Preface

The 5th International Workshop on Machine Learning in Medical Imaging (MLMI 2014) was held in the Kresge Auditorium and the Student Center at the Massachusetts Institute of Technology, Cambridge, MA, USA on September 14, 2014, in conjunction with the 17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).

Machine learning plays an essential role in the medical imaging field, including computer-assisted diagnosis, image segmentation, image registration, image fusion, image-guided therapy, image annotation, and image database retrieval. With advances in medical imaging, new imaging modalities and methodologies, such as cone-beam CT, tomosynthesis, electrical impedance tomography, and new machine learning algorithms/applications, come to the stage for medical imaging. Due to large inter-subject variations and complexities, it is generally difficult to derive analytic formulations or simple equations to represent objects such as lesions and anatomy in medical images. Therefore, tasks in medical imaging require learning from patient data for heuristics and prior knowledge, in order to facilitate the detection/diagnosis of abnormalities in medical images.

The main aim of this MLMI 2014 workshop is to help advance scientific research within the broad field of machine learning in medical imaging. This workshop focuses on major trends and challenges in this area, and presents works aimed to identify new cutting-edge techniques and their use in medical imaging. We hope that the MLMI workshop becomes an important platform for translating research from the bench to the bedside.

The range and level of submissions for this year’s meeting were of very high quality. Authors were asked to submit full-length papers for review. A total of 70 papers were submitted to the workshop in response to the call for papers. Each of the 70 papers underwent a rigorous double-blinded peer-review process, with each paper being reviewed by at least two (typically three) reviewers from the Program Committee, composed of 56 well-known experts in the field. Based on the reviewing scores and critiques, the 40 best papers (57%) were accepted for presentation at the workshop and chosen to be included in this Springer LNCS volume. The large variety of machine-learning techniques applied to medical imaging were well represented at the workshop.

We are grateful to the Program Committee for reviewing the submitted papers and giving constructive comments and critique, to the authors for submitting high-quality papers, to the presenters for excellent presentations, and to all the MLMI 2013 attendees who came to Cambridge from all around the world.

July 2014

Guorong Wu
Daoqiang Zhang
Luping Zhou
Organization

Steering Committee

Dinggang Shen
University of North Carolina at Chapel Hill, USA

Pingkun Yan
Philips Research North America, USA

Kenji Suzuki
The University of Chicago, USA

Fei Wang
AliveCorInc, USA

Program Committee

Siamak Ardekani
John Hopkins University, USA

Hidetaka Arimura
Kyusyu University, Japan

Pierrick Bourgeat
CSIRO, Australia

Marleen de Bruijne
University of Copenhagen, Denmark

Weidong (Tom) Cai
The University of Sydney, Australia

Heang-Ping Chan
University of Michigan Medical Center, USA

Rong Chen
The University of Maryland at Baltimore County, USA

Ting Chen
Ventana, USA

Yong Fan
Chinese Academy of Sciences, China

Jurgen Fripp
CSIRO, Australia

Bram van Ginneken
Radboud University Nijmegen Medical Centre, The Netherlands

Ghassan Hamarneh
Simon Fraser University, Canada

Yong He
Beijing Normal University, China

Heng Huang
University of Texas at Arlington, USA

Junzhou Huang
University of Texas, USA

Yaozong Gao
University of North Carolina at Chapel Hill, USA

Xiaoyi Jiang
University of Muenster, Germany

Minjeong Kim
University of North Carolina at Chapel Hill, USA

Byung-Uk Lee
Ewha W. University, Korea

Gang Li
University of North Carolina at Chapel Hill, USA

Yang Li
Allen Institute for Brain Science, USA

Jianming Liang
Arizona State University, USA

Jing Liu
University of California at San Francisco, USA

Xiongbiao Luo
University of Western Ontario, Canada
Le Lv
Yoshitaka Masutani
Brent Munsell
Feiping Nie
Philip Ogunbona
Emanuele Olivetti
Jinah Park
Daniel Rueckert
Mert Sabuncu
Clarisa Sanchez
Gerard Sanroma
Li Shen
Yinghuan Shi
Yonggang Shi
Min Shin
Heung-Il Suk
Ying Sun
Tolga Tasdizen
Lei Wang
Qian Wang
Li Wang
Yalin Wang
Chong Yaw Wee
Lin Yang
Yiqiang Zhan
Pei Zhang
Shaoting Zhang
Guoyan Zheng
Yuanjie Zheng
Sean Zhou
Xiangrong Zhou
Dajiang Zhu

NIH, USA
Hiroshima City University, Japan
College of Charleston, USA
University of Texas at Arlington, USA
University of Wollongong, Australia
Fondazione Bruno Kessler, Italy
KAIST, Korea
Imperial College London, UK
MGH, Harvard Medical School, USA
Radboud University Nijmegen Medical Center, The Netherlands
University of North Carolina at Chapel Hill, USA
Indiana University School of Medicine, USA
Nanjing University, China
University of Southern California, USA
University of North Carolina at Charlotte, USA
University of North Carolina at Chapel Hill, USA
National University of Singapore, Singapore
University of Utah, USA
University of Wollongong, Australia
Shanghai Jiao Tong University, China
University of North Carolina at Chapel Hill, USA
Arizona State University, USA
University of North Carolina at Chapel Hill, USA
University of Kentucky, USA
Siemens Medical Solutions, USA
University of North Carolina at Chapel Hill, USA
University of North Carolina at Charlotte, USA
University of Bern, Switzerland
University of Pennsylvania, USA
Siemens Medical Solutions, USA
Gifu University, Japan
University of Georgia, USA
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparsity-Learning-Based Longitudinal MR Image Registration for Early Brain Development</td>
<td>1</td>
</tr>
<tr>
<td>Qian Wang, Guorong Wu, Li Wang, Pengfei Shi, Weili Lin, and Dinggang Shen</td>
<td></td>
</tr>
<tr>
<td>Graph-Based Label Propagation in Fetal Brain MR Images</td>
<td>9</td>
</tr>
<tr>
<td>Lisa M. Koch, Robert Wright, Deniz Vatansever, Vanessa Kyriakopoulou, Christina Malamateniou, Prachi A. Patkee, Mary Rutherford, Joseph V. Hajnal, Paul Aljabar, and Daniel Rueckert</td>
<td></td>
</tr>
<tr>
<td>Deep Learning Based Automatic Immune Cell Detection for Immunohistochemistry Images</td>
<td>17</td>
</tr>
<tr>
<td>Ting Chen and Christophe Chefd’hotel</td>
<td></td>
</tr>
<tr>
<td>Stacked Multiscale Feature Learning for Domain Independent Medical Image Segmentation</td>
<td>25</td>
</tr>
<tr>
<td>Ryan Kiros, Karteek Popuri, Dana Cobzas, and Martin Jagersand</td>
<td></td>
</tr>
<tr>
<td>Detection of Mammographic Masses by Content-Based Image Retrieval</td>
<td>33</td>
</tr>
<tr>
<td>Menglin Jiang, Shaoting Zhang, and Dimitris N. Metaxas</td>
<td></td>
</tr>
<tr>
<td>Inferring Sources of Dementia Progression with Network Diffusion Model</td>
<td>42</td>
</tr>
<tr>
<td>Chenhui Hu, Xue Hua, Paul M. Thompson, Georges El Fakhri, and Quanzheng Li</td>
<td></td>
</tr>
<tr>
<td>3D Intervertebral Disc Localization and Segmentation from MR Images by Data-Driven Regression and Classification</td>
<td>50</td>
</tr>
<tr>
<td>Cheng Chen, D. Belavy, and Guoyan Zheng</td>
<td></td>
</tr>
<tr>
<td>Exploring Compact Representation of SICE Matrices for Functional Brain Network Classification</td>
<td>59</td>
</tr>
<tr>
<td>Jianjia Zhang, Luping Zhou, Lei Wang, and Wanqing Li</td>
<td></td>
</tr>
<tr>
<td>Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression</td>
<td>68</td>
</tr>
<tr>
<td>Zhen Yang, Shenghua Zhong, Aaron Carass, Sarah H. Ying, and Jerry L. Prince</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Manifold Alignment and Transfer Learning for Classification of Alzheimer’s Disease</td>
<td>77</td>
</tr>
<tr>
<td>Ricardo Guerrero, Christian Ledig, and Daniel Rueckert</td>
<td></td>
</tr>
<tr>
<td>Gleason Grading of Prostate Tumours with Max-Margin Conditional Random Fields</td>
<td>85</td>
</tr>
<tr>
<td>Joseph G. Jacobs, Eleftheria Panagiotaki, and Daniel C. Alexander</td>
<td></td>
</tr>
<tr>
<td>Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images</td>
<td>93</td>
</tr>
<tr>
<td>Yaozong Gao, Li Wang, Yeqin Shao, and Dinggang Shen</td>
<td></td>
</tr>
<tr>
<td>Geodesic Geometric Mean of Regional Covariance Descriptors as an Image-Level Descriptor for Nuclear Atypia Grading in Breast Histology Images</td>
<td>101</td>
</tr>
<tr>
<td>Adnan Mujahid Khan, Korsuk Sirinukunwattana, and Nasir Rajpoot</td>
<td></td>
</tr>
<tr>
<td>A Constrained Regression Forests Solution to 3D Fetal Ultrasound Plane Localization for Longitudinal Analysis of Brain Growth and Maturation</td>
<td>109</td>
</tr>
<tr>
<td>Mohammad Yaqub, Anil Kopuri, Sylvia Rueda, Peter B. Sullivan, Kenneth McCormick, and J. Alison Noble</td>
<td></td>
</tr>
<tr>
<td>Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation</td>
<td>117</td>
</tr>
<tr>
<td>Youngjin Yoo, Tom Brosch, Anthony Traboulsee, David K.B. Li, and Roger Tam</td>
<td></td>
</tr>
<tr>
<td>Fetal Abdominal Standard Plane Localization through Representation Learning with Knowledge Transfer</td>
<td>125</td>
</tr>
<tr>
<td>Hao Chen, Dong Ni, Xin Yang, Shengli Li, and Pheng Ann Heng</td>
<td></td>
</tr>
<tr>
<td>Searching for Structures of Interest in an Ultrasound Video Sequence...</td>
<td>133</td>
</tr>
<tr>
<td>Mohammad Ali Maraci, Raffaele Napolitano, Aris Papageorghiou, and J. Alison Noble</td>
<td></td>
</tr>
<tr>
<td>Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer’s Disease</td>
<td>141</td>
</tr>
<tr>
<td>Mawulawoe Komlagan, Vinh-Thong Ta, Xingyu Pan, Jean-Philippe Domenger, D. Louis Collins, and Pierrick Coupé</td>
<td></td>
</tr>
<tr>
<td>Automatic Bone and Marrow Extraction from Dual Energy CT through SVM Margin-Based Multi-Material Decomposition Model Selection...</td>
<td>149</td>
</tr>
<tr>
<td>Harini Veeraraghavan, Duc Fehr, Ross Schmidtlein, Sinchun Hwang, and Joseph O. Deasy</td>
<td></td>
</tr>
<tr>
<td>Sparse Discriminative Feature Selection for Multi-class Alzheimer’s Disease Classification</td>
<td>157</td>
</tr>
<tr>
<td>Xiaofeng Zhu, Heung-Il Suk, and Dinggang Shen</td>
<td></td>
</tr>
</tbody>
</table>
Context-Aware Anatomical Landmark Detection: Application to Deformable Model Initialization in Prostate CT Images 165
Yaozong Gao and Dinggang Shen

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information 174
Subrahmanyam Gorthi, Alireza Akhondi-Asl, Jean-Philippe Thiran, and Simon K. Warfield

Colon Biopsy Classification Using Crypt Architecture 182
Assaf Cohen, Ehud Rivlin, Ilan Shimshoni, and Edmond Sabo

Network-Guided Group Feature Selection for Classification of Autism Spectrum Disorder 190
Veronika Cheplygina, David M.J. Tax, Marco Loog, and Aasa Feragen

Deformation Field Correction for Spatial Normalization of PET Images Using a Population-Derived Partial Least Squares Model 198
Murat Bilgel, Aaron Carass, Susan M. Resnick, Dean F. Wong, and Jerry L. Prince

Novel Multi-Atlas Segmentation by Matrix Completion 207
Gerard Sanroma, Guorong Wu, Kim Thung, Yanrong Guo, and Dinggang Shen

Structured Random Forests for Myocardium Delineation in 3D Echocardiography .. 215
João S. Domingos, Richard V. Stebbing, Paul Leeson, and J. Alison Noble

Improved Reproducibility of Neuroanatomical Definitions through Diffeomorphometry and Complexity Reduction 223
Daniel Tward, Jorge Jovicich, Andrea Soricelli, Giovanni Frisoni, Alain Trouvé, Laurent Younes, and Michael Miller

Topological Descriptors of Histology Images 231
Nikhil Singh, Heather D. Couture, J.S. Marron, Charles Perou, and Marc Niethammer

Robust Deep Learning for Improved Classification of AD/MCI Patients .. 240
Feng Li, Loc Tran, Kim-Han Thung, Shuiwang Ji, Dinggang Shen, and Jiang Li

Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation .. 248
Snehashis Roy, Aaron Carass, Jerry L. Prince, and Dzung L. Pham
Multi-atlas Segmentation with Learning-Based Label Fusion

Hongzhi Wang, Yu Cao, and Tanveer Syeda-Mahmood

Interactive Prostate Segmentation Based on Adaptive Feature Selection and Manifold Regularization

Sang Hyun Park, Yaozong Gao, Yinghuan Shi, and Dinggang Shen

Feature Selection Based on SVM Significance Maps for Classification of Dementia

Esther Bron, Marion Smits, John van Swieten, Wiro Niessen, and Stefan Klein

Prediction of Standard-Dose PET Image by Low-Dose PET and MRI Images

Jiayin Kang, Yaozong Gao, Yao Wu, Guangkai Ma, Feng Shi, Weili Lin, and Dinggang Shen

Solutions for Missing Parameters in Computer-Aided Diagnosis with Multiparametric Imaging Data

Hussam Al-Deen Ashab, Piotr Kozlowski, S. Larry Goldenberg, and Mehdi Moradi

Online Discriminative Multi-atlas Learning for Isointense Infant Brain Segmentation

Xuchu Wang, Li Wang, Heung-Il Suk, and Dinggang Shen

Persistent Reeb Graph Matching for Fast Brain Search

Yonggang Shi, Junning Li, and Arthur W. Toga

In Vivo MRI Based Prostate Cancer Identification with Random Forests and Auto-context Model

Chunjun Qian, Li Wang, Ambereen Yousuf, Aytekin Oto, and Dinggang Shen

Learning of Atlas Forest Hierarchy for Automatic Labeling of MR Brain Images

Lichi Zhang, Qian Wang, Yaozong Gao, Guorong Wu, and Dinggang Shen

Author Index