Operator Theory: Advances and Applications
Volume 234

Founded in 1979 by Israel Gohberg

Editors:
Joseph A. Ball (Blacksburg, VA, USA)
Harry Dym (Rehovot, Israel)
Marinus A. Kaashoek (Amsterdam, The Netherlands)
Heinz Langer (Vienna, Austria)
Christiane Tretter (Bern, Switzerland)

Associate Editors:
Vadim Adamyan (Odessa, Ukraine)
Albrecht Böttcher (Chemnitz, Germany)
B. Malcolm Brown (Cardiff, UK)
Raul Curto (Iowa, IA, USA)
Fritz Gesztesy (Columbia, MO, USA)
Pavel Kurasov (Stockholm, Sweden)
Leonid E. Lerer (Haifa, Israel)
Vern Paulsen (Houston, TX, USA)
Mihai Putinar (Santa Barbara, CA, USA)
Leiba Rodman (Williamsburg, VA, USA)
Ilya M. Spitkovsky (Williamsburg, VA, USA)

Honorary and Advisory Editorial Board:
Lewis A. Coburn (Buffalo, NY, USA)
Ciprian Foias (College Station, TX, USA)
J.William Helton (San Diego, CA, USA)
Thomas Kailath (Stanford, CA, USA)
Peter Lancaster (Calgary, Canada)
Peter D. Lax (New York, NY, USA)
Donald Sarason (Berkeley, CA, USA)
Bernd Silbermann (Chemnitz, Germany)
Harold Widom (Santa Cruz, CA, USA)

Subseries
Linear Operators and Linear Systems
Subseries editors:
Daniel Alpay (Beer Sheva, Israel)
Birgit Jacob (Wuppertal, Germany)
André C.M. Ran (Amsterdam, The Netherlands)

Subseries
Advances in Partial Differential Equations
Subseries editors:
Bert-Wolfgang Schulze (Potsdam, Germany)
Michael Demuth (Clausthal, Germany)
Jerome A. Goldstein (Memphis, TN, USA)
Nobuyuki Tose (Yokohama, Japan)
Ingo Witt (Göttingen, Germany)
Separable Type Representations of Matrices and Fast Algorithms

Volume 1
Basics. Completion Problems.
Multiplication and Inversion Algorithms
Preface .. xi

Introduction .. xiii

Part I Basics on Separable, Semi-separable and Quasiseparable Representations of Matrices

1 Matrices with Separable Representation and Low Complexity Algorithms
§1.1 Rank and related factorizations ... 4
§1.2 Definitions and first examples ... 6
§1.3 The algorithm of multiplication by a vector ... 8
 §1.3.1 Forward and backward computation of y .. 8
 §1.3.2 Forward-backward computation of y ... 10
§1.4 Systems with homogeneous boundary conditions associated with matrices in diagonal plus separable form .. 12
 §1.4.1 Forward and backward systems .. 12
 §1.4.2 Forward-backward descriptor systems .. 15
§1.5 Multiplication of matrices .. 16
 §1.5.1 Product of matrices with separable representations 16
 §1.5.2 Product of matrices with diagonal plus separable representation 18
§1.6 Schur factorization and inversion of block matrices 21
§1.7 A general inversion formula ... 25
§1.8 Inversion of matrices with diagonal plus separable representation 27
§1.9 LDU factorization of matrices with diagonal plus separable representation .. 31
§1.10 Solution of linear systems in the presence of the LDU factorization of the matrix of the system in diagonal plus separable form 39
§1.11 Comments ... 44
2 The Minimal Rank Completion Problem

- **§2.1** The definition. The case of a 2×2 block matrix 45
- **§2.2** Solution of the general minimal rank completion problem. Examples .. 51
- **§2.3** Uniqueness of the minimal rank completion 61
- **§2.4** Comments .. 66

3 Matrices in Diagonal Plus Semiseparable Form

- **§3.1** Definitions .. 67
- **§3.2** Semiseparable order and minimal semiseparable generators 69
- **§3.3** Comments .. 73

4 Quasiseparable Representations: The Basics

- **§4.1** The rank numbers and quasiseparable order. Examples 75
 - **§4.1.1** The definitions ... 75
 - **§4.1.2** The companion matrix .. 76
 - **§4.1.3** The block companion matrix 76
 - **§4.1.4** Tridiagonal matrices and band matrices 77
 - **§4.1.5** Matrices with diagonal plus semiseparable representations .. 78
- **§4.2** Quasiseparable generators ... 79
- **§4.3** Minimal completion rank, rank numbers, and quasiseparable order .. 82
- **§4.4** The quasiseparable and semiseparable generators 83
- **§4.5** Comments .. 84

5 Quasiseparable Generators

- **§5.1** Auxiliary matrices and relations 86
- **§5.2** Existence and minimality of quasiseparable generators 89
- **§5.3** Examples .. 92
- **§5.4** Quasiseparable generators of block companion matrices viewed as scalar matrices ... 99
- **§5.5** Minimality conditions ... 102
- **§5.6** Sets of generators. Minimality and similarity 105
- **§5.7** Reduction to minimal quasiseparable generators 110
- **§5.8** Normal quasiseparable generators 112
- **§5.9** Approximation by matrices with quasiseparable representation .. 115
- **§5.10** Comments .. 117
6 Rank Numbers of Pairs of Mutually Inverse Matrices, Asplund Theorems

§6.1 Rank numbers of pairs of inverse matrices 120
§6.2 Rank numbers relative to the main diagonal.
Quasiseparable orders ... 122
§6.3 Green and band matrices .. 123
§6.4 The inverses of diagonal plus Green of order one matrices 126
§6.5 Minimal completion ranks of pairs of mutually inverse
matrices. The inverse of an irreducible band matrix 129
§6.6 Linear-fractional transformations of matrices 134
§6.6.1 The definition and the basic property 134
§6.6.2 Linear-fractional transformations of Green and
band matrices ... 135
§6.6.3 Unitary Hessenberg and Hermitian matrices 135
§6.6.4 Linear-fractional transformations of diagonal plus
Green of order one matrices ... 136
§6.7 Comments .. 137

7 Unitary Matrices with Quasiseparable Representations

§7.1 QR and related factorizations of matrices 139
§7.2 The rank numbers and quasiseparable generators 142
§7.3 Factorization representations .. 143
§7.3.1 Block triangular matrices .. 143
§7.3.2 Factorization of general unitary matrices and
compression of generators .. 146
§7.3.3 Generators via factorization .. 151
§7.4 Unitary Hessenberg matrices ... 155
§7.5 Efficient generators .. 157
§7.6 Comments .. 161

Part II Completion of Matrices with Specified Bands

8 Completion to Green Matrices

§8.1 Auxiliary relations ... 165
§8.2 Completion formulas ... 167
§8.3 Comments .. 177
9 Completion to Matrices with Band Inverses and with Minimal Ranks

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§9.1</td>
<td>Completion to invertible matrices</td>
<td>180</td>
</tr>
<tr>
<td>§9.2</td>
<td>The LDU factorization</td>
<td>182</td>
</tr>
<tr>
<td>§9.3</td>
<td>The Permanence Principle</td>
<td>186</td>
</tr>
<tr>
<td>§9.4</td>
<td>The inversion formula</td>
<td>191</td>
</tr>
<tr>
<td>§9.5</td>
<td>Completion to matrices of minimal ranks</td>
<td>197</td>
</tr>
<tr>
<td>§9.6</td>
<td>Comments</td>
<td>199</td>
</tr>
</tbody>
</table>

10 Completion of Special Types of Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§10.1</td>
<td>The positive case</td>
<td>201</td>
</tr>
<tr>
<td>§10.2</td>
<td>The Toeplitz case</td>
<td>206</td>
</tr>
<tr>
<td>§10.3</td>
<td>Completion of specified tridiagonal parts with identities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the main diagonal</td>
<td>208</td>
</tr>
<tr>
<td>§10.3.1</td>
<td>The general case</td>
<td>208</td>
</tr>
<tr>
<td>§10.3.2</td>
<td>The Toeplitz case</td>
<td>210</td>
</tr>
<tr>
<td>§10.4</td>
<td>Completion of special 2×2 block matrices</td>
<td>211</td>
</tr>
<tr>
<td>§10.4.1</td>
<td>Completion formulas</td>
<td>211</td>
</tr>
<tr>
<td>§10.4.2</td>
<td>Completion to invertible and positive matrices</td>
<td>214</td>
</tr>
<tr>
<td>§10.4.3</td>
<td>Completion to matrices of minimal ranks</td>
<td>215</td>
</tr>
<tr>
<td>§10.5</td>
<td>Comments</td>
<td>217</td>
</tr>
</tbody>
</table>

11 Completion of Mutually Inverse Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§11.1</td>
<td>The statement and preliminaries</td>
<td>219</td>
</tr>
<tr>
<td>§11.2</td>
<td>The basic theorem</td>
<td>221</td>
</tr>
<tr>
<td>§11.3</td>
<td>The direct method</td>
<td>225</td>
</tr>
<tr>
<td>§11.4</td>
<td>The factorization</td>
<td>227</td>
</tr>
<tr>
<td>§11.5</td>
<td>Comments</td>
<td>228</td>
</tr>
</tbody>
</table>

12 Completion to Unitary Matrices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§12.1</td>
<td>Auxiliary relations</td>
<td>229</td>
</tr>
<tr>
<td>§12.2</td>
<td>An existence and uniqueness theorem</td>
<td>230</td>
</tr>
<tr>
<td>§12.3</td>
<td>Unitary completion via quasiseparable representation</td>
<td>237</td>
</tr>
<tr>
<td>§12.3.1</td>
<td>Existence theorem</td>
<td>237</td>
</tr>
<tr>
<td>§12.3.2</td>
<td>Diagonal correction for scalar matrices</td>
<td>242</td>
</tr>
<tr>
<td>§12.4</td>
<td>Comments</td>
<td>244</td>
</tr>
</tbody>
</table>
Part III Quasiseparable Representations of Matrices, Descriptor Systems with Boundary Conditions and First Applications

13 Quasiseparable Representations and Descriptor Systems with Boundary Conditions

§13.1 The algorithm of multiplication by a vector .. 247
§13.2 Descriptor systems with homogeneous boundary conditions 250
§13.3 Examples ... 253
§13.4 Inversion of triangular matrices .. 255
§13.5 Comments ... 260

14 The First Inversion Algorithms

§14.1 Inversion of matrices in quasiseparable representation with invertible diagonal elements ... 261
§14.2 The extension method for matrices with quasiseparable/semi-separable representations ... 271
§14.2.1 The inversion formula .. 272
§14.2.2 The orthogonalization procedure .. 275
§14.3 Comments ... 278

15 Inversion of Matrices in Diagonal Plus Semiseparable Form

§15.1 The modified inversion formula ... 279
§15.2 Scalar matrices with diagonal plus semiseparable representation 284
§15.3 Comments ... 293

16 Quasiseparable/Semiseparable Representations and One-direction Systems

§16.1 Systems with diagonal main coefficients and homogeneous boundary conditions ... 295
§16.2 The general one-direction systems ... 301
§16.3 Inversion of matrices with quasiseparable-semiseparable representations via one-direction systems .. 305
§16.4 Comments ... 307

17 Multiplication of Matrices

§17.1 The rank numbers of the product ... 309
§17.2 Multiplication of triangular matrices .. 310
§17.3 The general case ... 316
§17.4 Multiplication by triangular matrices .. 319
§17.5 Complexity analysis ... 322
Preface

Our interest in structured matrices was inspired by the outstanding mathematician Professor Israel Gohberg, our older friend, colleague and teacher. His ideas, projects and our joint results lie at the basis of this book. His supervision and participation were crucial in the preparation of the manuscript. On 12 October 2009 Israel Gohberg passed away and we finished the book alone. Our work is devoted to his blessed memory.

October 31, 2012 Yuli Eidelman, Iulian Haimovici
Introduction

The book. The majority of the basic algorithms of computations with matrices are expressed via the entries of the matrices and are not taking into account the individual properties or the specific structure of these matrices. This often results in a unjustified high complexity of the algorithms.

For instance, the multiplication of two matrices of order N via the entries of the matrices requires in general N^3 operations. For many classes of structured matrices this complexity can be reduced by an appropriate presentation of the factors and the product as well as the algorithm. For this purpose we have to represent the matrices and the algorithm not in terms of the entries of the matrices, but in terms of other parameters (generators) which are essentially involved in the description of the structure of these matrices. For matrices of the form

$$A = \{a_{ik}\}_{i,k=1}^{N}, \quad a_{ik} = x_i^T y_k, \quad i, k = 1, 2, \ldots, N$$

with $x_i, y_k \in \mathbb{C}^n$, $n \ll N$, which are often called separable matrices, the natural parameters (generators) are the n-dimensional vectors $x_i, y_k (i, k = 1, \ldots, N)$. The computations for matrices of this form in terms of the natural parameters are of a much lower complexity. So for the product of two such matrices, A and

$$B = \{b_{kj}\}_{k,j=1}^{N}, \quad b_{kj} = v_k^T u_j, \quad k, j = 1, 2, \ldots, N,$$

we get $C = AB = \{c_{ij}\}_{i,j=1}^{N}$ with

$$c_{ij} = \sum_{k=1}^{N} x_i^T y_k v_k^T u_j = x_i^T \left(\sum_{k=1}^{N} y_k v_k^T \right) u_j.$$

Hence the product C is a matrix with separable generators x_i and

$$w_j = \left(\sum_{k=1}^{N} y_k v_k^T \right) u_j.$$

To compute the sum $a = \sum_{k=1}^{N} y_k v_k^T$ one requires Nn^2 operations and the products $w_j = au_j (j = 1, \ldots, N)$ cost Nn^2 operations. Thus for the multiplication of two
matrices in separable form one needs only $2n^2N$ operations. If n is fixed, the complexity is asymptotically equal to $O(N)$. A similar situation appears also for the inversion of matrices of this type.

This book contains a systematic theoretical and computational study of several types of generalizations of separable matrices. It is related to semiseparable, quasiseparable, band and companion representations of matrices. For them their natural parameters, called generators, are analyzed and algorithms are expressed in terms of generators. Connections between matrices and boundary value problems for discrete systems play an important role. The book is focused on algorithms of multiplication, inversion and description of eigenstructure of matrices. A large number of illustrations are provided in the text. The book consists of eight parts.

Description of parts. The first part is mainly of a theoretical character. Here we introduce the notions of quasiseparable and semiseparable structure. These notions are illustrated on some well-known examples of tridiagonal matrices, band matrices, diagonal plus semiseparable matrices, scalar and block companion matrices. We derive various properties of quasiseparable and semiseparable structure which are used in the sequel. An essential part of the material concerns the minimal rank completion problem.

The second part is devoted to completion to Green matrices and to unitary matrices and also to the completion of mutually inverse matrices.

Discrete systems with boundary conditions allow to present a transparent description of various algorithms which is started in the third part. We begin the presentation of algorithms with multiplication by vectors and then with algorithms which are based on some well-known inversion formulas via quasiseparable structure. An essential role in this part plays the interplay between the quasiseparable structure and discrete-time varying linear systems with boundary conditions.

The fourth part contains factorization and inversion algorithms for matrices via quasiseparable and semiseparable structure. We present the LDU factorization and inversion algorithms for strongly regular matrices. Algorithms of this type are extended to arbitrary matrices with quasiseparable representations of the first order. In the last chapter algorithms for the QR factorization and the QR based solver for linear algebraic systems are presented.

The second volume is divided into Parts V–VIII. The titles are as follows. Part V: The eigenvalue structure of order one quasiseparable matrices; Part VI: Divide and conquer method for eigenproblem; Part VII: Algorithms for QR iterations and for reduction to Hessenberg form; Part VIII: QR iterations for companion matrices.

To whom this book is addressed. The book belongs to the area of theoretical and computational Linear Algebra. It is a self-contained monograph which has the structure of a graduate text. The main material was developed the last 30–40 years and is presented here following the lines and principles of a course in Linear Algebra. The book is based mostly on the relatively recent results obtained by
the authors and their coauthors. All these features together with many significant applications and accessible style will make it widely useful for engineers, scientists, numerical analysts, computer scientists and mathematicians alike.

Acknowledgment. We would like to express our gratitude the late Israel Koltracht and also Harry Dym, Rien Kaashoek, Thomas Kailath and Peter Lancaster with whom the work on semiseparable matrices has been started. It is also a pleasure to thank our colleagues Tom Bella, Dario Bini, Paola Boito, Patrick Dewilde, Luca Gemignani, Vadim Olshevsky, Victor Pan, Eugene Tyrtyshnikov, Marc Van Barel, Raf Vandebril, Hugo Woerdeman, Jianlin Xia and Pavel Zhlobich for fruitful discussions and cooperation. The authors acknowledge the help and understanding of the School of Mathematical Sciences at Tel-Aviv University and of the Nathan and Lilly Silver Family Foundation. We thank also the Israel Science Foundation for partial support of our work by a grant in the period from 1997 till 2000.