Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems—cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence.

The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics,” which is devoted to the quantitative theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which are concise and topical working reports, case-studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA
Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA
Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences, Budapest, Hungary
Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken, Center for Synergetics, University of Stuttgart, Stuttgart, Germany
Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland
Kunihiro Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick, Coventry, UK
Jürgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany
Andrzej Nowak, Department of Psychology, Warsaw University, Poland
Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA
Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland
Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland
Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
The Springer Series in Synergetics was founded by Herman Haken in 1977. Since then, the series has evolved into a substantial reference library for the quantitative, theoretical and methodological foundations of the science of complex systems.

Through many enduring classic texts, such as Haken’s *Synergetics and Information and Self-Organization*, Gardiner’s *Handbook of Stochastic Methods*, Risken’s *The Fokker Planck-Equation* or Haake’s *Quantum Signatures of Chaos*, the series has made, and continues to make, important contributions to shaping the foundations of the field.

The series publishes monographs and graduate-level textbooks of broad and general interest, with a pronounced emphasis on the physico-mathematical approach.

For further volumes:
http://www.springer.com/series/712
Sergey G. Abaimov

Statistical Physics of Non-Thermal Phase Transitions

From Foundations to Applications

Springer
“To those summer sunny days,
When world was warm and still,
And unicorn’s four gleamy eyes
Were made of glass and steel,
The running man was hunt in maze
To make a Minotaur’s meal,
But slow, emerald-green waves
Demanded: “Drive the quill!”
A hurt white-crow made mistakes
Against its kind and will,
And near train depot earthquakes
Became a part of cozy home deal.
A life was crazy like a waste
Collecting future regrets’ bill.”
Statistical physics describes a wide variety of phenomena and systems when interaction forces may have different natures: mechanical, electromagnetic, strong nuclear, etc. The commonality that unites all these systems is that their belonging to statistical physics requires the presence of thermal fluctuations. In this sense these phenomena necessarily include the thermodynamic aspect.

Meanwhile, the second half of the last century may be named the time of the discovery of the so-called complex systems. These systems belong to chemistry, biology, ecology, geology, economics, social sciences, etc. and are generally united by the absence of concepts such as temperature or energy. Instead, their behavior is governed by stochastic laws of nonthermodynamic nature; and these systems can be called nonthermal. Nevertheless, in spite of this principal difference with statistical physics, it was discovered that the behavior of complex systems resembles the behavior of thermodynamic systems. In particular, many of these systems possess a phase transition identical to critical or spinodal phenomenon of statistical physics.

This very analogy has led in recent years to many attempts to generalize the formalism of statistical physics so that it would become applicable and for nonthermal systems also. If we achieved this goal, the powerful, well-developed machinery of statistical physics would help us to explain phenomena such as petroleum clusters, polymerization, DNA mechanism, informational processes, traffic jams, cellular automata, etc. Or, better, we might be able to predict and prevent catastrophes such as earthquakes, snow-avalanches and landslides, failure of engineering structures, economical crises, etc.

However, the formalism of statistical physics is developed for thermodynamic systems; and its direct application to nonthermal phenomena is not possible. Instead, we first have to build analogies between thermal and nonthermal phenomena.

But, what do these analogies include? What are they based on? And even more important question: Why does the behavior of complex systems resemble their thermodynamic analogues?

The answer to the last question is that the analogy exists only in the presence of phase transitions. It is the machinery of a phase transition that is universal, not the systems themselves. In spite of the fact that the behavior of complex systems is governed by nonthermal fluctuations whose nature is quite different from thermal
fluctuations in statistical physics, these fluctuations are, nevertheless, stochastic and scale invariant; and it is the stochastic scale invariance of the system that leads to the universality of phase transitions. Therefore, our attempt to apply the formalism of statistical physics to nonthermal phenomena would be successful only if we mapped the nonthermal fluctuations on their thermal analogues.

This book is devoted to the comparison of thermal and nonthermal systems. As an example of a thermodynamic system we generally discuss an Ising model while the considered nonthermal systems are represented by percolation and damage phenomena. Step-by-step, from the equation of state to the free energy potential, from correlations to the susceptibility, from the mean-field approach to the renormalization group, we compare these systems and find that not only are the rules of behavior similar but also, what is even more important, the methods of solution. We will see that, developing the concept of susceptibility or building the renormalization group, although each time we begin with a particular system considered, the foundation of an approach is always based on the formalism of statistical physics and is, therefore, system independent.

To the purpose of comparison we often sacrifice in this book the specific details of the behavior of particular systems discussed. We cannot claim our study to be complete in the description of rigorous formalism or experimental results of ferromagnetic, percolation, or damage phenomena. Instead, we focus our attention on the intuitive understanding of the basic laws leading to the analogies among these systems. For the same reason and also because we consider our text to be introductory, we cannot claim our list of references to represent all corner-stone studies related to the discussed phenomena. Instead, we are generally referring the reader to the brilliant reviews and references therein.1

Also, we should mention that, although in many aspects this book may represent the biased view of its author, we hope that the reader will enjoy, as we do, the mystery of the birth of a new science that has been happening right before our eyes during the last few decades. Since this new science, in our humble opinion, is still at the infantile stage, there are many questions in the book which we cannot answer. However, from our point of view this adds an additional charm to the discussion because it encourages the reader to generate and apply her/his own ideas at the frontiers of science.

Another important aspect of the book is that the comparison with nonthermal systems presents the alternative point of view on thermodynamic phenomena themselves. Not all concepts of statistical physics have their counterparts in complex systems. Thereby, nonthermal phenomena often allow looking at well-known phenomena from quite a different angle to emphasize the omissions in statistical physics itself.

1 The author would appreciate very much to hear about all possible omissions or mistakes by e-mail sgabaimov@gmail.com to the purpose of future corrections. “Needless to say the computer, as a text editing system, should be blamed for all the errors in the book.” (Dietrich Stauffer, in Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd ed. Taylor & Francis, London (1994), rephrased).
This book is based on the course of lectures taught by the author for 5 years at the Department of Theoretical Physics of Moscow Institute of Physics and Technology. The first two chapters represent prerequisites. Statistical physics is often considered to be at the top of theoretical disciplines of a student’s curriculum and requires the knowledge of previously studied theoretical mechanics and quantum mechanics. This often prohibits the reader not acquainted with these disciplines to study the applicability of statistical physics to complex phenomena.

However, several years of lecturing statistical physics convinced the author that what is truly required to understand the formalism of phase transitions is the discussion of a limited set of concepts. Chapter 2 presents an attempt to reduce the theoretical formalism of statistical physics to a minimum required to understand further chapters. Therefore, as a prerequisite for this monograph we consider only general physics but not theoretical, quantum, or statistical mechanics. It is our belief that Chap. 2 will be sufficient for the reader, not acquainted earlier with theoretical physics, to understand the following chapters.

The completion of this book has left me indebted to many. I am most grateful to Dr. Yury Belousov, Head of the Department of Theoretical Physics at Moscow Institute of Physics and Technology, for his invaluable support and help in the creation of the monograph and course; and also to my colleagues at the Department of Theoretical Physics for fruitful discussions, especially to Dr. Ilya Polishchuk and Dr. Andrey Mikheyenkov. I am most grateful to Dr. Zafer Gürdal, Director of Advanced Structures, Processes and Engineered Materials Center, Skolkovo Institute of Science and Technology, for his support of the monograph and of the course that I am lecturing at ASPEM. I would like to express my warmest gratitude to Dr. Joseph Cusumano, Department of Engineering Science and Mechanics, Penn State University, for his invaluable support and collaboration in the research of damage phenomena. I am also thankful to Dr. Christopher Coughlin, Springer, for his inestimable support and help in the publication of the monograph.

Sergey Abaimov

Department of Theoretical Physics, Moscow Institute of Physics and Technology

Currently at: Advanced Structures, Processes and Engineered Materials Center, Skolkovo Institute of Science and Technology

Moscow, 2014
Contents

1 Fractals

1.1 The Concepts of Scale Invariance and Self-Similarity ... 1
1.2 Measure Versus Dimensionality .. 4
1.3 Self-Similarity (Scale Invariance) as the Origin of the Fractal Dimension 12
1.4 Fractal Trees .. 14
1.5 Self-Affine Fractals .. 16
1.6 The Geometrical Support of Multifractals ... 19
1.7 Multifractals, Examples .. 23
 1.7.1 Definitions ... 23
 1.7.2 The General Case of the Cantor Set ... 25
 1.7.3 Dimensions of the Subsets ... 26
 1.7.4 Lengths of the Subsets ... 29
 1.7.5 Measures of the Subsets .. 34
 1.7.6 Analogy with Statistical Physics .. 39
 1.7.7 Subsets η Versus Subsets α ... 40
 1.7.8 Summary ... 41
1.8 The General Formalism of Multifractals ... 41
1.9 Moments of the Measure Distribution .. 48
References .. 52

2 Ensemble Theory in Statistical Physics: Free Energy Potential

2.1 Basic Definitions ... 55
2.2 Energy Spectrum ... 57
2.3 Microcanonical Ensemble .. 63
2.4 MCE: Fluctuations as Nonequilibrium Probability Distributions 69
2.5 Free Energy Potential of the MCE ... 80
2.6 MCE: Free Energy Minimization Principle (Entropy Maximization Principle) 88
2.7 Canonical Ensemble ... 90
2.8 Nonequilibrium Fluctuations of the Canonical Ensemble .. 95
2.9 Properties of the Probability Distribution of Energy Fluctuations 99
2.10 Method of Steepest Descent .. 106
2.11 Entropy of the CE. The Equivalence of the MCE and CE 116
2.12 Free Energy Potential of the CE .. 118
2.13 Free Energy Minimization Principle .. 124
2.14 Other Ensembles .. 126
2.15 Fluctuations as the Investigator’s Tool .. 139
2.16 The Action of the Free Energy ... 142
References .. 146

3 The Ising Model ... 149
3.1 Definition of the Model ... 149
3.2 Microstates, MCE, CE, Order Parameter ... 152
3.3 Two-Level System Without Pair Spins Interactions ... 155
3.4 A One-Dimensional Nonideal System with Short-Range Pair Spin Interactions: The Exact Solution ... 159
3.5 Nonideal System with Pair Spin Interactions:
 The Mean-Field Approach .. 165
3.6 Landau Theory .. 170
 3.6.1 The Equation of State .. 170
 3.6.2 The Minimization of Free Energy .. 172
 3.6.3 Stable, Metastable, Unstable States, and Maxwell’s Rule 176
 3.6.4 Susceptibility ... 180
 3.6.5 Heat Capacity ... 182
 3.6.6 Equilibrium Free Energy ... 186
 3.6.7 Classification of Phase Transitions .. 188
 3.6.8 Critical and Spinodal Slowing Down .. 189
 3.6.9 Heterogeneous System .. 195
3.7 Mean-Field Approach .. 200
3.8* Antiferromagnets ... 207
3.9* Antiferromagnet on a Triangular Lattice. Frustration .. 217
3.10* Mixed Ferromagnet-Antiferromagnet ... 219
References .. 221

4 The Theory of Percolation .. 225
4.1 The Model of Percolation ... 226
4.2 One-Dimensional Percolation ... 229
4.3 Square Lattice .. 233
4.4 Bethe Lattice .. 237
4.5 An Arbitrary Lattice ... 247
4.6 The Moments of the Cluster-Size Distribution .. 253
References .. 256
5 Damage Phenomena ... 259
 5.1 The Parameter of Damage .. 259
 5.2 The Fiber-Bundle Model with Quenched Disorder 261
 5.3 The Ensemble of Constant Strain 263
 5.4 Stresses of Fibers ... 267
 5.5 The Ensemble of Constant Stress 270
 5.6 Spinodal Slowing Down ... 277
 5.7 FBM with Annealed Disorder .. 281
References .. 283

6 Correlations, Susceptibility, and the Fluctuation–Dissipation
 Theorem .. 289
 6.1 Correlations: The One-Dimensional Ising Model
 with Short-Range Interactions .. 290
 6.2 Correlations: The Mean-Field Approach for the Ising
 Model in Higher Dimensions ... 296
 6.3 Magnetic Systems: The Fluctuation–Dissipation Theorem 311
 6.4 Magnetic Systems: The Ginzburg Criterion 318
 6.5 Magnetic Systems: Heat Capacity as Susceptibility 323
 6.6 Percolation: The Correlation Length 328
 6.7 Percolation: Fluctuation–Dissipation Theorem 333
 6.8 Percolation: The Hyperscaling Relation and the Scaling of
 the Order Parameter ... 336
 6.9 Why Percolation Differs from Magnetic Systems 341
 6.10 Percolation: The Ensemble of Clusters 343
 6.11 The FBM: The Fluctuation–Dissipation Theorem 349
 6.12 The Ising Model .. 352
 6.13 The FBM: The ε-Ensemble ... 355
 6.14 The FBM: The σ-Ensemble ... 356
References .. 363

7 The Renormalization Group .. 365
 7.1 Scaling ... 366
 7.2 RG Approach of a Single Survivor: One-Dimensional
 Magnetic Systems .. 368
 7.3 RG Approach of a Single Survivor: Two-Dimensional
 Magnetic Systems .. 382
 7.4 RG Approach of Representation: Two-Dimensional
 Magnetic Systems in the Absence of Magnetic Field 386
 7.5 RG Approach of Representation: Two-Dimensional
 Magnetic Systems in the Presence of Magnetic Field 398
 7.6 Percolation ... 406
 7.7 Damage Phenomena ... 414
7.8 Why does the RG Transformation Return only Approximate Results? ... 416
References ... 418

8 Scaling: The Finite-Size Effect and Crossover Effects ... 421
 8.1 Percolation: Why Is the Cluster-Size Distribution Hypothesis Wrong? ... 421
 8.2 Percolation: The Finite-Size Effect ... 428
 8.3 Magnetic Systems: The Scaling of Landau Theory ... 443
 8.4 Magnetic Systems: Scaling Hypotheses ... 453
 8.5 Magnetic Systems: Superseding Correction ... 459
 8.6 Crossover Effect of Magnetic Field .. 464
 8.7 Magnetic Systems: Crossover Phenomena ... 468
 8.8 Magnetic Systems: The Finite-Size Effect .. 469
 8.9 The Illusory Asymmetry of the Temperature ... 472
 8.10 The Formalism of General Homogeneous Functions ... 475
 8.11 The Renormalization Group as the Source of Scaling .. 478
 8.12* Magnetic Systems: Spinodal Scaling ... 490
References ... 492

Index ... 495