More information about this series at http://www.springer.com/series/7412
Bjoern Menze · Georg Langs
Albert Montillo · Michael Kelm
Henning Müller · Shaoting Zhang
Weidong (Tom) Cai · Dimitris Metaxas (Eds.)

Medical Computer Vision: Algorithms for Big Data

International Workshop, MCV 2014
Held in Conjunction with MICCAI 2014
Cambridge, MA, USA, September 18, 2014
Revised Selected Papers
Preface

The MICCAI 2014 Workshop on Medical Computer Vision: Algorithms for Big Data (MICCAI-bigMCV 2014) was held in conjunction with the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014) on September 18, 2014 in Boston, USA. It succeeds the Workshops on Medical Computer Vision that were held in September 2010 in conjunction with MICCAI 2010 in Beijing, in June 2012 in conjunction with CVPR 2012 in Providence, in October 2012 in conjunction with MICCAI 2012 in Nice, and in September 2013 in conjunction with MICCAI 2013 in Nagoya.

With the ever-increasing amount of annotated multimodal medical data consisting of imaging and textual information, large-scale, data-driven methods provide the promise of bridging the semantic gap between images and diagnoses. The one-day workshop aimed at exploring the use of modern computer vision technology and “big data” algorithms in tasks such as automatic segmentation and registration, localization of anatomical features, and detection of anomalies. We emphasized questions of harvesting, organizing, and learning from large-scale medical imaging datasets and general-purpose automatic understanding of medical images. We were especially interested in modern, scalable, and efficient algorithms that generalize well to previously unseen images and can be applied to large-scale datasets that are arising, for example, from studies with significant populations, through the use of wide-field-of-view imaging sequences at high-spatial resolution, or when compiling hospital-scale databases. In addition, the bigMCV 2014 hosted a VISCERAL session for presentation and discussion of methods for anatomical structure segmentation and localization. The session highlights the results of the VISCERALanatomy2 challenge, and provided a forum to discuss the individual approaches and their comparative evaluation.

Our call for papers resulted in 29 submissions of up to 12 pages. Each paper received two to four reviews. Based on these peer reviews, we accepted 13 papers that were regular oral presentations, and 5 papers for the VISCERAL session.

October 2014

Bjoern Menze
Georg Langs
Albert Montillo
Michael Kelm
Henning Müller
Shaoqing Zhang
Weidong (Tom) Cai
Dimitris Metaxas
Organization

Organization Committee

General Co-chairs

Bjoern Menze
Technische Universität München, Munich, Germany

Georg Langs
Medical University of Vienna, Vienna, Austria and MIT, Cambridge, MA, USA

Albert Montillo
GE Global Research, USA

Michael Kelm
Siemens, Erlangen, Germany

Henning Müller
University of Applied Sciences Western Switzerland (HES-SO) and University Hospitals and University of Geneva, Switzerland

Shaoting Zhang
UNC Charlotte, USA

Weidong (Tom) Cai
University of Sydney, Australia and Harvard Medical School, Boston, MA, USA

Dimitris Metaxas
Rutgers University, USA

Publication Chair

Henning Müller
Switzerland

International Program Committee

Adrien Depeursinge
Stanford University, USA

Allan Hanbury
Technical University of Vienna, Austria

Allison Noble
University of Oxford, UK

Alvina Goh
National University, Singapore

Christian Wachinger
MIT, USA

Daniel Rueckert
Imperial College London, UK

Darko Zikic
Microsoft Research Cambridge, UK

Diana Mateus
Technische Universität München, Munich, Germany

Dinggang Shen
UNC Chapel Hill, USA

Ender Konukoglu
Harvard Medical School, USA

Ertan Cetingul
Siemens Corporate Research, USA

Herve Lombaert
Inria, France

Jan Margeta
Inria, France

Jurgen Gall
University of Bonn, Germany

Kilian Pohl
Stanford University, USA
Koen Van Leemput
Technical University of Denmark, Denmark
Le Lu
National Institutes of Health, USA
Marius Erdt
Fraunhofer/NTU, Germany
Marleen de Bruijne
Erasmus MC, The Netherlands
Matthias Schneider
ETH Zurich, Switzerland
Matthew Toews
Harvard Medical School, USA
Maxime Sermesant
Inria, France
Michael Wels
Siemens Healthcare, Germany
Milan Sonka
University of Iowa, USA
Paul Suetens
KU Leuven, Belgium
Philippe Cattin
University of Basel, Switzerland
Pingkun Yan
Chinese Academy of Sciences, China
Ron Kikinis
Harvard Medical School, USA
Sebastian Ourselin
University College London, UK
Stefan Wesarg
Fraunhofer Gesellschaft, Germany
Stefan Bauer
University of Bern, Switzerland
Tammy Riklin-Raviv
Ben-Gurion University of the Negev, Israel
Tobias Gass
ETH Zurich, Switzerland
Tom Vercauteren
Mauna Kea Technologies, France
Xavier Pennec
Inria, France
Xinghua Lou
Microsoft Research, UK
Yang Song
University of Sydney, Australia
Yefeng Zheng
Siemens Corporate Research, USA

Sponsors

European Commission 7th Framework Programme, VISCERAL (318068) and Khresmoi (257528) projects.
Contents

Workshop Overview

Overview of the 2014 Workshop on Medical Computer Vision—Algorithms for Big Data (MCV 2014) 3
Henning Müller, Bjoern Menze, Georg Langs, Albert Montillo, Michael Kelm, Shaoting Zhang, Weidong (Tom) Cai, and Dimitris Metaxas

Segmentation of Big Medical Data

Joint Segmentation and Registration for Infant Brain Images 13
Guorong Wu, Li Wang, John Gilmore, Weili Lin, and Dinggang Shen
LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images 22
Li Wang, Yaozong Gao, Feng Shi, Gang Li, John H. Gilmore, Weili Lin, and Dinggang Shen
Pectoralis Muscle Segmentation on CT Images Based on Bayesian Graph Cuts with a Subject-Tailored Atlas 34
Rola Harmouche, James C. Ross, George R. Washko, and Raúl San José Estépar

Advanced Feature Extraction

Learning Features for Tissue Classification with the Classification Restricted Boltzmann Machine 47
Gijs van Tulder and Marleen de Bruijne
Dementia-Related Features in Longitudinal MRI: Tracking Keypoints over Time 59
Elisabeth Stühler and Michael R. Berthold
Object Classification in an Ultrasound Video Using LP-SIFT Features 71
Mohammad Ali Maraci, Raffaele Napolitano, Aris Papageorghiou, and J. Allison Noble
Unsupervised Pre-training Across Image Domains Improves Lung Tissue Classification 82
Thomas Schlegl, Joachim Ofner, and Georg Langs
Multi-atlas and Beyond

Atlas-Guided Multi-channel Forest Learning for Human Brain Labeling
Guangkai Ma, Yaozong Gao, Guorong Wu, Ligang Wu, and Dinggang Shen

Fast Multiaxial Selection Using Composition of Transformations for Radiation Therapy Planning
David Rivest-Hénault, Soumya Ghose, Josien P.W. Pluim, Peter B. Greer, Jurgen Fripp, and Jason A. Dowling

Classifier-Based Multi-atlas Label Propagation with Test-Specific Atlas Weighting for Correspondence-Free Scenarios
Darko Zikic, Ben Glocker, and Antonio Criminisi

Translational Medical Computer Vision

CT Prostate Deformable Segmentation by Boundary Regression
Yeqin Shao, Yaozong Gao, Xin Yang, and Dinggang Shen

Precise Lumen Segmentation in Coronary Computed Tomography Angiography
Felix Lugauer, Yefeng Zheng, Joachim Hornegger, and B. Michael Kelm

Confidence-Based Training for Clinical Data Uncertainty in Image-Based Prediction of Cardiac Ablation Targets
Rocio Cabrera-Lozoya, Jan Margeta, Loïc Le Folgoc, Yuki Komatsu, Benjamin Berte, Jatin Relan, Hubert Cochet, Michel Haïssaguerre, Pierre Jaïs, Nicholas Ayache, and Maxime Sermesant

VISCERAL Session

Rule-Based Ventral Cavity Multi-organ Automatic Segmentation in CT Scans
Assaf B. Spanier and Leo Joskowicz

Multi-atlas Segmentation and Landmark Localization in Images with Large Field of View
Tobias Gass, Gabor Szekely, and Orcun Goksel

Automatic Liver Segmentation Using Statistical Prior Models and Free-form Deformation
Xuhui Li, Cheng Huang, Fucang Jia, Zongmin Li, Chihua Fang, and Yingfang Fan