Architecture and Mathematics from Antiquity to the Future
Iidabashi Subway Station, Makoto Sei Watanabe, architect (2000), entrance at street level. Photograph © Andrew I-kang Li, reproduced by permission.
Preface to Architecture and Mathematics from Antiquity to the Future

In June of 1996, in his keynote address at the conference ‘Nexus’96: Relationships Between Architecture and Mathematics’, the founding international conference of what would become an international community for research in a new interdisciplinary field, eminent engineer Mario Salvadori asked, ‘[c]an there be any relationship between architecture and mathematics?’ Over the next 18 years, the Nexus community came together for a series of bi-yearly conferences in Italy, Portugal, Mexico, Turkey and the USA to examine, debate and celebrate the relationships that exist between architecture and mathematics. The conferences were hosted in locations where important historic connections had been proposed between architecture and mathematics: in Europe these locations include Fucecchio (1996), Mantua (1998), Ferrara (2000), Óbidos (2002), Genoa (2006), Porto (2010) and Milan (2012). Further afield, conferences were held in Mexico City (2004), San Diego (2008) and Ankara (2014). Conference venues were chosen to permit participants to visit local sites of historic importance for architecture and mathematics in post-conference workshops, such as Pompeii and Herculaneum in 1996, the villas of Palladio in 1998 and Teotihuacan in 2004. The speakers at these events include some of the most influential people in architecture, art, mathematics and engineering. Lionel March, Robert Tavenor, Alberto Pérez-Gómez, Marco Frascari, Michele Emmer, Leonard Eaton and Mario Salvadori, amongst many other luminaries, have all presented at the Nexus conferences and taken part in round-table discussions, forums and visits to some of the great architecture of these regions.

The first Nexus conference was actually conceived out of the frustration caused by the difficulty of finding a venue for publishing interdisciplinary research: papers in architecture and mathematics were seen as too mathematical for architectural journals, but not mathematical enough for mathematics journals. At best, such research was viewed as a curiosity, too far from the mainstream to garner much interest. Because there was no single journal that encouraged such research, when authors were fortunate enough to have an article accepted, publications were scattered, and authors seldom knew about the work of others examining similar topics. The Internet was in its infancy at that time, leaving far-flung scholars to
work in isolation. One journal, *The Mathematical Intelligencer*, and its particularly open-minded editor-in-chief, Chandler Davis, had accepted papers by three of the participants at the first conference, Kim Williams, Benno Artmann and Heinz Götze, who subsequently began to correspond. The 23 people who met in 1996 at the first conference knew of each other’s work by word of mouth: friends sending their work to friends. But already by the second conference, 2 years later, the growing group felt the need for a publishing venue, and it was decided to found the *Nexus Network Journal—Nexus*, from the name chosen for the first conference to represent the idea of interweaving ideas from two disciplines, and *Network*, to describe the group of people whose acquaintances and collaborations were continuing to expand. The first issue of the journal, with Kim Williams as editor-in-chief, was introduced online in 1999, was added to at trimester intervals of the course of that year and was produced in print at its end. The journal continued in that way for its first 2 years, but by volume 3 in 2001, submissions had grown so much that it was published in two issues per year, until with volume 9 in 2010, it grew to three issues per year.

Across 15 volumes, 35 issues and over 500 refereed papers, the international reputation and impact of the journal have grown considerably. Now published jointly in the Birkhäuser programme of Springer-Basel and Kim Williams Books of Torino, Italy, the journal is highly respected and has a growing readership. Beginning with volume 16 in 2014, the *NNJ* will be overseen jointly by the editors of these present two volumes.

Foreseen along with the conferences was the publication of the proceedings. The series entitled ‘Nexus: Architecture and Mathematics’ comprised seven volumes from the first seven conferences. At the beginning, the conference books were seen as separate from the journal. This changed with the eighth conference, when speakers voiced the desire to see their papers published in the *NNJ*, which was by that time mature and esteemed. Thus, since 2010, papers presented in the Nexus conferences have been published in special issues of the journal and are available online. However, the research presented at the early conferences was only available in a series of limited edition books. With many of these being out of print there has been growing pressure to make the most highly cited works from the early years of the Nexus conferences available. Rather than simply republishing selected works in the order in which they were written, such was the scope of these early Nexus publications that an alternative proposition presented itself.

We, the editors, have assembled almost a hundred papers from the early years of the Nexus conferences, and arranged them both thematically and chronologically to trace key moments in the history and theory of architecture and mathematics, from antiquity to the present day, along with predictions for the future. These chapters describe over 60 major buildings and architectural works, consider more than twenty major theories of geometry and design and cover themes and ideas arising from five continents and spanning over four millennia.

Having said this, the present two-volume work does not pretend to be a comprehensive encyclopaedia of the history and theory of every facet of the relationship between architecture and mathematics. Being works by more than
one hundred authors with backgrounds in not only architecture and mathematics but also engineering, physics, chemistry, philosophy, music and more, there is a rich diversity of approaches to the topic, along with some insightful synergies and informative disagreements. All of the chapters have undergone minor editorial revisions, including, in some cases, updated bibliographies. In a few cases authors have chosen to make more substantial revisions, to bring their chapters up to date, or direct the reader to advances that are currently occurring in their areas. In addition to this, we have provided an overview chapter for each volume (Chap. 1 in vol. I and Chap. 48 in vol. II), to frame the sequence and structure of the whole as well as a chapter entitled ‘Mathematics in, of and for Architecture: A Framework of Types’ (Chap. 3) which seeks to classify, and thereby make more accessible, the myriad connections proposed across this work.

Each of the chapters in the present work have become crucial landmarks in the scholarly landscape of architecture and mathematics. Some represent pioneering research, the first studies of the relationships between architecture and mathematics in a specific period, or in the oeuvre of a given architect. They serve as both points of departure for new voyages of discovery and as destinations for people entering unfamiliar terrain. For the novice researcher these works provide a grounding for their explorations, and for seasoned scholars these chapters offer a critical record of the efforts of fellow travellers. We, the editors, hope that through this two-volume work, these chapters can continue to inspire and guide future generations.

We wish to thank Maria Roberts, Valentina Filemio and Marco Giorgio Bevilacqua for assistance with editing and proofing, and Michael Dawes for support with image preparation and research assistance. We thank all authors for permission to reuse their material, and for their help in updating texts and references. Finally, we thank Anna Mätzener, Editor for Mathematics and History of Science, and Thomas Hempfling, Executive Editor for Mathematics, Birkhäuser, for their support of the Nexus conferences and the Nexus Network Journal throughout the years, and especially for their support of this present work.

Torino, Italy Kim Williams
Newcastle, Australia Michael J. Ostwald
January 2015
Contents for Volume I

1 Relationships Between Architecture and Mathematics 1
 Michael J. Ostwald and Kim Williams

Part I Mathematics in Architecture

2 Can There Be Any Relationships Between Mathematics and Architecture? ... 25
 Mario Salvadori

3 Mathematics in, of and for Architecture: A Framework of Types ... 31
 Michael J. Ostwald and Kim Williams

4 Relationships Between History of Mathematics and History of Art ... 59
 Clara Silvia Roero

5 Art and Mathematics Before the Quattrocento: A Context for Understanding Renaissance Architecture 67
 Stephen R. Wassell

6 The Influence of Mathematics on the Development of Structural Form ... 81
 Holger Falter

Part II From 2000 B.C. to 1000 A.D.

7 Old Shoes, New Feet, and the Puzzle of the First Square in Ancient Egyptian Architecture 97
 Peter Schneider
8 Geometric and Complex Analyses of Maya Architecture: Some Examples .. 113 Gerardo Burkle-Elizondo, Nicoletta Sala, and Ricardo David Valdez-Cepeda

9 A New Geometric Analysis of the Teotihuacan Complex 127 Mark A. Reynolds

10 Geometry of Vedic Altars 149 George Gheverghese Joseph

11 Inauguration: Ritual Planning in Ancient Greece and Italy 163 Graham Pont

12 The Geometry of the Master Plan of Roman Florence and Its Surroundings ... 177 Carol Martin Watts

13 Architecture and Mathematics in Roman Amphitheatres 189 Sylvie Duvernoy

14 The Square and the Roman House: Architecture and Decoration at Pompeii and Herculaneum 201 Carol Martin Watts

15 The “Quadrivium” in the Pantheon of Rome 215 Gert Sperling

16 “Systems of Monads” in the Hagia Sophia: Neo-Platonic Mathematics in the Architecture of Late Antiquity 229 Helge Svenshon and Rudolf H.W. Stichel

Part III Theories of Measurement and Structure

17 Measure, Metre, Irony: Reuniting Pure Mathematics with Architecture .. 245 Robert Tavernor

18 Façade Measurement by Trigonometry 261 Paul A. Calter

19 Ancient Architecture and Mathematics: Methodology and the Doric Temple .. 271 Mark Wilson Jones

20 Calculation of Arches and Domes in Fifteenth-Century Samarkand ... 297 Yvonne Dold-Samplonius

21 Curves of Clay: Mexican Brick Vaults and Domes 309 Alfonso Ramírez Ponce and Rafael Ramírez Melendez
22 Mathematics and Structural Repair of Gothic Structures 325
Javier Barrallo and Santiago Sanchez-Beitia

23 Mathematics of Carpentry in Historic Japanese Architecture ... 333
Izumi Kuroishi

24 On Some Geometrical and Architectural Ideas from African
Art and Craft .. 349
Paulus Gerdes

25 Design, Construction, and Measurement in the Inka Empire ... 361
William D. Sapp

Part IV From 1100 A.D.–1400 A.D.

26 Vastu Geometry: Beyond Building Codes 375
Vini Nathan

27 Algorithmic Architecture in Twelfth-Century China:
The Yingzao Fashi ... 389
Andrew I-kang Li

28 The Celestial Key: Heaven Projected on Earth 399
Niels Bandholm

29 Friedrich II and the Love of Geometry 423
Heinz Götz

30 Metrology and Proportion in the Ecclesiastical Architecture
of Medieval Ireland ... 437
Avril Behan and Rachel Moss

31 The Cloisters of Hauterive 453
Benno Artmann

32 The Use of Cubic Equations in Islamic Art and Architecture ... 467
Alpay Özdual

33 Explicit and Implicit Geometric Orders in Mamluk Floors:
Secrets of the Sultan Hassan Floor in Cairo 483
Gulzar Haider and Muhammad Moussa

34 The Fibonacci Sequence and the Palazzo della Signoria
in Florence .. 497
Maria Teresa Bartoli

35 What Geometries in Milan Cathedral? 509
Elena Marchetti and Luisa Rossi Costa
36 The Symmetries of the Baptistery and the Leaning Tower of Pisa 535
 David Speiser

Part V Theories of Proportion, Symmetry, Periodicity

37 Musical Proportions at the Basis of Systems of Architectural Proportion both Ancient and Modern 549
 Jay Kappraff

38 From Renaissance Musical Proportions to Polytonality in Twentieth Century Architecture 567
 Radoslav Zuk

39 Quasi-Periodicity in Islamic Geometric Design 585
 Peter Saltzman

40 The Universality of the Symmetry Concept 603
 István Hargittai and Magdolna Hargittai

41 Contra Divinam Proportionem .. 619
 Marco Frascari and Livio G. Volpi Ghirardini

Part VI From 1400 A.D.–1500 A.D.

42 Alberti’s Sant’Andrea and the Etruscan Proportion 629
 Michael R. Ytterberg

43 The Numberable Architecture of Leon Battista Alberti as a Universal Sign of Order and Harmony 645
 Livio G. Volpi Ghirardini

44 Leon Battista Alberti and the Art of Building 663
 Salvatore di Pasquale

45 Verrocchio’s Tombslab for Cosimo de’ Medici: Designing with a Mathematical Vocabulary 675
 Kim Williams

46 A New Geometric Analysis of the Pazzi Chapel in Santa Croce, Florence ... 687
 Mark A. Reynolds

47 Muqarnas: Construction and Reconstruction 709
 Yvonne Dold-Samplonius and Silvia L. Harmsen

Index for Volume I ... 721

Index for Volume II ... 729
Contents for Volume II

48 The Revolutionary, The Reactionary and The Revivalist: Architecture and Mathematics After 1500 1
 Michael J. Ostwald and Kim Williams

Part VII Theories of Representation

49 Architecture, Mathematics and Theology in Raphael’s Paintings 31
 David Speiser

50 Raphael and the Pantheon’s Interior: A Pivotal Moment in Architectural Representation 43
 Kristina Luce

51 Design and Perspective Construction: Why Is the Chalice the Shape It Is? ... 57
 Richard Talbot

52 Perspective in António Rodrigues’s Tratado de Arquitectura 73
 João Pedro Xavier

Part VIII 1500 A.D.–1900 A.D.

53 Ottoman Architecture: Relationships between Architectural Design and Mathematics in Sinan’s Works 95
 Zafer Sağdıcı

54 The Mathematics of Palladio’s Villas .. 107
 Stephen R. Wassell

55 Golden Proportions in a Great House: Palladio’s Villa Emo 121
 Rachel Fletcher

56 The Hidden Pavement Designs of the Laurentian Library 139
 Ben Nicholson, Jay Kappraff, and Saori Hisano
57 Measuring up to Michelangelo: A Methodology 151
Paul A. Calter and Kim Williams

58 António Rodrigues, a Portuguese Architect with a Scientific
Inclination .. 165
João Pedro Xavier

59 Villalpando’s Sacred Architecture in the Light of Isaac Newton’s
Commentary .. 183
Tessa Morrison

60 Coelum Britannicum: Inigo Jones and Symbolic Geometry 197
Rumiko Handa

61 The Science Behind Francesco Borromini’s Divine Geometry 217
John G. Hatch

62 Transformational Geometry and the Central European Baroque
Church .. 231
John Clagett

63 Are There Connections Between the Mathematical Thought and
Architecture of Sir Christopher Wren? 243
Maria Zack

64 Robert Hooke’s Fire Monument: Architecture as a Scientific
Instrument .. 257
Maria Zack

65 Practical and Theoretical Applications of Geometry
at Claude Perrault’s Observatoire de Paris (1667–1672) 269
Randy S. Swanson

Part IX 1800–2000

66 Geomantitic (Re)Creation: Magic Squares and Claude Bragdon’s
Theosophic Architecture 289
Eugenia Victoria Ellis

67 Mathematics and Music in the Art Glass Windows of Frank
Lloyd Wright .. 305
Leonard K. Eaton

68 Fractal Geometry in the Late Work of Frank Lloyd Wright:
The Palmer House ... 325
Leonard K. Eaton

69 Characteristic Visual Complexity: Fractal Dimensions in the
Architecture of Frank Lloyd Wright and Le Corbusier 339
Michael J. Ostwald, Josephine Vaughan, and Chris Tucker
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>From Cosmic City to Esoteric Cinema: Pythagorean Mathematics and Design in Australia</td>
<td>Graham Pont and Peter Proudfoot</td>
<td>355</td>
</tr>
<tr>
<td>71</td>
<td>The Ruled Geometries of Marcel Breuer</td>
<td>John Poros</td>
<td>367</td>
</tr>
<tr>
<td>72</td>
<td>Conoids and Hyperbolic Paraboloids in Le Corbusier’s Philips Pavilion</td>
<td>Alessandra Capanna</td>
<td>377</td>
</tr>
<tr>
<td>73</td>
<td>Oscar Niemeyer Curved Lines: Few Words Many Sentences</td>
<td>Benamy Turkienicz and Rosirene Mayer</td>
<td>389</td>
</tr>
<tr>
<td>74</td>
<td>Dom Hans van der Laan and the Plastic Number</td>
<td>Richard Padovan</td>
<td>407</td>
</tr>
<tr>
<td>75</td>
<td>Louis Kahn’s Platonic Approach to Number and Geometry</td>
<td>Steven Fleming</td>
<td>421</td>
</tr>
<tr>
<td>76</td>
<td>The Salk: A Geometrical Analysis Supported by Historical Evidence</td>
<td>Steven Fleming and Mark A. Reynolds</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>Part X Contemporary Approaches to Design and Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Architecture and Mathematics: Soap Bubbles and Soap Films</td>
<td>Michele Emmer</td>
<td>449</td>
</tr>
<tr>
<td>78</td>
<td>Aperiodic Tiling, Penrose Tiling and the Generation of Architectural Forms</td>
<td>Michael J. Ostwald</td>
<td>459</td>
</tr>
<tr>
<td>79</td>
<td>Paving the Alexanderplatz Efficiently with a Quasi-Periodic Tiling</td>
<td>Ulrich Kortenkamp</td>
<td>473</td>
</tr>
<tr>
<td>80</td>
<td>Generation of Architectural Forms Through Linear Algebra</td>
<td>Franca Caliò and Elena Marchetti</td>
<td>483</td>
</tr>
<tr>
<td>81</td>
<td>The Praxis of Roman Geometrical Ordering in the Design of a New American Prairie House</td>
<td>Donald J. Watts</td>
<td>497</td>
</tr>
<tr>
<td>82</td>
<td>Exploring Architectural Form in Perspective: A Fractal Hypercube-Building</td>
<td>Tomás García-Salgado</td>
<td>513</td>
</tr>
<tr>
<td>83</td>
<td>The Compass, the Ruler and the Computer: An Analysis of the Design of the Amphitheatre of Pompeii</td>
<td>Sylvie Duvernoy and Paul L. Rosin</td>
<td>525</td>
</tr>
</tbody>
</table>
Contents for Volume II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Correlation of Laser-Scan Surveys of Irish Classical Architecture with Historic Documentation from Architectural Pattern Books</td>
<td>Maurice Murphy, Sara Pavia, and Eugene McGovern</td>
<td>Maurice Murphy, Sara Pavia, and Eugene McGovern</td>
</tr>
<tr>
<td></td>
<td>Part XI Theories and Applications of Computer Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Mathematics and Architecture Since 1960</td>
<td>Lionel March</td>
<td>Lionel March</td>
</tr>
<tr>
<td>86</td>
<td>BiOrganic Design: A New Method for Architecture and the City</td>
<td>Alessandra Capanna</td>
<td>Alessandra Capanna</td>
</tr>
<tr>
<td>87</td>
<td>Formal Mutations: Variation, Constraint, Selection</td>
<td>Andrzej Zarzycki</td>
<td>Andrzej Zarzycki</td>
</tr>
<tr>
<td>88</td>
<td>The Role of Mathematics in the Design Process Under the Influence of Computational and Information Technologies</td>
<td>Arzu Gönenç Sorguç</td>
<td>Arzu Gönenç Sorguç</td>
</tr>
<tr>
<td>89</td>
<td>Generative Design Grammars: An Intelligent Approach Towards Dynamic and Autonomous Design</td>
<td>Ning Gu</td>
<td>Ning Gu</td>
</tr>
<tr>
<td>90</td>
<td>Ethics and Geometry: Computational Transformations and the Curved Surface in Architecture</td>
<td>Michael J. Ostwald</td>
<td>Michael J. Ostwald</td>
</tr>
<tr>
<td>91</td>
<td>Equiangular Numbers</td>
<td>Henry Crapo and Claude Le Conte De Poly-Barbut</td>
<td>Henry Crapo and Claude Le Conte De Poly-Barbut</td>
</tr>
<tr>
<td>92</td>
<td>Architecture as Verb and the Ethics of Making</td>
<td>Alberto Pérez-Gómez</td>
<td>Alberto Pérez-Gómez</td>
</tr>
<tr>
<td></td>
<td>Index for Volume II</td>
<td></td>
<td>Index for Volume II</td>
</tr>
<tr>
<td></td>
<td>Index for Volume I</td>
<td></td>
<td>Index for Volume I</td>
</tr>
</tbody>
</table>
Contributors to Volume II

Franca Caliò Department of Mathematics, Politecnico di Milano, Milan, Italy
Paul A. Calter Vermont Technical College, Randolph, VT, USA
Alessandra Capanna Dipartimento di Architettura e Progetto, Università di Roma “La Sapienza”, Rome, Italy
John Clagett Engelwood, NJ, USA
Henry Crapo Centre de Recherche Les Moutons Matheux, La Vacquerie, France
Claude Le Conte De Poly-Barbut Centre d’analyse et de mathématique sociales, EHESS, Paris, France
Sylvie Duvernoy Politecnico di Milano, Milan, Italy
Leonard K. Eaton (1922–2014)
Eugenia Victoria Ellis Department of Civil, Architectural and Environmental Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
Michele Emmer Dipartimento di Matematica, Sapienza Università di Roma, Rome, Italy
Steven Fleming School of Architecture and Design, University of Tasmania, Launceston, TAS, Australia
Rachel Fletcher New York School of Interior Design, NY, USA
Tomás García-Salgado Facultad de Arquitectura, UNAM, Ciudad Universitaria, Coyoacan, Mexico
Ning Gu School of Architecture and Built Environment, University of Newcastle, Callaghan, NSW, Australia
Rumiko Handa College of Architecture, University of Nebraska-Lincoln, Lincoln, NE, USA
John G. Hatch Department of Visual Arts, The University of Western Ontario, London, ON, Canada

Saori Hisano Miyagi, Sendai-shi, Japan

Jay Kappraff Department of Mathematics, New Jersey Institute of Technology, University Heights, Newark, NJ, USA

Ulrich Kortenkamp Martin-Luther-Universität, Institut für Mathematik, Halle (Saale), Germany

Kristina Luce Department of Art, Western Washington University, Bellingham, WA, USA

Lionel March The Martin Centre, University of Cambridge, Cambridge, UK

Elena Marchetti Department of Mathematics, Politecnico di Milano, Milan, Italy

Rosirene Mayer Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Eugene McGovern Dublin Institute of Technology, Dublin 1, Ireland

Tessa Morrison The School of Architecture and Built Environment, The University of Newcastle, Callaghan, NSW, Australia

Maurice Murphy Dublin Institute of Technology, Dublin 1, Ireland

Ben Nicholson School of the Art Institute of Chicago, Chicago, IL, USA

Michael J. Ostwald School of Architecture and Built Environment, University of Newcastle, Callaghan, NSW, Australia

Richard Padovan Richmond upon Thames, Surrey, UK

Sara Pavia Trinity College, Dublin, Ireland

Alberto Pérez-Gómez School of Architecture, McGill University, Montreal, QC, Canada

Graham Pont Balmain, NSW, Australia

John Poros College of Architecture, Art, and Design, Mississippi State University, Mississippi State, MS, USA

Peter Proudfoot Roseville, NSW, Australia

Mark A. Reynolds Mill Valley, CA, USA

Paul L. Rosin School of Computer Science and Informatics, Cardiff University, Roath, Cardiff, UK

Zafer Sağdıç Faculty of Architecture, Department of Architecture, Branch of History of Architecture, Yildiz Technical University, Istanbul, Besiktas, Turkey
Arzu Gönenç Sorguç Department of Architecture, Middle East Technical University, Ankara, Turkey

David Speiser Université catholique de Louvain, Louvain-La-Neuve, Belgium

Randy S. Swanson Randy Swanson Architect, St. Petersburg, FL, USA

Richard Talbot Fine Art, The Quadrangle, Newcastle University, Newcastle Upon Tyne, UK

Chris Tucker School of Architecture and Built Environment, University of Newcastle, Callaghan, NSW, Australia

Benamy Turkienicz Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Josephine Vaughan School of Architecture and Built Environment, University of Newcastle, Callaghan, NSW, Australia

Stephen R. Wassell Department of Mathematics and Computer Science, Sweet Briar College, Sweet Briar, VA, USA

Donald J. Watts The College of Architecture, Planning and Design, Kansas State University, Manhattan, KS, USA

Kim Williams Kim Williams Books, Turin (Torino), Italy

João Pedro Xavier Faculdade de Arquitectura da Universidade do Porto, Porto, Portugal

Maria Zack Department of Mathematical, Information and Computer Sciences, Point Loma Nazarene University, San Diego, CA, USA

Andrzej Zarzycki New Jersey Institute of Technology, College of Architecture and Design, University Heights, Newark, NJ, USA