More information about this series at http://www.springer.com/series/7408
Preface

This volume contains the proceedings of the 19th International Conference on Runtime Verification (RV 2019), which was held during October 8–11, 2019, in Porto, Portugal, as part of the Third World Congress on Formal Methods (FM 2019).

The RV series consists of annual meetings that gather together scientists from both academia and industry interested in investigating novel lightweight formal methods to monitor, analyze, and guide the runtime behavior of software and hardware systems. Runtime verification techniques are crucial for system correctness, reliability, and robustness; they provide an additional level of rigor and effectiveness compared with conventional testing, and are generally more practical than exhaustive formal verification. Runtime verification can be used prior to deployment, for testing, verification, and debugging purposes, and after deployment for ensuring reliability, safety, and security and for providing fault containment and recovery as well as online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010. The workshops were organized as satellite events of an established forum, including CAV and ETAPS. The proceedings of RV from 2001 to 2005 were published in the Electronic Notes in Theoretical Computer Science. Since 2006, the RV proceedings have been published in Springer’s Lecture Notes in Computer Science. The previous RV conferences took place in Istanbul, Turkey (2012); Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid, Spain (2016); Seattle, USA (2017); and Limassol, Cyprus (2018).

There were 38 submissions, 31 as regular contributions, two as short contributions, two as tool demonstration papers, and three as benchmark papers. Each benchmark paper was reviewed by three Program Committee members, submissions in the other categories were reviewed by four members. The committee decided to accept 19 papers, 14 regular papers, two short papers, two tool demonstration papers, and one benchmark paper. The evaluation and selection process involved thorough discussions among the members of the Program Committee and external reviewers through the EasyChair conference manager, before reaching a consensus on the final decisions. To complement the contributed papers, we included in the program three invited speakers covering both industry and academia:

– David Basin, ETH Zurich, Switzerland
– Akshay Rajhans, Mathworks, USA
– Sanjit A. Seshia, University of California, Berkeley, USA
The conference included four tutorials that took place on the first day. The following tutorials were selected to cover a breadth of topics relevant to RV:

- Christopher Hahn presented a tutorial on “Algorithms for Monitoring Hyperproperties”
- Georgios Fainekos, Bardh Hoxha, and Sriram Sankaranarayanan presented a tutorial on “Robustness of Specifications and its Applications to Falsification, Parameter Mining, and Runtime Monitoring with S-TaLiRo”
- Hazem Torfah presented a tutorial on “Stream-based Monitors for Real-time Properties”
- Yliès Falcone presented a tutorial “On the Runtime Enforcement of Timed Properties”

During a special award session at the conference, the 2019 RV Test of Time Award was given to Moonzoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky for their RV 2001 paper “Java-MaC: A Run-time Assurance Tool for Java Programs.” The awardees gave a retrospective talk and an associated invited paper is included in the proceedings.

We would like to thank the authors of all submitted papers, the members of the Steering Committee, the Program Committee, and the external reviewers for their exhaustive task of reviewing and evaluating all submitted papers. We are grateful to José Nuno Oliveira, the general chair of FM 2019, and the entire Organizing Committee for their outstanding support. We highly appreciate the EasyChair system for the management of submissions. We acknowledge the great support from our sponsors, Runtime Verification Inc. and CPEC – TRR 248 (see perspicious-computing.science).

August 2019

Bernd Finkbeiner
Leonardo Mariani
Organization

Program Committee

Wolfgang Ahrendt
Chalmers University of Technology, Sweden
Howard Barringer
The University of Manchester, UK
Ezio Bartocci
Vienna University of Technology, Austria
Andreas Bauer
KUKA, Germany
Eric Bodden
Paderborn University and Fraunhofer IEM, Germany
Borzoo Bonakdarpour
Iowa State University, USA
Christian Colombo
University of Malta, Malta
Ylies Falcone
University of Grenoble Alpes, France
Lu Feng
University of Virginia, USA
Bernd Finkbeiner
Saarland University, Germany
Adrian Francalanza
University of Malta, Malta
Luca Franceschini
University of Genoa, Italy
Radu Grosu
Stony Brook University, USA
Sylvain Hallé
Université du Québec à Chicoutimi, Canada
Klaus Havelund
Jet Propulsion Laboratory, USA
Catalin Hritcu
Inria, France
Felix Klaedtke
NEC Labs, Switzerland
Axel Legay
Université Catholique de Louvain, Belgium
David Lo
Singapore Management University, Singapore
Leonardo Mariani
University of Milano Bicocca, Italy
Viviana Mascardi
University of Genoa, Italy
Dejan Nickovic
Austrian Institute of Technology, Austria
Ayoub Nouri
Verimag, France
Gordon Pace
University of Malta, Malta
Doron Peled
Bar-Ilan University, Israel
Ka I. Pun
Western Norway University of Applied Sciences, Norway

Jorge A. Pérez
University of Groningen, The Netherlands
Giles Reger
The University of Manchester, UK
Grigore Rosu
University of Illinois at Urbana-Champaign, USA
Kristin Yvonne Rozier
Iowa State University, USA
Cesar Sanchez
IMDEA Software Institute, Spain
Gerardo Schneider
Chalmers—University of Gothenburg, Sweden
Nastaran Shafiei
University of York, UK
Julien Signoles
CEA LIST, France
Scott Smolka
Stony Brook University, USA
Oleg Sokolsky
University of Pennsylvania, USA
Bernhard Steffen
University of Dortmund, Germany
Scott Stoller
Stony Brook University, USA
Volker Stolz
Høgskulen på Vestlandet, Norway
Neil Walkinshaw
The University of Sheffield, UK
Chao Wang
University of Southern California, USA
Xiangyu Zhang
Purdue University, USA
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Retrospective Look at the Monitoring and Checking (MaC) Framework</td>
<td>1</td>
</tr>
<tr>
<td>Sampath Kannan, Moonzoo Kim, Insup Lee, Oleg Sokolsky,</td>
<td></td>
</tr>
<tr>
<td>and Mahesh Viswanathan</td>
<td></td>
</tr>
<tr>
<td>Introspective Environment Modeling</td>
<td>15</td>
</tr>
<tr>
<td>Sanjit A. Seshia</td>
<td></td>
</tr>
<tr>
<td>Robustness of Specifications and Its Applications to Falsification,</td>
<td>27</td>
</tr>
<tr>
<td>Parameter Mining, and Runtime Monitoring with S-TaLiRo</td>
<td></td>
</tr>
<tr>
<td>Georgios Fainekos, Bardh Hoxha, and Sriram Sankaranarayanan</td>
<td></td>
</tr>
<tr>
<td>On the Runtime Enforcement of Timed Properties</td>
<td>48</td>
</tr>
<tr>
<td>Yliès Falcone and Srinivas Pinisetty</td>
<td></td>
</tr>
<tr>
<td>Algorithms for Monitoring Hyperproperties</td>
<td>70</td>
</tr>
<tr>
<td>Christopher Hahn</td>
<td></td>
</tr>
<tr>
<td>Stream-Based Monitors for Real-Time Properties</td>
<td>91</td>
</tr>
<tr>
<td>Hazem Torfah</td>
<td></td>
</tr>
<tr>
<td>Accelerated Learning of Predictive Runtime Monitors for Rare Failure</td>
<td>111</td>
</tr>
<tr>
<td>Reza Babaee, Vijay Ganesh, and Sean Sedwards</td>
<td></td>
</tr>
<tr>
<td>Neural Predictive Monitoring</td>
<td>129</td>
</tr>
<tr>
<td>Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A. Smolka,</td>
<td></td>
</tr>
<tr>
<td>and Scott D. Stoller</td>
<td></td>
</tr>
<tr>
<td>Comparing Controlled System Synthesis and Suppression Enforcement</td>
<td>148</td>
</tr>
<tr>
<td>Luca Aceto, Ian Cassar, Adrian Fracalanza, and Anna Ingólfsdóttir</td>
<td></td>
</tr>
<tr>
<td>Assumption-Based Runtime Verification with Partial Observability and Resets</td>
<td>165</td>
</tr>
<tr>
<td>Alessandro Cimatti, Chun Tian, and Stefano Tonetta</td>
<td></td>
</tr>
<tr>
<td>Decentralized Stream Runtime Verification</td>
<td>185</td>
</tr>
<tr>
<td>Luis Miguel Danielsson and César Sánchez</td>
<td></td>
</tr>
<tr>
<td>Explaining Violations of Properties in Control-Flow Temporal Logic</td>
<td>202</td>
</tr>
<tr>
<td>Joshua Heneage Dawes and Giles Reger</td>
<td></td>
</tr>
<tr>
<td>FastCFI: Real-Time Control Flow Integrity Using FPGA Without Code Instrumentation</td>
<td>221</td>
</tr>
<tr>
<td>Lang Feng, Jeff Huang, Jiang Hu, and Abhijith Reddy</td>
<td></td>
</tr>
</tbody>
</table>
An Extension of LTL with Rules and Its Application to Runtime Verification .. 239
 Klaus Havelund and Doron Peled

Monitorability over Unreliable Channels ... 256
 Sean Kauffman, Klaus Havelund, and Sebastian Fischmeister

Runtime Verification for Timed Event Streams with Partial Information 273
 Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz,
 and Daniel Thoma

Shape Expressions for Specifying and Extracting Signal Features 292
 Dejan Ničković, Xin Qin, Thomas Ferrère, Cristinel Mateis,
 and Jyotirmoy Deshmukh

A Formally Verified Monitor for Metric First-Order Temporal Logic 310
 Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel

Efficient Detection and Quantification of Timing Leaks with Neural Networks .. 329
 Saeid Tizpaz-Niari, Pavol Černý, Sriram Sankaranarayanan,
 and Ashutosh Trivedi

Predictive Runtime Monitoring for Linear Stochastic Systems and Applications to Geofence Enforcement for UAVs 349
 Hansol Yoon, Yi Chou, Xin Chen, Eric Frew,
 and Sriram Sankaranarayanan

Reactive Control Meets Runtime Verification: A Case Study of Navigation 368
 Dogan Ulus and Calin Belta

Overhead-Aware Deployment of Runtime Monitors 375
 Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky

NuRV: A NuXmv Extension for Runtime Verification 382
 Alessandro Cimatti, Chun Tian, and Stefano Tonetta

AllenRV: An Extensible Monitor for Multiple Complex Specifications with High Reactivity 393
 Nic Volanschi and Bernard Serpette

Timescales: A Benchmark Generator for MTL Monitoring Tools 402
 Dogan Ulus

Author Index ... 413