Mathematical Physics Studies

Series editors
Giuseppe Dito, Dijon, France
Edward Frenkel, Berkeley, CA, USA
Sergei Gukov, Pasadena, CA, USA
Yasuyuki Kawahigashi, Tokyo, Japan
Maxim Kontsevich, Bures-sur-Yvette, France
Nicolaas P. Landsman, Nijmegen, The Netherlands

For further volumes:
http://www.springer.com/series/6316
Many-Electron Approaches in Physics, Chemistry and Mathematics

A Multidisciplinary View
Preface

The advent of computers in physics has undoubtedly boosted the development of theoretical approaches to study the structure of matter. The study of many-electron systems followed the technological advancement and led to a breakthrough in understanding important processes in a broad class of subjects in natural science. This success, in turn, provided the confidence to start the process of designing “in silico” new materials or modify “on demand” chemical and physical processes. Nowadays, we face a demand for theoretical predictions with extremely high accuracy in order to create “de novo” or modify to our convenience even the subtlest processes of Nature. In the field of many-electron approaches the question came to an important crossroad: current approaches are either computationally too demanding or conceptually or mathematically not satisfactory, thus where shall we go next?

The most common strategy to overcome this point, in the short term, is that of including “brute force” and/or empirical modifications to the theories in order to get satisfactory answers for, at least, few specific (though relevant) systems. It is becoming clear, however, that there is an alternative strategy, working on a long term but certainly worth to explore, which is based on the interdisciplinary synergy among different disciplines involved in this field. Mathematicians, physicists, chemists, and computer scientists started to converge in common meetings, on common projects, and on common ideas. The points of view are still different, but their complementarity has become clear, and an effort to overcome long-standing prejudicial barriers among the different disciplines is made.

Among these efforts is a workshop on “New Approaches in Many-Electron Theory” (NAMET) which we organized in 2010 to bring people from different fields and disciplines together to exchange results and receive feedback across the scientific fields. The response we obtained was highly positive. It became clear that the exchange of ideas, data, and perspectives was invigorating the background of all the attendants. From several lively discussions it became equally apparent, however, that the way to an optimal merging of interests and goals requires a continuous effort over the next years.

This book represents a natural continuation of NAMET and of our will of feeding this process of exchange and integration further. We have given space to young researchers, with their new ideas which are more naturally open to interdisciplinarity, and complement their contributions with established senior experts,
in an attempt to optimally merge the various views. The resulting product is a general overview of the field, where past perspectives meet current possibilities, and past results become the basis of the search for future innovations. On purpose we have promoted the use of an accessible language for researchers and students of each discipline so that the book is accessible essentially to all mathematicians, physicists, and chemists.

Volker Bach
Luigi Delle Site
Contents

Part I Topics in Quantum Chemistry

Relativistic Quantum Theory of Many-Electron Systems 3
Benjamin Simmen and Markus Reiher

Spurious Modes in Dirac Calculations and How to Avoid Them 31
Mathieu Lewin and Éric Séré

Tensor Product Approximation (DMRG) and Coupled Cluster Method in Quantum Chemistry 53
Örs Legeza, Thorsten Rohwedder, Reinhold Schneider and Szilárd Szalay

Quantum Cluster Equilibrium ... 77
Barbara Kirchner, Frank Weinhold, Joachim Friedrich, Eva Perlt and Sebastian B. C. Lehmann

Linear Response Methods in Quantum Chemistry 97
Tobias Watermann, Arne Scherrer and Daniel Sebastiani

Part II Topics in Density Functional Theory and Related Approaches

Progress on New Approaches to Old Ideas: Orbital-Free Density Functionals 113
Valentin V. Karasiev, Debajit Chakraborty and S. B. Trickey

Time-Dependent Density Functional Theory 135
Nikos L. Doltsinis

Density Functional Theory for Strongly-Interacting Electrons 153
Francesc Malet, André Mirtschink, Klaas J. H. Giesbertz and Paola Gori-Giorgi
Towards the Computational Design of Compounds from First Principles ... 169
O. Anatole von Lilienfeld

Application of (Kohn–Sham) Density-Functional Theory to Real Materials. ... 191
Luca M. Ghiringhelli

The Quantum Energy Agrees with the Müller Energy up to Third Order ... 207
Heinz Siedentop

Mathematical Aspects of Density Functionals and Density Matrix Functionals in Quantum Chemistry 219
Volker Bach

Some (Important?) Unsolved Mathematical Problems in Molecular Simulation ... 235
Claude Le Bris

Part III Topics in Computer Science

The Computational Complexity of Density Functional Theory 245
James Daniel Whitfield, Norbert Schuch and Frank Verstraete

Computational Techniques for Density Functional Based Molecular Dynamics Calculations in Plane-Wave and Localized Basis Sets ... 261
Alexandar T. Tzanov and Mark E. Tuckerman

Part IV Information Theory in Many-Electron Descriptions

Towards the Information-Theoretic Construction of an Orbital-Free Kinetic-Energy Functional 287
Ian P. Hamilton

Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems 301
Martin Kliesch, Christian Gogolin and Jens Eisert
Part V Green Function-Based Approaches

Electronic Structure Calculations with LDA+DMFT 321
Eva Pavarini

The GW Approximation for the Electronic Self-Energy 343
Arno Schindlmayr

Part VI Topics in Quantum Monte Carlo and Related Approaches

Levy–Lieb Principle Meets Quantum Monte Carlo 361
Luigi Delle Site

The New Resonating Valence Bond Method for Ab-Initio Electronic Simulations .. 377
Sandro Sorella and Andrea Zen

Mathematical Perspective on Quantum Monte Carlo Methods 393
Eric Cancès

Part VII Epilogue

On Some Open Problems in Many-Electron Theory 413
Volker Bach and Luigi Delle Site