Preface

AIMSA 2014 was the 16th in a biennial series of AI conferences that have been held in Bulgaria since 1984. The series began as a forum for scientists from Eastern Europe to exchange ideas with researchers from other parts of the world, at a time when such meetings were difficult to arrange and attend. The conference has thrived for 30 years, and now functions as a place where AI researchers from all over the world can meet and present their research.

AIMSA continues to attract submissions from all over the world, with submissions from 27 countries. The range of topics is almost equally broad, from traditional areas such as computer vision and natural language processing to emerging areas such as mining the behavior of Web-based communities. It is good to know that the discipline is still broadening the range of areas that it includes at the same time as cementing the work that has already been done in its various established subfields.

The Program Committee selected just over 30% of the submissions as long papers, and further accepted 15 short papers for presentation at the conference. We are extremely grateful to the Program Committee and the additional reviewers, who reviewed the submissions thoroughly, fairly and very quickly.

Special thanks go to our invited speakers, Bernhard Ganter (TU Dresden), Boris G. Mirkin (Higher School of Economics, Moscow) and Diego Calvanese (Free University of Bozen-Bolzano). The invited talks were grouped around ontology design and application, whether using clustering and biclustering approaches (B.G. Mirkin), formal concept analysis, a branch of applied lattice theory (B. Ganter), or being concerned with ontology-based data access (D. Calvanese).

Finally, special thanks go to the AComIn project (Advanced Computing for Innovation, FP7 Capacity grant 316087) for the generous support for AIMSA 2014, as well as Bulgarian Artificial Intelligence Association (BAIA), and Institute of Information and Communication Technologies at Bulgarian Academy of Sciences (IICT-BAS) as sponsoring institutions of AIMSA 2014.

June 2014

Gennady Agre
Pascal Hitzler
Adila A. Krisnadhi
Sergei Kuznetsov
Organization

Program Committee

Gennady Agre
Institute of Information Technologies,
Bulgarian Academy of Sciences, Bulgaria

Galia Angelova
Institute for Parallel Processing, Bulgarian
Academy of Sciences, Bulgaria

Grigoris Antoniou
University of Huddersfield, UK

Sören Auer
Universität Leipzig, Germany

Sebastian Bader
MMIS, Computer Science, Rostock University,
Germany

Roman Bartak
Charles University in Prague, Czech Republic

Christoph Beierle
University of Hagen, Germany

Meghyn Bienvenu
CNRS, Université Paris-Sud, France

Diego Calvanese
KRDB Research Centre, Free University
of Bozen-Bolzano, Italy

Virginio Cantoni
Università di Pavia, Italy

Stefano A. Cerri
LIRMM: University of Montpellier and CNRS,
France

Michelle Cheatham
Wright State University, USA

Davide Ciucci
University of Milan, Italy

Chris Cornelis
Ghent University, Belgium

Madalina Croitoru
LIRMM, University Montpellier II, France

Isabel Cruz
University of Illinios at Chicago, USA

Claudia D’Amato
Università di Bari, Italy

Artur D’Avila Garcez
City University London, UK

Darina Dicheva
Winston-Salem State University, USA

Ying Ding
Indiana University, USA

Danail Dochev
Institute of Information Technologies,
Bulgarian Academy of Sciences, Bulgaria

Stefan Edelkamp
University of Bremen, Germany

Esra Erdem
Sabanci University, Turkey

Floriana Esposito
Università di Bari, Italy

William Michael Fitzgerald
EMC Information Systems International,
Ireland

Miguel A. Gutiérrez-Naranjo
University of Sevilla, Spain

Barbara Hammer
Institute of Computer Science, Clausthal
University of Technology, Germany

Pascal Hitzler
Wright State University, USA

Dmitry Ignatov
Higher School of Economics, Moscow, Russia
Grigory Kabatyansky Institute for Information Transmission
 Problems, Russian Academy of Sciences, Russia
Mehdy Kaytoue LIRIS - CNRS, and INSA Lyon, France
Gabriele Kern-Isberner Technical University of Dortmund, Germany
Kristian Kersting Technical University of Dortmund, Fraunhofer IAIS, Germany
Vladimir Khoroshhevsky Computing Center of Russian Academy of Science, Moscow, Russia
Matthias Knorr CENTRIA, Universidade Nova de Lisboa, Portugal
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Irena Koprinska The University of Sydney, Australia
Petar Kormushev IIT Genoa, Italy
Adila A. Krisnadhi Wright State University, USA, and Faculty of Computer Science, Universitas Indonesia, Indonesia
Kai-Uwe Kuehnberger University of Osnabrück, Institute of Cognitive Science, Germany
Oliver Kutz University of Bremen, SFB/TR 8 Spatial Cognition, Germany
Sergei O. Kuznetsov National Research University Higher School of Economics, Moscow, Russia
Luis Lamb Federal University of Rio Grande do Sul, Brazil
Evelina Lamma ENDIF, University of Ferrara, Italy
Joohyung Lee Arizona State University, USA
Yue Ma Technical University of Dresden, Germany
Frederick Maier Florida Institute for Human and Machine Cognition, USA
Riichiro Mizoguchi Japan Advanced Institute of Science and Technology, Japan
Reinhard Muskens Tilburg Center for Logic and Philosophy of Science, The Netherlands
Kazumi Nakamatsu University of Hyogo, Japan
Amedeo Napoli LORIA, CNRS-Inria Nancy, and University of Lorraine, France
Sergei Obiedkov Higher School of Economics, Moscow, Russia
Manuel Ojeda-Aciego Department of Applied Mathematics, University of Malaga, Spain
Guilin Qi Southeast University, China
Allan Ramsay School of Computer Science, University of Manchester, UK
Chedy Raïssi LORIA, CNRS-Inria Nancy, France
Ioannis Refanidis
Department of Applied Informatics, University of Macedonia, Greece

Ute Schmid
University of Bamberg, Germany

Luciano Serafini
Fondazione Bruno Kessler, Italy

Dominik Slezak
University of Warsaw, Poland

Umberto Straccia
ISTI-CNR, Italy

Hannes Strass
Leipzig University, Germany

Doine Tatar
University Babes-Bolyai, Romania

Annette Ten Teije
Vrije Universiteit Amsterdam, The Netherlands

Dan Tufis
Institutul de Cercetari pentru Inteligenta Artificiala, Academia Romana, Romania

Petko Valtchev
UQAM, Université de Montréal, Canada

Tulay Yildirim
Yildiz Technical University, Turkey

Additional Reviewers

Batsakis, Sotiris
Kriegel, Francesco

Beek, Wouter
Meriçi, Tekin

Bellodi, Elena
Minervini, Pasquale

Borgo, Stefano
Mutharaju, Raghava

Cordero, Pablo
Nakov, Preslav

Fanizzi, Nicola
Osenova, Petya

Gavanelli, Marco
Papantoniou, Agissilaos

Gluhchev, Georgi
Redavid, Domenico

Hu, Yingjie
Rizzo, Giuseppe

Huan, Gao
Schwarzentuber, François

Kashnitsky, Yury
van Delden, André

Sponsoring Institutions

Bulgarian Artificial Intelligence Association (BAIA)
Institute of Information and Communication Technologies at Bulgarian Academy of Sciences (IICT-BAS)
Keynote Presentation Abstracts
Scalable End-User Access to Big Data

Diego Calvanese

Free University of Bozen-Bolzano, Italy

Keynote Abstract

Ontologies allow one to describe complex domains at a high level of abstraction, providing end-users with an integrated coherent view over data sources that maintain the information of interest. In addition, ontologies provide mechanisms for performing automated inference over data taking into account domain knowledge, thus supporting a variety of data management tasks. Ontology-based Data Access (OBDA) is a recent paradigm concerned with providing access to data sources through a mediating ontology, which has gained increased attention both from the knowledge representation and from the database communities. OBDA poses significant challenges in the context of accessing large volumes of data with a complex structure and high dynamicity. It thus requires not only carefully tailored languages for expressing the ontology and the mapping to the data, but also suitably optimized algorithms for efficiently processing queries over the ontology by accessing the underlying data sources. In this talk we present the foundations of OBDA relying on lightweight ontology languages, and discuss novel theoretical and practical results for OBDA that are currently under development in the context of the FP7 IP project Optique. These results make it possible to scale the approach so as to cope with the challenges that arise in real world scenarios, e.g., those of two large European companies that provide use-cases for the Optique project.

About the Speaker

Diego Calvanese is a professor at the KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy. His research interests include formalisms for knowledge representation and reasoning, ontology languages, description logics, conceptual data modelling, data integration, graph data management, data-aware process verification, and service modelling and synthesis. He is actively involved in several national and international research projects in the above areas, and he is the author of more than 250 refereed publications, including ones in the most prestigious international journals and conferences in Databases and Artificial Intelligence. He is one of the editors of the Description Logic Handbook. In 2012–2013 he has been a visiting researcher at the Technical University of Vienna as Pauli Fellow of the “Wolfgang Pauli Institute”. He will be the program chair of PODS 2015.
Formal Concepts for Learning and Education

Bernhard Ganter

Technical University of Dresden, Germany

Keynote Abstract

Formal Concept Analysis has an elaborate and deep mathematical foundation, which does not rely on numerical data. It is, so to speak, fierce qualitative mathematics, that builds on the algebraic theory of lattices and ordered sets. Since its emergence in the 1980s, not only the mathematical theory is now mature, but also a variety of algorithms and of practical applications in different areas. Conceptual hierarchies play a role e.g., in classification, in reasoning about ontologies, in knowledge acquisition and the theory of learning. Formal Concept Analysis provides not only a solid mathematical theory and effective algorithms; it also offers expressive graphics, which can support the communication of complex issues.

In our lecture we give an introduction to the basic ideas and recent developments of Formal Concept Analysis, a mathematical theory of concepts and concept hierarchies and then demonstrate the potential benefits and applications of this method with examples. We will also review some recent application methods that are currently being worked out. In particular we will present results on a “methodology of learning assignments” and on “conceptual exploration”.

About the Speaker

Bernhard Ganter is a pioneer of formal concept analysis. He received his PhD in 1974 from the University of Darmstadt, Germany, and became Professor in 1978. Currently, he is a Professor of Mathematics and the Dean of Science at the Technical University of Dresden, Germany. His research interests are in discrete mathematics, universal algebra, lattice theory, and formal concept analysis. He is a co-author of the first textbook and editor of several volumes on formal concept analysis.
Ontology as a Tool for Automated Interpretation

Boris G. Mirkin

National Research University, Higher School of Economics,
Moscow, Russia

Keynote Abstract

In the beginning, I am going to outline, in-brief, the current period of developments in the artificial intelligence research. This is of synthesis, in contrast to the sequence of previous periods (romanticism, deduction, and induction). Three more or less matured ontologies, and their use, will be reviewed: ACM CCS, SNOMED CT and GO. The popular strategy of interpretation of sets of finer granularity via the so-called overrepresented concepts will be mentioned. A method for generalization and interpretation of fuzzy/crisp query sets by parsimoniously lifting them to higher ranks of the hierarchy will be presented. Its current and potential applications will be discussed.

About the Speaker

Boris Mirkin holds a PhD in Computer Science and DSc in Systems Analysis degrees from Russian Universities. In 1991–2010, he travelled through long-term visiting appointments in France, Germany, USA, and a teaching appointment as Professor of Computer Science, Birkbeck University of London, UK (2000–2010). He develops methods for clustering and interpretation of complex data within the “data recovery” perspective. Currently these approaches are being extended to automation of text analysis problems including the development and use of hierarchical ontologies. His latest publications: textbook “Core concepts in data analysis” (Springer 2011) and monograph “Clustering: A data recovery approach” (Chapman and Hall/CRC Press, 2012).
Table of Contents

Long Papers

Learning Probabilistic Semantic Network of Object-Oriented Action and Activity .. 1
Masayasu Atsumi

Semantic-Aware Expert Partitioning ... 13
Veselka Boeva, Lilyana Boneva, and Elena Tsiporkova

User-Level Opinion Propagation Analysis in Discussion Forum Threads .. 25
Dumitru-Clementin Cercel and Ştefan Trăuşan-Matu

Social News Feed Recommender ... 37
Milen Chechev and Ivan Koychev

Boolean Matrix Factorisation for Collaborative Filtering: An FCA-Based Approach ... 47
Dmitry I. Ignatov, Elena Nenova, Natalia Konstantinova, and Andrey V. Konstantinov

Semi-supervised Image Segmentation ... 59
Gergana Angelova Lazarova

Analysis of Rumor Spreading in Communities Based on Modified SIR Model in Microblog .. 69
Jie Liu, Kai Niu, Zhiqiang He, and Jiaru Lin

Modeling a System for Decision Support in Snow Avalanche Warning Using Balanced Random Forest and Weighted Random Forest 80
Sibylle Möhle, Michael Bründl, and Christoph Beierle

Applying Language Technologies on Healthcare Patient Records for Better Treatment of Bulgarian Diabetic Patients 92
Ivelina Nikolova, Dimitar Tcharakchiev, Svetla Boytcheva, Zhivko Angelov, and Galia Angelova

Incrementally Building Partially Path Consistent Qualitative Constraint Networks ... 104
Michael Sioutis and Jean-François Condotta

A Qualitative Spatio-Temporal Framework Based on Point Algebra 117
Michael Sioutis, Jean-François Condotta, Yakoub Salhi, and Bertrand Mazure
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Datasets Collection and Evaluation of Feature Selection</td>
<td>129</td>
</tr>
<tr>
<td>Methods for Web Content Filtering</td>
<td></td>
</tr>
<tr>
<td>Roman Suvorov, Ilya Sochenkov, and Ilya Tikhomirov</td>
<td></td>
</tr>
<tr>
<td>Feature Selection by Distributions Contrasting</td>
<td>139</td>
</tr>
<tr>
<td>Varvara V. Tsurko and Anatoly I. Michalski</td>
<td></td>
</tr>
<tr>
<td>Educational Data Mining for Analysis of Students’ Solutions</td>
<td>150</td>
</tr>
<tr>
<td>Karel Vaculík, Leona Nezvalová, and Luboš Popelínský</td>
<td></td>
</tr>
<tr>
<td>Short Papers</td>
<td></td>
</tr>
<tr>
<td>Differentiation of the Script Using Adjacent Local Binary Patterns</td>
<td>162</td>
</tr>
<tr>
<td>Darko Brodić, Čedomir A. Maluckov, Zoran N. Milivojević, and Ivo R. Draganov</td>
<td></td>
</tr>
<tr>
<td>New Technology Trends Watch: An Approach and Case Study</td>
<td>170</td>
</tr>
<tr>
<td>Irina V. Efimenko and Vladimir F. Khoroshevsky</td>
<td></td>
</tr>
<tr>
<td>Optimization of Polytopic System Eigenvalues by Swarm of Particles</td>
<td>178</td>
</tr>
<tr>
<td>Jacek Kabziński and Jarosław Kacerka</td>
<td></td>
</tr>
<tr>
<td>Back-Propagation Learning of Partial Functional Differential Equation</td>
<td>186</td>
</tr>
<tr>
<td>with Discrete Time Delay</td>
<td></td>
</tr>
<tr>
<td>Tibor Kmet and Maria Kmetova</td>
<td></td>
</tr>
<tr>
<td>Dynamic Sound Fields Clusterization Using Neuro-Fuzzy Approach</td>
<td>194</td>
</tr>
<tr>
<td>Petia Koprinkova-Hristova and Kiril Alexiev</td>
<td></td>
</tr>
<tr>
<td>Neural Classification for Interval Information</td>
<td>206</td>
</tr>
<tr>
<td>Piotr A. Kowalski and Piotr Kulczycki</td>
<td></td>
</tr>
<tr>
<td>FCA Analyst Session and Data Access Tools in FCART</td>
<td>214</td>
</tr>
<tr>
<td>Alexey Neznanov and Andrew Parinov</td>
<td></td>
</tr>
<tr>
<td>Voice Control Framework for Form Based Applications</td>
<td>222</td>
</tr>
<tr>
<td>Ionut Cristian Paraschiv, Mihai Dascalu, and Ştefan Trăuşan-Matu</td>
<td></td>
</tr>
<tr>
<td>Towards Management of OWL-S Effects by Means of a DL Action</td>
<td>228</td>
</tr>
<tr>
<td>Formalism Combined with OWL Contexts</td>
<td></td>
</tr>
<tr>
<td>Domenico Redavid, Stefano Ferilli, and Floriana Esposito</td>
<td></td>
</tr>
<tr>
<td>Computational Experience with Pseudoinversion-Based Training of</td>
<td>236</td>
</tr>
<tr>
<td>Neural Networks Using Random Projection Matrices</td>
<td></td>
</tr>
<tr>
<td>Luca Rubini, Rossella Cancelliere, Patrick Gallinari, Andrea Grosso, and Antonino Raiti</td>
<td></td>
</tr>
<tr>
<td>Test Case Prioritization for NUnit Based Test Plans in Agile</td>
<td>246</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Sohail Sarwar, Yasir Mahmood, Zia Ul Qayyum, and Imran Shafi</td>
<td></td>
</tr>
</tbody>
</table>
Pattern Structure Projections for Learning Discourse Structures 254
 Fedor Strok, Boris Galitsky, Dmitry Ilvovsky, and
 Sergei O. Kuznetsov

Estimation Method for Path Planning Parameter Based on a Modified
QPSO Algorithm ... 261
 Myongchol Tokgo and Renfu Li

On Modeling Formalisms for Automated Planning 270
 Jindřich Vodrážka and Roman Barták

Finetuning Randomized Heuristic Search for 2D Path Planning:
Finding the Best Input Parameters for R* Algorithm through Series of
Experiments... 278
 Konstantin Yakovlev, Egor Baskin, and Ivan Hramoin

Analysis of Strategies in American Football Using Nash Equilibrium.... 286
 Arturo Yee, Reinaldo Rodríguez, and Matías Alvarado

Strategies for Reducing the Complexity of Symbolic Models for Activity
Recognition ... 295
 Kristina Yordanova, Martin Nyolt, and Thomas Kirste

Author Index ... 301