Advances in Mathematical Fluid Mechanics

Series Editors

Giovanni P. Galdi, Pittsburgh, USA
John G. Heywood, Vancouver, Canada
Rolf Rannacher, Heidelberg, Germany

Advances in Mathematical Fluid Mechanics is a forum for the publication of high quality monographs, or collections of works, on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. Its mathematical aims and scope are similar to those of the Journal of Mathematical Fluid Mechanics. In particular, mathematical aspects of computational methods and of applications to science and engineering are welcome as an important part of the theory. So also are works in related areas of mathematics that have a direct bearing on fluid mechanics.

The monographs and collections of works published here may be written in a more expository style than is usual for research journals, with the intention of reaching a wide audience. Collections of review articles will also be sought from time to time.

More information about this series at http://www.springer.com/series/5032
Björn Gustafsson • Razvan Teodorescu
Alexander Vasil’ev

Classical and Stochastic Laplacian Growth

Birkhäuser
Björn Gustafsson
Department of Mathematics
KTH Royal Institute of Technology
Stockholm, Sweden

Razvan Teodorescu
Department of Mathematics
University of South Florida
Tampa, FL, USA

Alexander Vasil’ev
Department of Mathematics
University of Bergen
Bergen, Norway

ISSN 2297-0320
ISSN 2297-0339 (electronic)
ISBN 978-3-319-08286-8
ISBN 978-3-319-08287-5 (eBook)
DOI 10.1007/978-3-319-08287-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014955451

Mathematics Subject Classification (2010): 76D27, 76M40, 30C20, 30C35, 30C62, 31A05, 35Q30, 35R35

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.birkhauser-science.com)
Contents

Preface xi

1 Introduction and Background
 1.1 Newtonian fluids 1
 1.2 The Navier–Stokes equations 2
 1.2.1 The transport theorem 2
 1.2.2 The continuity equation 3
 1.2.3 The Euler equation 4
 1.2.4 The Navier–Stokes equation 5
 1.2.5 Dynamical similarity and the Reynolds number ... 6
 1.2.6 Vorticity, two-dimensional flows 7
 1.3 Riemann map and Carathéodory kernel convergence 10
 1.4 Hele–Shaw flows 12
 1.4.1 Lamb model 13
 1.4.2 The Polubarinova–Galin equation 15
 1.4.3 Local existence and ill/well-posedness 19
 1.4.4 Regularizations 20
 1.4.5 Numerical treatment 22
 1.4.6 Stochastic homogenization in disordered 2D systems . 22
 1.5 Harmonic moments 24
 1.6 The Polubarinova–Galin equation in terms of Poisson brackets ... 26
 1.7 The Schwarz function 27
 1.7.1 Definition and relation to moving boundaries 27
 1.7.2 Relation to Cauchy transform and moments ... 28
 1.7.3 Hydrodynamic interpretation of the Schwarz function ... 30
 1.8 Other geometries and other kinds of sources 31
 1.9 Historical remarks 32
 1.9.1 1876–1885 33
 1.9.2 1885–1904 33
2 Rational and Other Explicit Strong Solutions

2.1 Classical solutions of the Polubarinova–Galin equation 47
2.1.1 Polubarinova and Galin’s cardioid 48
2.1.2 Examples of rational solutions of the
Polubarinova–Galin equation .. 50
2.1.3 The Huntingford example .. 51
2.2 Existence of rational solution in general 55
2.3 A non-existence result for polynomial lemniscates 58
2.4 Logarithmic solutions and dynamics of poles 61
2.5 Saffman–Taylor fingers in channel geometry 66
2.6 Corner flows ... 68
2.6.1 Mathematical model ... 69
2.6.2 Logarithmic perturbations of the trivial solution 72
2.6.3 Self-similar bubbles ... 76

3 Weak Solutions and Related Topics

3.1 Variational inequality weak solutions 83
3.1.1 Definition of a weak solution 83
3.1.2 Existence and uniqueness of weak solutions 85
3.1.3 General properties of weak solutions 88
3.1.4 Regularity of the boundary 90
3.1.5 Connections to nonlinear PDE and the Stefan problem 92
3.2 Balayage techniques ... 94
3.2.1 Weak solutions as partial balayage 94
3.2.2 Existence and non-branching of backward weak solutions 98
3.2.3 Squeezing version of Hele-Shaw flow and
potential theoretic skeletons 103
3.3 Quadrature domains and the exponential transform 107
 3.3.1 Quadrature domains ... 107
 3.3.2 Hele-Shaw flow in the light of quadrature domains 110
 3.3.3 More general quadrature domains 112
 3.3.4 The exponential transform 113
3.4 Weak solutions for cusp formation ... 117
 3.4.1 Local approximation of the complex curve
 near a $3/2$ cusp ... 117
 3.4.2 Integral form of the Darcy law 118
 3.4.3 Formation of the $3/2$-singularity:
 self-similar elliptic curve ... 119
 3.4.4 Smooth flow and a degenerate curve 120
3.5 Generalizations .. 121
 3.5.1 Multidimensional Hele-Shaw flow and
 other generalizations ... 121
 3.5.2 Hele-Shaw flow on Riemannian manifolds 123
4 Geometric Properties
 4.1 Distance to the boundary ... 127
 4.2 A topological result .. 128
 4.3 Special classes of univalent functions 130
 4.4 Hereditary shape of phase domains 133
 4.4.1 Bounded dynamics ... 133
 4.4.2 Dynamics with small surface tension 141
 4.4.3 Geometric properties in the presence of surface tension 143
 4.4.4 Unbounded regions with bounded complement 146
 4.4.5 Unbounded regions with the boundary extending
 to infinity ... 148
 4.5 Infinite life-span of starlike dynamics 151
 4.6 Solidification and melting in potential flows 153
 4.6.1 Close-to-parabolic semi-infinite crystal 154
 4.7 Geometry of weak solutions .. 155
 4.7.1 Starlikeness of the weak solution 156
 4.7.2 The inner normal theorem .. 156
 4.7.3 Distance to the boundary (revisited) 161
5 Capacities and Isoperimetric Inequalities
 5.1 Conformal invariants and capacities 164
 5.1.1 Modulus of a family of curves 164
 5.1.2 Reduced modulus and capacity 165
5.1.3 Integral means and the radius-area problem 168
5.2 Hele-Shaw cells with obstacles ... 171
 5.2.1 Robin’s capacity and Robin’s reduced modulus 172
 5.2.2 A problem with an obstacle .. 174
5.3 Isoperimetric inequality for a corner flow 178
5.4 Melting of a bounded crystal ... 182
5.5 Asymptotics of roots and coefficients in the polynomial case 183

6 Laplacian Growth and Random Matrix Theory
 6.1 Random matrix theory in 1D ... 189
 6.1.1 The symmetry group ensembles and their physical realisations 189
 6.1.2 Critical ensembles .. 190
 6.2 Random matrix theory in higher dimensions 194
 6.2.1 The Ginibre–Girko ensemble ... 194
 6.2.2 Normal matrix ensembles .. 194
 6.2.3 Droplets of eigenvalues ... 196
 6.2.4 Orthogonal polynomials and distribution of eigenvalues 197
 6.2.5 Equations for the wave functions ... 200
 6.2.6 Spectral curve ... 203

7 Integrability and Moments
 7.1 The Hele-Shaw directional derivative ... 211
 7.2 Moment coordinates .. 214
 7.3 Poisson bracket and string equation ... 219
 7.4 Hamiltonians ... 223
 7.5 Exterior domains .. 228

8 Shape Evolution and Integrability
 8.1 Löwner–Kufarev evolution ... 232
 8.2 Structures of Vir, Diff S^1, and Diff S^1/S^1 236
 8.2.1 Witt and Virasoro algebras .. 236
 8.2.2 Group of diffeomorphisms ... 236
 8.2.3 CR and complex structures ... 237
 8.3 Relations between Vir, Diff S^1, and Diff S^1/S^1 and spaces of univalent functions .. 239
 8.4 Segal–Wilson Grassmannian .. 242
 8.5 Hamiltonian formalism .. 244
 8.6 Curves in Grassmannian .. 246
 8.7 τ-function ... 250
Preface

One of the most influential works in fluid dynamics at the edge of the XIXth and XXth centuries was a series of papers, see, e.g., [265], written by Henry Selby Hele-Shaw between 1897 and 1899. This was a time of impetuous development of several fundamental branches of natural sciences. The following few citations related to the present monograph might be sufficient to impress an inquiring minded reader: Reynolds’ description [466] of the turbulence phenomenon at higher velocities in 1873–1883; Korteweg and de Vries’ description [320] of the ‘solitary wave’ in 1895, discovered by the Scottish engineer Russell about half a century earlier; and of course, we must mention the impressive developments in the theory of relativity and quantum physics, which used the elegant mathematical formulation of electrodynamics given by Maxwell [382], both as a benchmark for more unified theories (which emerged later in the XXth century as gauge theories), and as a guiding mathematical structure (reflected nowadays in the extensive use of principal bundles and central extensions in theoretical physics).

Hele-Shaw (1854–1941) was one of the most prominent engineering researchers of his time, a pioneer of technical education, a great organizer, president of several engineering societies, including the Royal Institution of Mechanical Engineers, Fellow of the Royal Society, and sadly, an example of one of the many undeservedly forgotten great names in Science and Engineering. In his original works, he first described his famous cell that became a subject of deep investigation only more than 50 years later. A Hele-Shaw cell is a device for investigating two-dimensional flow of a viscous fluid in a narrow gap between two parallel plates. This cell is the simplest system in which multi-dimensional convection is present. Probably the most important characteristic of flows in such a cell is that when the Reynolds number based on gap width is sufficiently small, the Navier–Stokes equations averaged over the gap reduce to a linear relation similar to Darcy’s law and then to a Laplace equation for pressure. Different driving mechanisms can be considered, such as surface tension or external forces (suction, injection). Through the similarity in the governing equations, Hele-Shaw flows are particularly useful for visualization of saturated flows in porous media, assuming they are slow enough to be governed by Darcy’s law. Nowadays, the principle of the Hele-Shaw cell is used as a powerful tool for modelling growth phenomena in several fields of natural sciences and engineering, in particular, condensed-matter physics, material science, crystal growth and, of course, fluid mechanics. But Hele-Shaw
is known not only for his Stream-line Flow Methods (1896–1900) in which this
cell plays a fundamental role. Two other of Hele-Shaw’s great inventions are his
Friction Clutch (1905), an early version of multi-plate wet clutch, and his Auto-
matic Variable-Pitch Propeller (1924), jointly with T. Beacham. In fact, the full
list of his inventions is much longer and comprises 82 patents. Sir George Gabriel
Stokes wrote about the Hele-Shaw cell: ‘Hele-Shaw’s experiments afford a com-
plete graphical solution, experimentally obtained, of a problem which from its
complexity baffles mathematicians except in a few simple cases’. Stokes mentions
also Hele-Shaw’s experiments in his letter to Lord Kelvin from September 7, 1898:
‘Hele-Shaw has some beautiful photographs, very interesting to you and me. By
means of a thin stratum of viscous liquid between close glass walls, flowing past an
interruption in the film, you can realise experimentally the theoretical stream lines
in two dimensions in a perfect fluid flowing round a body represented in section
by the obstacle’ (see [532]).

Since the original works of Hele-Shaw appeared and a mathematical model
of Hele-Shaw flow was formulated in the famous monograph by Lamb [341], many
interesting and exciting developments have occurred. The century-long develop-
ment connecting the original Hele-Shaw experiments, the conformal mapping for-
mulation of the Hele-Shaw flow by Pelageya Yakovlevna Polubarinova-Kochina
(1899–1999) and Lev Aleksandrovich Galin (1912–1981) [438, 439, 199], and the
modern treatment of the Hele-Shaw evolution based on integrable systems and
on the general theory of plane contour motion, was marked by several important
contributions by individuals and groups.

The main idea of Polubarinova-Kochina and Galin was to apply the Riemann
mapping from an appropriate canonical domain (the unit disk in most situations)
onto the phase domain in order to parameterize the free boundary. The evolu-
tion equation for this map, named after its creators, allows us to construct many
explicit solutions and to apply methods of conformal analysis and geometric func-
tion theory to investigate Hele-Shaw flows. In particular, solutions to this equa-
tion in the case of advancing fluid give subordination chains of simply connected
domains which have been studied for a long time in the theory of univalent func-
tions. The Löwner–Kufarev equation [328], [362] plays a central role in this study
(Charles Loewner or Karel Löwner originally in Czech, 1893–1968; Pavel Par-
equations, having some evident geometric connections, are of somewhat different
nature. While the evolution of the Laplacian growth given by the Polubarinova–
Galin equation is completely defined by the initial conditions, the Löwner–Kufarev
evolution depends also on an arbitrary control function. The Polubarinova–Galin
equation is essentially non-linear and the corresponding subordination chains are
of rather complicated nature. Interestingly, it was Kufarev [330], [331] who antic-
pipated further results in viscous fingering in 1948 by means of this equation.

Among other remarkable contributions we distinguish the discovery of the
viscous fingering phenomenon by Sir Geoffrey Ingram Taylor (1886–1975) and
Philip Geoffrey Saffman (1931–2008) [488, 489], and the discovery, by Stanley Richardson (1943–2008) [470], of a complete set of integrals for the Hele-Shaw evolution, namely the harmonic moments. Contributions made by scientists from Great Britain (D. Crowdy, L.J. Cummings, C.M. Elliott, S.D. Howison, J.R. King, J.R. Ockendon, S. Richardson) are to be emphasized. They have substantially developed the complex variable approach and actually converted the Hele-Shaw problem into a modern challenging branch of applied mathematics. An even more recent mathematical physics perspective, through integrable systems in particular, allows us to look at Hele-Shaw evolution as at a general contour dynamics in the plane embedded into a dispersionless Toda hierarchy. This approach is due mainly to I. Krichever, A. Marshakov, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin among others.

The first monograph treatment [249] of Hele-Shaw appeared in 2006 and covered mostly the classical period of development of this area (a related monograph is [560]). The last decade has been marked by a burst of interest in Laplacian growth (another name for the Hele-Shaw free boundary problem used in mathematical physics literature), caused in particular by related statistical physics models, e.g., Diffusion Limited Aggregation. Several new methods, such as integrable systems and random matrices, have been employed to treat problems in Laplacian growth. Therefore, a revision of the book seemed necessary in order to give a broader and more comprehensive survey of the current status of this field, whose impetuous growth has resulted in this new text, with three authors. While Chapters 6 through 9 are entirely new (except for the first section in Chapter 7), the main ideas of [249] are also present, in particular in the first half of the introduction (Chapter 1, Sections 1–7), Sections 2, 5, and 6 of Chapter 2 (and an extended Section 1), Sections 1–2 of Chapter 3 (and partly Sections 3 and 5), Sections 1, 3, 5, and 7 of Chapter 4, and finally Sections 1–4 of Chapter 5.

In the present monograph, we aim at giving a presentation of recent and new ideas that arise from the problems of planar fluid dynamics and which are interesting from the point of view of geometric function theory, potential theory, and mathematical physics. In particular, we are concerned with geometric problems for Laplacian growth, its stochastic formulation and its treatment from the viewpoint of integrable systems and random matrices. Ultimately, we see the interaction between several branches of complex, potential analysis, mathematical physics and planar fluid mechanics.

For most parts of this book we assume the background provided by graduate courses in real and complex analysis, in particular the theory of conformal mappings, and some basic notions of fluid mechanics. We also make some historical remarks concerning the scientists who have contributed to the topic. We have tried to keep the book as self-contained as possible.

Acknowledgement. We would like to acknowledge many useful conversations with J.R. Arteaga, J. Becker, L. Cummings, P.I. Ètingof, R. Friedrich, V. Goryainov, V. Gutlyanskii, Yu. Hohlov, S. Howison, D. Khavinson, J. King, K. Kornev,
M. Mineev-Weinstein, J. Ockendon, Ch. Pommerenke, D. Prokhorov, S. Rusche-wegh, H. Shahgholian, H.S. Shapiro, P. Wiegmann, A. Zabrodin. All three authors especially want to thank their wives Eva Odelman, Iuliana Teodorescu, and Irina Markina. They always inspire our work. Irina Markina is, moreover, a colleague and co-author of the third author.

The project has been supported by

– the Swedish Research Council, the Göran Gustafsson Foundation (Sweden),
– the projects of the Norwegian Research Council #177355/V30, #204726/V30, and #213440/BG,
– the Research Networking Programme ‘Harmonic and Complex Analysis and its Applications’ ESF,
– the EU project FP7 IRSES program STREVCOMS, grant no. PIRSES-GA-2013-612669.

Björn Gustafsson, Razvan Teodorescu, & Alexander Vasil’ev
Stockhom-Tampa-Bergen, 2014