Springer Theses

Recognizing Outstanding Ph.D. Research
Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student’s supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

Doctoral Thesis accepted by University of Florence, Italy
To my family
With an ever increasing interest for what lies below the ocean’s surface, the use of autonomous underwater robots is rapidly becoming a common practice, both within industry and academia. Nonetheless, the demanding accuracy requirements needed to successfully complete autonomous tasks in such a hostile environment call for precise and reliable navigation systems. Addressing the abovementioned issues, this thesis focuses on the study of self-localization techniques for underwater robots. In particular, exploiting only sensors which are commonly mounted on board underwater vehicles (thus not requiring external instrumentation, which comes with relevant cost and deployment time), attitude and position estimation algorithms are derived. The theoretical argumentation, illustrated with clarity and scientific rigor, is paired with a considerable share of validation results composed of simulation results exploiting real navigation data, or field validation tests aimed at assessing the effectiveness of the developed solutions in a real-world scenario. Indeed, field testing constitutes a relevant share of the research activity described in this thesis, giving value and significance to the whole work: the developed navigation algorithms, successfully validated, pave the way for additional research activity, and practical field application in a wide variety of sectors.

Florence, Italy

October 2018

Prof. Benedetto Allotta
Parts of this thesis have been published in the following documents:

Journals

International Conferences

Book Chapters

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Benedetto Allotta, whose knowledge and commitment allowed me to work in the field of robotics for 3 years, making a longstanding wish come true. These very few lines will never be enough to express my gratitude.

Special thanks go to my colleagues and friends, past and present, of the Mechatronics and Dynamic Modeling Laboratory of the Department of Industrial Engineering of the University of Florence. I have spent only little time with some of them, while others have mentored me throughout this whole journey; in both cases, the distinction between colleague and friend soon ceased to exist, as we shared experiences ranging from the frustration of failed attempts to the excitement of witnessing that something you spent much time and effort into works as planned.

For their loyalty, I am grateful to my lifetime friends; times may change, but the trust I have in them will always be the same.

Finally, I would like to thank my family for supporting and loving me during the highs and lows of these years.

To all the people mentioned here goes my sincere gratitude, for they have contributed to shape the person I am and the one that I want to be.

Francesco Fanelli
Contents

1 Introduction ... 1
 1.1 Overall Framework 2
 1.2 State of the Art of Underwater Navigation Techniques ... 4
 1.3 Contribution and Thesis Structure 7
 References ... 8

2 Involved Vehicles 13
 2.1 Typhoon Class AUVs 14
 2.2 MARTA AUV 16
 2.3 FeelHippo AUV 19

3 Mathematical Background 25
 3.1 AUV Kinematic and Dynamic Model 25
 3.1.1 AUV Dynamic Model in the Presence of Sea Currents ... 29
 3.2 Unscented Kalman Filter 30
 3.2.1 Unscented Transform 32
 3.2.2 Unscented Kalman Filter Algorithm 34
 3.3 Sensors Modeling 34
 References ... 39

4 Navigation Filter .. 41
 4.1 Attitude Estimation Filter 42
 4.1.1 Magnetometer Calibration 44
 4.1.2 Attitude Estimator Design Changes 53
 4.2 Position Estimation Filter 60
 4.2.1 AUV State-Space Model 61
 4.2.2 Sea Current Estimation 64
 References ... 70
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Results</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Attitude Estimator</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Position Estimator</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Sea Current Estimator</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Appendix: Author’s Biography</td>
<td>97</td>
</tr>
</tbody>
</table>
Nomenclature

Measurement units for non-uniform quantities are not reported. A 1 in the units field denotes a unitless quantity.

- $A_{f,i}$: Projection of the area of the hull on a plane perpendicular to the i-axis (m2)
- $C(\nu)$: Centripetal and Coriolis effects matrix
- $C_A(\nu)$: Added centripetal and Coriolis effects matrix
- C_{Di}: i-axis drag coefficient (1)
- $C_{RB}(\nu)$: Rigid body centripetal and Coriolis effects matrix
- $D(\nu)$: Hydrodynamic damping effects matrix
- K: Body-fixed x-axis torque (Nm)
- M: Body-fixed y-axis torque (Nm)
- M_A: Added mass matrix
- M_{RB}: Rigid body mass and inertia matrix
- M_m: Mass and inertia matrix
- N: Body-fixed z-axis torque (Nm)
- P: State covariance
- Q: Process noise covariance
- R: Measurement noise covariance
- $R^N_B(\eta_2)$: Earth-fixed frame to body-fixed frame rotation matrix (1)
- R^N_U: Earth-fixed frame to USBL-fixed frame rotation matrix (1)
- $T^N_B(\eta_2)$: Angular velocity to η_2 time derivative transformation matrix (1)
- V: Volume (m3)
- W: Magnetometer Soft Iron, Scale Factor, and Misalignment effect (1)
- X: Body-fixed x-axis force (N)
- Y: Body-fixed y-axis force (N)
- Z: Body-fixed z-axis force (N)
- δ^N_P: Earth-fixed frame GPS measurement noise (m)
- δ^N_U: Earth-fixed frame USBL measurement noise (m)
\(\delta_a \) IMU acceleration measurement noise \((m/s^2)\)

\(\delta_b \) IMU angular velocity measurement noise \((rad/s)\)

\(\delta_m \) Compass magnetic field measurement noise \((AU)\)

\(\delta_i \) DVL measurement noise \((m/s)\)

\(\eta \) Earth-fixed pose

\(\eta_1 \) Earth-fixed position \((m)\)

\(\eta_2 \) Earth-fixed orientation \((rad)\)

\(\nu \) Body-fixed velocity

\(\nu_1 \) Body-fixed linear velocity \((m/s)\)

\(\nu_2 \) Body-fixed angular velocity \((rad/s)\)

\(\nu_{c,h}^N \) North and East current components \((m/s)\)

\(\nu_c \) Body-fixed current velocity

\(\nu_e^N \) Earth-fixed current velocity

\(\nu_r \) Relative velocity

\(\omega_{IMU}^B \) IMU gyroscope bias \((rad/s)\)

\(\omega_c \) Correction term of the attitude estimation filter \((rad/s)\)

\(\tau \) Body-fixed vector of forces and torques

\(\tau_1 \) Body-fixed force \((N)\)

\(\tau_2 \) Body-fixed torque \((Nm)\)

\(\delta_d \) Depth sensor measurement noise \((m)\)

\(\delta_f \) FOG measurement noise \((rad/s)\)

\(\{O_{Bx,y,z,B}\} \) Body-fixed reference frame

\(\{O_{Nx,y,z,N}\} \) Earth-fixed reference frame

\(\omega_{FOG}^B \) FOG measured angular rate after compensation of Earth’s angular rate effect \((rad/s)\)

\(\omega_{m}^B \) FOG measured angular rate \((rad/s)\)

\(\omega_\sigma, \omega_m, \Omega_c \) Weights of the Unscented Transform \((1)\)

\(\phi \) Roll angle \((rad)\)

\(\psi \) Yaw angle \((rad)\)

\(\rho \) Water density \((kg/m^3)\)

\(B^B \) Body frame buoyancy \((N)\)

\(H^N_{x,B} \) Body frame estimate of Earth’s magnetic field projected on the plane orthogonal to acceleration \((T)\)

\(H^N \) Earth’s magnetic field \((T)\)

\(H_d \) Magnetometer Hard Iron effect \((AU)\)

\(P_{GPS} \) GPS fix

\(P_{GPS}^N \) Earth-fixed frame GPS measured position \((m)\)

\(P_{USBL}^N \) Earth-fixed frame USBL measured position \((m)\)

\(P^U \) Earth-fixed frame USBL position \((m)\)

\(W^B \) Body frame gravitational force \((N)\)

\(a_{IMU}^B \) IMU measured acceleration \((m/s^2)\)

\(a_f \) Filtered accelerometer measurements \((m/s^2)\)

\(b_g \) IMU measured angular velocity \((rad/s)\)
Gravitational acceleration (m/s²)
g

Gravitational and buoyancy effects vector
$g_\eta(\eta)$

Compass measured magnetic field (AU)
m^B

Calibrated magnetic field measurements (T)
m^c

Projection of calibrated magnetic field measurements on the plane orthogonal to acceleration (T)
m^c_\perp

Body frame position of the center of buoyancy (m)
r_b^B

Control input vector
u

Measurement noise
v

DVL measured velocity (m/s)
v_{DVL}^B

Process noise
w

State vector
x

Measurement vector
y

Pitch angle (rad)
θ

Depth sensor measured depth (m)
d_{DS}^N

Principal inertia matrix (kgm²)
$\text{diag}\{I_x, I_y, I_z\}$

Mass (kg)
m

Body-fixed x-axis angular velocity (rad/s)
p

Body-fixed y-axis angular velocity (rad/s)
q

Body-fixed z-axis angular velocity (rad/s)
r

Magnitude of the horizontal projection of the magnetic field (T)
$r_{H,h}$

Time (s)
t

Body-fixed x-axis linear velocity (surge motion) (m/s)
u

Body-fixed y-axis linear velocity (sway motion) (m/s)
v

Body-fixed z-axis linear velocity (heave motion) (m/s)
w

Earth-fixed x-axis position (m)
x

Earth-fixed y-axis position (m)
y

Earth-fixed z-axis position (m)
z
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCP</td>
<td>Acoustic Doppler Current Profiler</td>
</tr>
<tr>
<td>AHRS</td>
<td>Attitude and Heading Reference System</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>DS</td>
<td>Depth Sensor</td>
</tr>
<tr>
<td>DVL</td>
<td>Doppler Velocity Log</td>
</tr>
<tr>
<td>EKF</td>
<td>Extended Kalman Filter</td>
</tr>
<tr>
<td>FOG</td>
<td>Fiber Optic Gyroscope</td>
</tr>
<tr>
<td>GNC</td>
<td>Guidance, Navigation, and Control</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>KF</td>
<td>Kalman Filter</td>
</tr>
<tr>
<td>LBL</td>
<td>Long BaseLine</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-Electro-Mechanical Systems</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>NECF</td>
<td>Nonlinear Explicit Complementary Filter</td>
</tr>
<tr>
<td>NED</td>
<td>North, East, and Down</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>RV</td>
<td>Random Variable</td>
</tr>
<tr>
<td>SNAME</td>
<td>Society of Naval Architects and Marine Engineers</td>
</tr>
<tr>
<td>UKF</td>
<td>Unscented Kalman Filter</td>
</tr>
<tr>
<td>USBL</td>
<td>Ultra Short BaseLine</td>
</tr>
<tr>
<td>UT</td>
<td>Unscented Transform</td>
</tr>
<tr>
<td>UUV</td>
<td>Unmanned Underwater Vehicle</td>
</tr>
</tbody>
</table>