Using and Improving OpenMP for Devices, Tasks, and More

10th International Workshop on OpenMP, IWOMP 2014
Salvador, Brazil, September 28-30, 2014
Proceedings

Springer
Preface

OpenMP is a widely accepted, standard application programming interface (API) for high-level shared-memory parallel programming in Fortran, C, and C++. Since its introduction in 1997, OpenMP has gained support from most high-performance compiler and hardware vendors. Under the direction of the OpenMP Architecture Review Board (ARB), the OpenMP specification has evolved up to the recent release of version 4.0. This version includes several new features like accelerator support for heterogeneous hardware environments, an enhanced tasking model, user defined reductions, and thread affinity to support binding for performance improvements on non-uniform memory architectures.

The evolution of the standard would be impossible without active research in OpenMP compilers, runtime systems, tools, and environments. OpenMP is both an important programming model for single multicore processors and as part of a hybrid programming model for massively parallel, distributed memory systems built from multicore or manycore processors. In fact, most of the growth in parallelism of the upcoming Exascale systems is expected to be coming from an increased parallelism within a node. OpenMP offers important features that can improve the scalability of applications on such systems.

The community of OpenMP researchers and developers in academia and industry is united under cOMPunity (www.compunity.org). This organization has held workshops on OpenMP around the world since 1999: the European Workshop on OpenMP (EWOMP), the North American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual audiences from academia and industry. The International Workshop on OpenMP (IWOMP) consolidated these three workshop series into a single annual international event that rotates across Asia, Europe, and the Americas. The first IWOMP workshop was organized under the auspices of cOMPUnity. Since that workshop, the IWOMP Steering Committee has organized these events and guided development of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA. Since then, meetings have been held each year, in Reims, France, Beijing, China, West Lafayette, USA, Dresden, Germany, Tsukuba, Japan, Chicago, USA, Rome, Italy, and Canberra, Australia. Each workshop has drawn participants from research and industry throughout the world. IWOMP 2014 continues the series with technical papers, tutorials, and OpenMP status reports. The IWOMP meetings have been successful in large part due to the generous support from numerous sponsors.

The cOMPUnity website (www.compunity.org) provides access to the talks given at the meetings and to photos of the activities. The IWOMP website (www.iwomp.org) provides information on the latest event. This book contains proceedings of IWOMP 2014. The workshop program included 16 technical
papers, two keynote talks, a tutorial on OpenMP, an invited talk, and a sponsor
talk. The paper by Artur Podobas, Mats Brorsson and Vladimir Vlassov was
selected for the Best Paper Award. All technical papers were peer reviewed by
at least three different members of the Program Committee.

In a special way, the OpenMP community remembers Ricky Kendall, former
member of the IWOMP Steering Committee. He passed away March 18, 2014
and is greatly missed.

September 2014

Luiz DeRose
Bronis R. de Supinski
Stephen L. Olivier
Organization

Organizing Co-chairs

Luiz DeRose, Cray Inc., USA
Adhvan Novais Furtado, SENAI Unidade CIMATEC, Brazil

Program Co-chairs

Luiz DeRose, Cray Inc., USA
Bronis R. de Supinski, LLNL, USA

Sponsors Chair

Barbara Chapman, University of Houston, USA

Tutorials Chair

Christian Terboven, RWTH Aachen University, Germany

Publication Chair

Stephen L. Olivier, Sandia National Laboratories, USA

Local Coordination Chair

Adhvan Novais Furtado, SENAI Unidade CIMATEC, Brazil

Program Committee

Eduard Ayguadé, BSC and Universitat Politecnica de Catalunya, Spain
Mark Bull, EPCC, University of Edinburgh, UK
Jacqueline Chame, ISI, USC, USA
Barbara Chapman, University of Houston, USA
Nawal Copty, Oracle Corporation, USA
Alejandro Duran, Intel, Spain
Nasser Giacaman, University of Auckland, New Zealand
Chunhua Liao, LLNL, USA
Sally A. McKee
Chalmers University of Technology, Sweden

Kent Milfeld
TACC, USA

Bernd Mohr
Juelich Supercomputing Center, Germany

Philippe Navaux
UFRGS, Brazil

Stephen L. Olivier
Sandia National Laboratories, USA

Jairo Panetta
ITA, Brazil

Vinod Rebello
UFF, Brazil

Alistair Rendell
Australian National University, Australia

Mitsuhisa Sato
University of Tsukuba, Japan

Seetharami Seelam
IBM Research, USA

Eric Stotzer
Texas Instruments, USA

Christian Terboven
RWTH Aachen University, Germany

Priya Unnikrishnan
IBM Toronto Laboratory, Canada

IWOMP Steering Committee

Steering Committee Chair

Matthias S. Müller
RWTH Aachen University, Germany

Steering Committee

Dieter an Mey
RWTH Aachen University, Germany

Eduard Ayguadé
BSC and Universitat Politecnica de Catalunya, Spain

Mark Bull
EPCC, University of Edinburgh, UK

Barbara Chapman
University of Houston, USA

Bronis R. de Supinski
LLNL, USA

Rudolf Eigenmann
Purdue University, USA

Guang R. Gao
University of Delaware, USA

William Gropp
University of Illinois, USA

Kalyan Kumaran
Argonne National Laboratory, USA

Federico Massaioleti
CASPUR, Italy

Larry Meadows
Intel, USA

Arnaud Renard
University of Reims, France

Mitsuhisa Sato
University of Tsukuba, Japan

Sanjiv Shah
Intel, USA

Ruud van der Pas
Oracle, USA

Matthijs van Waveren
CompilaFlows, France

Michael Wong
OpenMP CEO, IBM, Canada

Weimin Zheng
Tsinghua University, China
Table of Contents

Tasking Models and Their Optimization

<table>
<thead>
<tr>
<th>Tasking Models and Their Optimization</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-Parallel Reductions in OpenMP and OmpSs</td>
<td>1</td>
</tr>
<tr>
<td>Jan Ciesko, Sergi Mateo, Xavier Teruel, Vicenç Beltran, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta</td>
<td></td>
</tr>
<tr>
<td>Evaluation of OpenMP Dependent Tasks with the KASTORS</td>
<td>16</td>
</tr>
<tr>
<td>Philippe Virouleau, Pierrick Brunet, François Broquedis, Nathalie Furmento, Samuel Thibault, Olivier Aumage, and Thierry Gautier</td>
<td></td>
</tr>
<tr>
<td>METAfork: A Framework for Concurrency Platforms Targeting Multicores</td>
<td>30</td>
</tr>
<tr>
<td>Xiaohui Chen, Marc Moreno Maza, Sushek Shekar, and Priya Unnikrishnan</td>
<td></td>
</tr>
<tr>
<td>TurboBLYSK: Scheduling for Improved Data-Driven Task Performance with Fast Dependency Resolution</td>
<td>45</td>
</tr>
<tr>
<td>Artur Podobas, Mats Brorsson, and Vladimir Vlassov</td>
<td></td>
</tr>
</tbody>
</table>

Understanding and Verifying Correctness of OpenMP Programs

<table>
<thead>
<tr>
<th>Understanding and Verifying Correctness of OpenMP Programs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of Common Errors in OpenMP Applications</td>
<td>58</td>
</tr>
<tr>
<td>Jan Felix Münchhafen, Tobias Hilbrich, Joachim Protze, Christian Terboven, and Matthias S. Müller</td>
<td></td>
</tr>
<tr>
<td>Static Validation of Barriers and Worksharing Constructs in OpenMP Applications</td>
<td>73</td>
</tr>
<tr>
<td>Emmanuelle Saillard, Patrick Carribault, and Denis Barthou</td>
<td></td>
</tr>
<tr>
<td>Loop-Carried Dependence Verification in OpenMP</td>
<td>87</td>
</tr>
<tr>
<td>Juan Salamanca, Luis Mattos, and Guido Araujo</td>
<td></td>
</tr>
</tbody>
</table>

OpenMP Memory Extensions

<table>
<thead>
<tr>
<th>OpenMP Memory Extensions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An OpenMP Extension Library for Memory Affinity</td>
<td>103</td>
</tr>
<tr>
<td>Dirk Schmidl, Tim Cramer, Christian Terboven, Dieter an Mey, and Matthias S. Müller</td>
<td></td>
</tr>
</tbody>
</table>
On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms: The Effects of Transactional Memory 115
 Barna L. Bihari, Michael Wong, Bronis R. de Supinski, and Lori Diachin

Towards Transactional Memory for OpenMP 130
 Michael Wong, Eduard Ayguadé, Justin Gottschlich,
 Victor Luchangco, Bronis R. de Supinski, and Barna L. Bihari

Extensions for Tools and Locks

Integrated Measurement for Cross-Platform OpenMP Performance
Analysis .. 146
 Kevin A. Huck, Allen D. Malony, Sameer Shende, and
 Doug W. Jacobsen

A Comparison between OPARI2 and the OpenMP Tools Interface in
the Context of Score-P .. 161
 Daniel Lorenz, Robert Dietrich, Ronny Tschüter, and Felix Wolf

A User-Guided Locking API for the OpenMP* Application Program
Interface .. 173
 Hansang Bae, James Cownie, Michael Klemm, and
 Christian Terboven

Experiences with OpenMP Device Constructs

Library Support for Resource Constrained Accelerators 187
 Laust Brock-Nannestad and Sven Karlsson

Implementation and Optimization of the OpenMP Accelerator Model
for the TI Keystone II Architecture .. 202
 Gaurav Mitra, Eric Stotzer, Ajay Jayaraj, and Alistair P. Rendell

On the Roles of the Programmer, the Compiler and the Runtime
System When Programming Accelerators in OpenMP 215
 Guray Ozen, Eduard Ayguadé, and Jesús Labarta

Author Index .. 231