, which are presented in the first chapter of this volume, is enlightening.

A major step in PARP research came with the creation of knockout mice that led to the discovery of the second DNA damage-activated PARP, swiftly followed by the identification of a superfamily of PARP enzymes, identified by sequence homology with the catalytic domain. Some of these have turned out not to have poly ADP-ribosylating activity. The leading researchers on the PARP super-family contributed to Chaps. 2–4. The family as a whole is comprehensively described in Chap. 2 with the bona fide PARPs, the DNA damage-activated PARPs and the tankyrases, being described in more detail in Chaps. 3 and 4. In the following two chapters, other international research leaders describe the significance of PARP enzymes in maintaining health. Chapter 5 is a comprehensive review not only the roles of the PARP enzymes, but also PAR and PARG in cell death and carcinogenesis. In Chap. 6, the complex role of PARP in ageing and age-related diseases is elegantly untangled and visually represented.

PARP inhibitors were originally developed to determine the cellular function of PARP, but the early discovery of its role in DNA repair and the enhancement of alkylating agent-induced and radiation-induced cytotoxicity immediately highlighted
their potential as chemosensitisers and radiosensitisers. This was the initial push to develop more potent cellularly active inhibitors. Chapters 7 and 8 are written by two senior medicinal chemists who worked on the synthesis of PARP inhibitors in the pharmaceutical industry. They provide unique insights on the evolution of the classical benzamide inhibitors into the different series of PARP inhibitors using conventional structure-activity relationships (Chap. 7), and the application of structural biology to direct the synthesis (Chap. 8).

In the following section of the volume, data from preclinical studies with the newer more potent and specific PARP inhibitors as chemo- and radio-sensitisers are described. This section begins with a contribution from the groups at AbbVie (who made ABT-888/veliparib) and Pfizer (AG14361, AG014699/rucaparib) describing the advanced preclinical evaluation of these and other leading PARP inhibitors (Chap. 9). An in-depth evaluation of the mechanisms underlying chemosensitisation of topoisomerase I poisons and alkylating agents by PARP inhibitors is given in Chap. 10 by the group that has been probing the process most actively in recent years (Chap. 10). Radiopotentiation by PARP inhibitors through inhibition of both SSB and DSB repair when administered concurrently with radiotherapy, and the potential benefit of adjuvant PARP inhibitor therapy, is appropriately reviewed by the international experts from Institut Curie (Chap. 11). In their chapter, these authors also consider the potential unexpected or undesirable consequences due to the targeting of several PARP isoforms by the inhibitors and genomic destabilisation. This section is completed in Chap. 12 by a description of the unexpected vasoactivity of PARP inhibitors, the proposed underlying mechanisms and the potential for improved drug delivery and radiosensitisation, written by the scientists who first identified this unexpected activity.

Perhaps the most exciting and highly publicised discovery relating to PARP and cancer therapy is the discovery of the synthetic lethality of PARP inhibitors in cancers defective in homologous recombination repair (HRR), e.g. those associated with *BRCA1* and *BRCA2* mutations. In Chap. 13, the author of the first publications of this phenomenon describes the concept of synthetic lethality, DNA DSB repair pathways and the mechanisms underlying the pharmacological synthetic lethality of PARP inhibitors in cells with defects in direct and indirect players in the HRR pathway, along with considerations of the limitations of current understanding and the potential advantages and pitfalls of this therapeutic approach. Tumour hypoxia has long been considered a barrier to therapy but the discovery that it leads to a reduction in HRR capacity has led to the exploitation of this phenomenon using the concept of “contextual synthetic lethality” with PARP inhibitors. This concept is elegantly described by experts in this area in Chap. 14.

Further evaluation of the potential for PARP inhibitors to influence the mode and extent of cell death after irradiation in cells with other DNA damage response defects, and the potential to reduce inflammation, are very nicely explained in Chap. 15 by prominent scientists in the field. The concept of synthetic sickness is explored in the next two chapters. This is where a cellular defect or pathway inhibition alone has only a modest effect on viability, but where two defects/inhibitors are
combined there is a hugely synergistic impairment of viability. The combination of two molecularly targeted agents to achieve this synthetic sickness is a relatively recent concept in tumour biology; both Chaps. 16 and 17 provide excellent examples of such combinations with PARP inhibitors and the underlying mechanisms from the leaders in these areas.

Genomic instability and tumour heterogeneity are major issues in cancer therapy as both can lead to the outgrowth of a resistant population in response to the selective pressure of a therapeutic agent. Resistance to PARP inhibitors can develop in HRR-defective cells by different mechanisms. The acquisition of a secondary mutation in BRCA1 or BRCA2 can lead to the re-expression of a functional protein, thereby restoring resistance to PARP inhibitors, as described by the first person to identify this effect in Chap. 18. Other mechanisms of resistance, including the balance between NHEJ and BRCA1-independent homology-directed repair, are clearly explained by leading experts in Chap. 19.

PARP inhibitors first entered clinical trials in 2003 as chemosensitisers, but soon afterwards single agent studies in patients with BRCA mutations were also initiated. The final chapters of the book are introduced in Chap. 20 by the clinicians who conducted some of the earliest clinical trials and who were also involved in the preclinical studies that highlighted the differences in the doses needed for single agent activity compared to combination studies for efficacy without toxicity. An overview and critique of single agent PARP inhibitor clinical trials and the current status of the inhibitors in clinical trial development is provided in Chap. 21 by the clinical experts who were involved in several pivotal studies. The history and current status of trials using PARP inhibitors in combination with cytotoxic drugs, and the highs and lows of such studies, are presented by those involved in many of these studies in Chap. 22. Although there is a strong preclinical rationale for the combination of PARP inhibitors with radiotherapy, clinical trials of this combination have only recently been initiated. The justification for PARP inhibitor + radiotherapy trials is eloquently presented, along with the challenges associated with such studies, by a research champion of these trials and clinical leader in Chap. 23. Finally, the need for predictive and pharmacodynamic biomarkers for patient selection and activity monitoring, and strategies for developing appropriate biomarkers, are described in Chap. 24 by the editors of this volume.

As a final note on behalf of all the contributors to this volume, we all agree that PARP is a beautiful enzyme and the cellular effects can be visually spectacular with fluorescence microscopy. However, few of us will have considered what PARP sounds like! We are delighted to provide here links to a work by Ed Carter who has produced a piece of music based on the chemistry of PARP 1. For the amino acid sequence, Ed creatively used a 20-note scale with 1 note per amino acid each of 1 s duration. For its secondary structure, he used sustained notes for β sheets and split notes an octave apart for α-helices. This soothing piece of music, performed by a brass quintet, was composed to accompany Ed’s art-work called “Inhibitor” based on the synthetic lethality of PARP inhibitors with HRR defects. Links to this composition and a short documentary on the science and art are given here: http://

We are delighted to conclude that PARP is not only bench to bedside, but also bench and bedside to art-form.

October 2014

Nicola J. Curtin, Ricky A. Sharma
Acknowledgements

The Editors thank all the authors who have contributed to this volume, the patients and volunteers who have participated in clinical studies of PARP inhibitors, past and present members of the research teams who have worked on PARP and Sharon Draper for editorial assistance. RS wishes to thank his wife, Sara, for her love and support, and their sons, Toby and Harry, for forcing him to smile every day. NJC would like to thank her students and colleagues for their forbearance when editing activities took precedence over other duties, and Rachel Smith for facilitating the interaction that led to the production of the artwork “Inhibitor.”
Contents

Part I What PARP is and What it Does

1 History of the Discovery of Poly (ADP-ribose) .. 3
 Takashi Sugimura and Sydney Shall

2 Discovery of the PARP Superfamily and Focus on the Lesser Exhibited But Not Lesser Talented Members ... 15
 Eléa Héberlé, Jean-Christophe Amé, Giuditta Illuzzi, Françoise Dantzer and Valérie Schreiber

3 The Role of PARPs in DNA Strand Break Repair ... 47
 Stuart L. Rulten, Françoise Dantzer and Keith W. Caldecott

4 TIPs: Tankyrase Interacting Proteins ... 79
 Susan Smith

5 PARP and Carcinogenesis .. 99
 Junhui Wang, Akira Sato, Hiroaki Fujimori, Yoshio Miki and Mitsuko Masutani

6 Multitasking Roles for Poly(ADP-riosyl)ation in Aging and Longevity 125
 Aswin Mangerich and Alexander Bürkle

Part II NAD Catalysis and the Identification of Inhibitors

7 Overview of PARP Inhibitor Design and Optimization 183
 Dana Ferraris

8 Structure Based Design of PARP Inhibitors ... 205
 Stacie S. Canan
Part III Chemo- and Radiosensitisation in Vitro and in Vivo

9 Preclinical Chemosensitization by PARP Inhibitors .. 225
David R. Shalinsky, Cherrie K. Donawho, Gerrit Los and Joann P. Palma

10 Classification of PARP Inhibitors Based on PARP Trapping and Catalytic Inhibition, and Rationale for Combinations with Topoisomerase I Inhibitors and Alkylating Agents .. 261
Junko Murai and Yves Pommier

11 Radiosensitisation by Poly(ADP-ribose) Polymerase Inhibition 275
Charles Fouillade, Alexis Fouquin, Mohammed-Tayyib Boudra, Vincent Favaudon, Vincent Pennaneach and Janet Hall

12 The Vasoactivity of PARP Inhibitors ... 299
Cian M. McCrudden and Kaye J. Williams

Part IV Synthetic Lethality

13 Synthetic Lethality with Homologous Recombination Repair Defects 315
Helen E. Bryant and Sydney Shall

14 Targeting Tumour Hypoxia with PARP Inhibitors: Contextual Synthetic Lethality .. 345
Katarzyna B. Leszczynska, Nadya Temper, Robert G. Bristow and Ester M. Hammond

15 Other Determinants of Sensitivity ... 363
Naoyuki Okita and Atsushi Shibata

16 Synthetic Sickness with Molecularly Targeted Agents Against the EGFR Pathway .. 381
Jennifer A. Stanley and Eddy S. Yang

17 Disruption of DNA Repair by Cell Cycle and Transcriptional CDK Inhibition .. 413
Liam Cornell, Neil Johnson and Geoffrey I. Shapiro

18 Resistance to PARP Inhibitors Mediated by Secondary BRCA1/2 Mutations 431
Kiranjit K. Dhillon and Toshiyasu Taniguchi
19 PARP Inhibitor Resistance—What Is Beyond BRCA1 or BRCA2 Restoration? ... 453
 Guotai Xu, Jos Jonkers and Sven Rottenberg

Part V Clinical Status

20 Introduction to PARPi Clinical Trials and Future Directions 475
 Ruth Plummer and Yvette Drew

21 Clinical Trials Investigating PARP Inhibitors as Single Agents 487
 Sheena Irshad and Andrew Tutt

22 Clinical Trials of PARP Inhibitors with Chemotherapy 511
 Ashley K. Clift, Nicholas Coupe and Mark R. Middleton

23 Combination of PARP Inhibitors with Clinical Radiotherapy 533
 Ross Carruthers and Anthony J. Chalmers

24 Biomarkers for PARP Inhibitors .. 553
 Charles Dearman, Ricky A. Sharma and Nicola J. Curtin

Glossary .. 581

Index ... 589
Contributors

Jean-Christophe Amé Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, IREBS, Laboratory of Excellence Medalis, Equipe Labellisée Ligue contre le Cancer, ESBS, Illkirch, France

Mohammed-Tayyib Boudra Inserm U612, Institut Curie, Orsay, France

Robert G. Bristow Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

Helen E. Bryant Academic Unit of Molecular Oncology, University of Sheffield, Sheffield, UK

Alexander Bürkle Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany

Keith W. Caldecott Genome Damage and Stability Centre, University of Sussex, Brighton, Falmer, UK

Stacie S. Canan Celgene Global Health, Celgene Corporation, California, San Diego, USA

Ross Carruthers Institute of Cancer Sciences, University of Glasgow, Glasgow, UK

Anthony J. Chalmers Institute of Cancer Sciences, University of Glasgow, Glasgow, UK

Ashley K. Clift Department of Oncology, Churchill Hospital, University of Oxford, Oxford, UK

Liam Cornell Early Drug Development Center and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

Nicholas Coupe Department of Oncology, Churchill Hospital, University of Oxford, Oxford, UK

Nicola J. Curtin Newcastle University, Northern Institute for Cancer Research and Newcastle University Institute for Ageing, Medical School, Newcastle upon Tyne, UK
Françoise Dantzer Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, IREBS, Laboratory of Excellence Medalis, Equipe Labellisée Ligue contre le Cancer, ESBS, Illkirch, France
CNRS-Strasbourg University, Illkirch, France

Charles Dearman CRUK-MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK

Kiranjit K. Dhillon Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Howard Hughes Medical Institute, Chevy Chase, USA

Cherrie K. Donawho Oncology Discovery In Vivo Tumor Biology, AbbVie Inc., North Chicago, IL, USA

Yvette Drew Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, UK

Vincent Favaudon Inserm U612, Institut Curie, Orsay, France

Dana Ferraris Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA

Charles Fouillade Inserm U612, Institut Curie, Orsay, France
Alexis Fouquin Inserm U612, Institut Curie, Orsay, France

Hiroaki Fujimori Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan
Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan

Janet Hall Inserm U612, Institut Curie, Orsay, France

Ester M. Hammond Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, UK

Eléa Héberlé Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, IREBS, Laboratory of Excellence Medalis, Equipe Labellisée Ligue contre le Cancer, ESBS, Illkirch, France

Giuditta Illuzzi Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, IREBS, Laboratory of Excellence Medalis, Equipe Labellisée Ligue contre le Cancer, ESBS, Illkirch, France

Sheena Irshad Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy’s Hospital King’s College London School of Medicine, London, UK
Neil Johnson Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA

Jos Jonkers Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Katarzyna B. Leszczynska Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, UK

Gerrit Los Pfizer Global Research and Development, San Diego, CA, USA

Aswin Mangerich Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany

Mitsuko Masutani Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan

Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan

Cian M. McCrudden Experimental Therapeutics Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, UK

Mark R. Middleton Department of Oncology, Churchill Hospital, University of Oxford, Oxford, UK

Yoshio Miki Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan

Junko Murai Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Naoyuki Okita Department of Internal Medicine Research, Sasaki Institute, Sasaki Foundation, Tokyo, Chiyoda-ku, Japan

Joann P. Palma Oncology Discovery In Vivo Tumor Biology, AbbVie Inc., North Chicago, IL, USA

Vincent Pennaneach Inserm U612, Institut Curie, Orsay, France

Ruth Plummer Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, UK

Yves Pommier Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Sven Rottenberg Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Stuart L. Rulten Genome Damage and Stability Centre, University of Sussex, Brighton, Falmer, UK

Akira Sato Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan

Valérie Schreiber Biotechnology and Cell Signalling, UMR7242 CNRS, Université de Strasbourg, IREBS, Laboratory of Excellence Medalis, Equipe Labellisée Ligue contre le Cancer, ESBS, Illkirch, France

David R. Shalinsky Oncology Discovery Biomarker and Tumor Genomics, AbbVie Inc., North Chicago, IL, USA

Sydney Shall Department of Haematological Medicine, The Rayne Institute, Kings College London Medical School, Denmark Hill Campus, London, England

Geoffrey I. Shapiro Early Drug Development Center and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

Ricky A. Sharma CRUK-MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK

Atsushi Shibata Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan

Susan Smith Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA

Jennifer A. Stanley Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA

Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA

Takashi Sugimura Emeritus, National Cancer Center, Tokyo, Japan

Japan Academy 7-32, Tokyo, Japan

Toshiyasu Taniguchi Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Howard Hughes Medical Institute, Chevy Chase, USA

Nadya Temper Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, UK
Andrew Tutt Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy’s Hospital King’s College London School of Medicine, London, UK

Junhui Wang Division of Genome Stability Research, National Cancer Center Research Institute, Tokyo, Japan
Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan

Kaye J. Williams Hypoxia and Therapeutics Research Group, Manchester Pharmacy School, The University of Manchester, Manchester, UK

Guotai Xu Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Eddy S. Yang Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA