Machine Learning in VLSI Computer-Aided Design
To Shaza, Adam, Ella, and Lily

Abe

To Peggy, Will, and Tom

Duane

To Karen and Thomas

Xin

Tell me and I forget.
Teach me and I remember.
Involve me and I learn.

Ben Franklin
As an active branch of applied computer science, the field of VLSI computer-aided
design (VLSI CAD) has always been at the technological forefront in incorporating
cutting-edge algorithms in the software tools and methodologies that electronics
engineers have used to weave the digital fabric of our world.

This book amply demonstrates that in line with its historical track record, VLSI
CAD has also been at the leading edge in making good use of machine-learning
technologies to further automate the design, verification, and implementation of the
most advanced chips.

Machine learning and VLSI CAD have in common several main characteristics
that may have greatly facilitated their interlock. The first is that they are both
consumers of Big Data. In fact, Moore’s law has essentially guaranteed that chip
data grow exponentially big to the point that having tens of billions of transistors in
a chip is now so common and almost taken for granted. The second characteristic
that they have in common is a structured approach for controlling complexity. In
machine learning, this approach is most apparent in the use of layered networks
as inference and generalization engines. In VLSI CAD, complexity is controlled
through a well-defined abstraction hierarchy, going from the transistor and its
technology as raw data to the chip architecture as a model of processing and
computation. The third common characteristic of the two fields is their focus on
computational efficiency, be it to shorten turn-around time in chip design, as is the
case in VLSI CAD, or to promptly detect patterns in time series as is the case
in mission-critical cloud analytics. The fourth common characteristic is a focus
on automated optimization and synthesis that VLSI CAD has spearheaded, and
synthesis is now becoming an important trend for the design of neural networks
in machine learning as well.

It is therefore almost natural to think of VLSI CAD engineers as the original
data scientists who have been instrumental not only in dealing with big data in the
context of chip design but also in enabling the very chips that have ushered the Big
Data era and made it a social and business reality.

The various chapters of this timely and comprehensive book should give the
reader a thorough understanding of the degree to which machine learning methods
have percolated into the various layers of the chip design hierarchy. From lithogra-
phy and physical design to logic and system design, and from circuit performance
estimation to manufacturing yield prediction, VLSI CAD researchers have already
brought state-of-the-art algorithms from supervised, unsupervised, and statistical
learning to bear on pressing CAD problems such as hotspot detection, design-space
exploration, efficient test generation, and post-silicon measurement minimization.

Machine learning in VLSI CAD is expected to play an increasingly important
role not only in improving the quality of the models used in individual CAD tools
but also in enhancing the quality of chip designs that result from the execution of
entire CAD flows and methodologies.

As the semiconductor industry embraces the rising swell of cognitive systems
and edge intelligence, this book could serve as a harbinger and an example of the
osmosis that will exist between our cognitive structures and methods, on the one
hand, and the hardware architectures and technologies that will support them, on
the other.

The value proposition of automation is that it compresses schedules, reduces
costs, and eliminates human errors. In the case of VLSI CAD, the automation has
achieved not only these objectives but also the infinitely more important outcome
of a seamless implementation of a positive feedback loop whereby computers are
used to design more powerful computers. This positive feedback loop is the invisible
hand of Moore’s law.

As we transition from the computing era to the cognitive one, it behooves us
to remember the success story of VLSI CAD and to earnestly seek the help of the
invisible hand so that our future cognitive systems are used to design more powerful
cognitive systems. This book is very much aligned with this ongoing transition from
computing to cognition, and it is with deep pleasure that I recommend it to all those
who are actively engaged in this exciting transformation.

IBM T. J. Watson Research Center
Yorktown Heights, NY, USA
August 2018

Dr. Ruchir Puri
IBM Fellow, IBM Watson
CTO & Chief Architect
Acknowledgments

We would like to acknowledge and thank the many reviewers who have helped us in getting this book to its present state by closely reading the early versions of its chapters and sharing their valuable comments, through us, with the chapter authors. Their inputs were instrumental in improving the overall quality of the entire book. In alphabetical order, they are:

Bei Yu, Bowen Zhang, Christopher Lang, Haibao Chen, Handi Yu, Hector Gonzalez Diaz, Hongge Chen, Jun Tao, Mark Po-Hung Lin, Nguyen Manh Cuong, Pingqiang Zhou, and Renjian Pan

We also acknowledge the early LaTeX technical support we received from Shahzad Muzaffar as well as the editorial advice and guidance Charles Glaser and the Springer Team provided us with.

The first editor would like to acknowledge the IBM T. J. Watson Research Center, Yorktown Heights, NY, for hosting him on his research leave in Summer 2018, during which the composition of this book was finalized.

Of course, a book of such scope and relevance would not have been possible without the timely contributions of all its authors. To them go our warmest thanks and deepest gratitude.

Abu Dhabi, UAE
Cambridge, MA, USA
Durham, NC, USA

August 2018

Ibrahim (Abe) M. Elfadel
Duane S. Boning
Xin Li
Contents

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 1
 Duane S. Boning, Ibrahim (Abe) M. Elfadel, and Xin Li
 1.1 Machine Learning Taxonomy .. 1
 1.2 VLSI CAD Abstraction Levels 5
 1.3 Organization of This Book ... 6
 References ... 15

Part I Machine Learning for Lithography and Physical Design

2 Machine Learning for Compact Lithographic Process Models 19
 J. P. Shiely
 2.1 Introduction .. 19
 2.2 The Lithographic Patterning Process 20
 2.3 Machine Learning of Compact Process Models 27
 2.4 Neural Network Compact Patterning Models 47
 2.5 Conclusions .. 66
 References ... 66

3 Machine Learning for Mask Synthesis ... 69
 Seongbo Shim, Suhyeong Choi, and Youngsoo Shin
 3.1 Introduction .. 69
 3.2 Machine Learning-Guided OPC 70
 3.3 Machine Learning-Guided EPC 78
 3.4 Conclusions .. 91
 References ... 92

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design
 ... 95
 Yibo Lin and David Z. Pan
 4.1 Introduction .. 95
 4.2 Machine Learning in Physical Verification 96
 4.3 Machine Learning in Mask Synthesis 101
4.4 Machine Learning in Physical Design 106
4.5 Conclusions .. 112
References ... 113

Part II Machine Learning for Manufacturing, Yield, and Reliability

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications .. 119
 Constantinos Xanthopoulos, Ke Huang, Ali Ahmadi, Nathan Kupp, John Carulli, Amit Nahar, Bob Orr, Michael Pass, and Yiorgos Makris
 5.1 Introduction .. 119
 5.2 Gaussian Process-Based Regression Models 123
 5.3 Applications .. 145
 5.4 Conclusions .. 169
 References .. 172

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement .. 175
 Hongge Chen and Duane S. Boning
 6.1 Introduction .. 175
 6.2 Background of the Manufacturing Process 177
 6.3 Preliminaries .. 179
 6.4 Learning Models ... 185
 6.5 Experimental Results ... 191
 6.6 Conclusions .. 198
 References .. 199

7 Efficient Process Variation Characterization by Virtual Probe 201
 Jun Tao, Wangyang Zhang, Xin Li, Frank Liu, Emrah Acar, Rob A. Rutenbar, Ronald D. Blanton, and Xuan Zeng
 7.1 Introduction .. 201
 7.2 Virtual Probe .. 203
 7.3 Implementation Details ... 212
 7.4 Applications of Virtual Probe 219
 7.5 Numerical Experiments ... 221
 7.6 Conclusions .. 230
 References .. 230

8 Machine Learning for VLSI Chip Testing and Semiconductor Manufacturing Process Monitoring and Improvement 233
 Jinjun Xiong, Yada Zhu, and Jingrui He
 8.1 Introduction .. 233
 8.2 Background ... 234
 8.3 Machine Learning for Chip Testing and Yield Optimization 236
 8.4 Hierarchical Multitask Learning for Wafer Quality Prediction ... 247
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 Co-clustering Structural Temporal Data from Semiconductor Manufacturing</td>
<td>253</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>261</td>
</tr>
<tr>
<td>References</td>
<td>261</td>
</tr>
<tr>
<td>9 Machine Learning-Based Aging Analysis</td>
<td>265</td>
</tr>
<tr>
<td>Arunkumar Vijayan, Krishnendu Chakrabarty, and Mehdi B. Tahoori</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>265</td>
</tr>
<tr>
<td>9.2 Negative Bias Temperature Instability</td>
<td>267</td>
</tr>
<tr>
<td>9.3 Related Prior Work</td>
<td>268</td>
</tr>
<tr>
<td>9.4 Proposed Technique</td>
<td>271</td>
</tr>
<tr>
<td>9.5 Offline Correlation Analysis and Prediction Model Generation</td>
<td>271</td>
</tr>
<tr>
<td>9.6 Runtime Stress Monitoring</td>
<td>280</td>
</tr>
<tr>
<td>9.7 Results</td>
<td>281</td>
</tr>
<tr>
<td>9.8 Conclusions</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
</tr>
<tr>
<td>Part III Machine Learning for Failure Modeling</td>
<td></td>
</tr>
<tr>
<td>10 Extreme Statistics in Memories</td>
<td>293</td>
</tr>
<tr>
<td>Amith Singhee</td>
<td></td>
</tr>
<tr>
<td>10.1 Cell Failure Probability: An Extreme Statistic</td>
<td>293</td>
</tr>
<tr>
<td>10.2 Extremes: Tails and maxima</td>
<td>296</td>
</tr>
<tr>
<td>10.3 Analysis of Tails and Extreme Values</td>
<td>300</td>
</tr>
<tr>
<td>10.4 Estimating the Tail: Learning the GPD Parameters from Data</td>
<td>305</td>
</tr>
<tr>
<td>10.5 Statistical Blockade: Sampling Rare Events</td>
<td>307</td>
</tr>
<tr>
<td>10.6 Conclusions</td>
<td>321</td>
</tr>
<tr>
<td>References</td>
<td>321</td>
</tr>
<tr>
<td>11 Fast Statistical Analysis Using Machine Learning</td>
<td>323</td>
</tr>
<tr>
<td>Rouwaida Kanj, Rajiv V. Joshi, Lama Shaer, Ali Chehab, and Maria Malik</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction: Logistic Regression-Based Importance Sampling Methodology for Statistical Analysis of Memory Design</td>
<td>323</td>
</tr>
<tr>
<td>11.2 Monte Carlo, Importance Sampling, and Variance Reduction Methods</td>
<td>325</td>
</tr>
<tr>
<td>11.3 Logistic Regression</td>
<td>329</td>
</tr>
<tr>
<td>11.4 Proposed Methodology</td>
<td>333</td>
</tr>
<tr>
<td>11.5 Application to State-of-the-Art FinFET SRAM Design</td>
<td>338</td>
</tr>
<tr>
<td>11.6 Conclusions</td>
<td>346</td>
</tr>
<tr>
<td>References</td>
<td>346</td>
</tr>
<tr>
<td>12 Fast Statistical Analysis of Rare Circuit Failure Events</td>
<td>349</td>
</tr>
<tr>
<td>Jun Tao, Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo, Ben Gu, and Xuan Zeng</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>349</td>
</tr>
</tbody>
</table>
12.2 Subset Simulation .. 352
12.3 Scaled-Sigma Sampling .. 362
12.4 Conclusions ... 372
References .. 372

13 Learning from Limited Data in VLSI CAD 375
Li-C. Wang
13.1 Introduction .. 375
13.2 Iterative Feature Search ... 379
13.3 Assumptions in Machine Learning 382
13.4 Traditional Machine Learning 383
13.5 An Adjusted Machine Learning View 386
13.6 A SAT-Based Implementation 388
13.7 Incorporating Domain Knowledge 396
13.8 Conclusions ... 397
References .. 398

Part IV Machine Learning for Analog Design

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion ... 403
Jun Tao, Fa Wang, Paolo Cachecho, Wangyang Zhang, Shupeng Sun, Xin Li, Rouwaida Kanj, Chenjie Gu, and Xuan Zeng
14.1 Introduction .. 403
14.2 Pre-silicon Validation .. 406
14.3 Post-silicon Tuning ... 416
14.4 Conclusions ... 420
References .. 420

15 Sparse Relevance Kernel Machine-Based Performance Dependency Analysis of Analog and Mixed-Signal Circuits 423
Honghuang Lin, Asad Khan, and Peng Li
15.1 Introduction .. 423
15.2 Feature Kernel Weighting ... 425
15.3 Sparse Relevance Kernel Machine 431
15.4 Experiments ... 437
15.5 Conclusions ... 445
References .. 445

16 SiLVR: Projection Pursuit for Response Surface Modeling 449
Amith Singhee
16.1 Motivation .. 449
16.2 Prevailing Response Surface Models 451
16.3 Latent Variables and Ridge Functions 455
16.4 Approximation using ridge functions 460
16.5 Projection Pursuit Regression 464
16.6 SiLVR ... 473
16.7 Experimental Results ... 488
16.8 Conclusions ... 500
References .. 501

17 Machine Learning-Based System Optimization and Uncertainty Quantification for Integrated Systems 505
Hakki M. Torun, Mourad Larbi, and Madhavan Swaminathan
17.1 Introduction ... 505
17.2 Optimization Oriented Design Flow 506
17.3 Black-Box Optimization .. 507
17.4 Two-Stage Bayesian Optimization 511
17.5 Co-optimization of Embedded Inductor and Integrated Voltage Regulator ... 519
17.6 Uncertainty Quantification .. 526
17.7 Uncertainty Quantification of the IVR Efficiency 530
17.8 Conclusions .. 534
References .. 535

Part V Machine Learning for System Design and Optimization

18 SynTunSys: A Synthesis Parameter Autotuning System for Optimizing High-Performance Processors 539
Matthew M. Ziegler, Hung-Yi Liu, George Gristede, Bruce Owens, Ricardo Nigaglioni, Jihye Kwon, and Luca P. Carloni
18.1 Introduction ... 539
18.2 SynTunSys Architecture .. 541
18.3 The SynTunSys Decision Engine 548
18.4 SynTunSys Results .. 553
18.5 SynTunSys Enhancements and Future Work 559
18.6 Related Work ... 568
18.7 Conclusions ... 569
References .. 569

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 571
Rupesh Raj Karn and Ibrahim (Abe) M. Elfadel
19.1 Introduction ... 571
19.2 Preliminaries ... 573
19.3 Data Collection Platform ... 579
19.4 Power Proxies ... 581
19.5 Temperature Proxies .. 586
19.6 Proxies Incorporating Sleep States 591
19.7 Workload Signature .. 594
19.8 Core Scaling and Thread Assignment 598
19.9 Conclusions ... 606
References .. 607
A Comparative Study of Assertion Mining Algorithms in GoldMine

Shobha Vasudevan, Lingyi Liu, and Samuel Hertz

20.1 Introduction

20.2 Summary of Comparison of Assertion Generation Algorithms in GoldMine

20.3 The GoldMine Principle: Statistics Meet Static

20.4 Background on GoldMine

20.5 Decision Tree-Based Learning

20.6 Best-Gain Decision Forest Algorithm

20.7 Coverage Guided Mining Algorithm

20.8 PRISM Algorithm

20.9 Experimental Results

20.10 Conclusions

References

Energy-Efficient Design of Advanced Machine Learning Hardware

Muhammad Abdullah Hanif, Rehan Hafiz, Muhammad Usama Javed, Semeen Rehman, and Muhammad Shafique

21.1 Artificial Intelligence and Machine Learning

21.2 Software and Co-design Optimizations

21.3 Hardware-Level Techniques

21.4 Error Resilience Analysis: DNN-Specific Approximations for Low-Power Accelerators

21.5 Energy-Efficient Hardware Accelerator Design Methodology for Neural Networks

21.6 Efficient Machine Learning Architectures: Challenges and the Way Forward

References

Index
Contributors

Emrah Acar IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Ali Ahmadi The University of Texas at Dallas, Richardson, TX, USA
Ronald D. Blanton Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Duane S. Boning Massachusetts Institute of Technology, Cambridge, MA, USA
Paolo Cachecho Department of Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
Luca P. Carloni Department of Computer Science, Columbia University, New York, NY, USA
John Carulli GLOBALFOUNDRIES, Malta, NY, USA
Krishnendu Chakrabarty Duke University, Durham, NC, USA
Ali Chehab Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
Hongge Chen Massachusetts Institute of Technology, Cambridge, MA, USA
Suhyeong Choi School of Electrical Engineering, KAIST, Daejeon, South Korea
Ibrahim (Abe) M. Elfadel Department of Electrical and Computer Engineering and Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, UAE
George Gristede IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Ben Gu Cadence Design Systems, Inc., Austin, TX, USA
Chenjie Gu Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA
Rehan Hafiz Information Technology University (ITU), Lahore, Pakistan
Muhammad Abdullah Hanif Vienna University of Technology (TU Wien), Vienna, Austria
Jingrui He Arizona State University, Tempe, AZ, USA

Samuel Hertz Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA

Ke Huang San Diego State University, San Diego, CA, USA

Muhammad Usama Javed Information Technology University (ITU), Lahore, Pakistan

Rajiv V. Joshi IBM TJ Watson Labs, Yorktown Heights, NY, USA

Rouwaida Kanj Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon

Department of Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon

Rupesh Raj Karn Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Asad Khan Texas Instruments, Dallas, TX, USA

Nathan Kupp Yale University, New Haven, CT, USA

Jihye Kwon Department of Computer Science, Columbia University, New York, NY, USA

Mourad Larbi Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, USA

Peng Li Texas Instruments, Dallas, TX, USA

Xin Li Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA

Honghuang Lin Texas Instruments, Dallas, TX, USA

Yibo Lin University of Texas at Austin, Austin, TX, USA

Frank Liu IBM Research Laboratory, Austin, TX, USA

Hongzhou Liu Cadence Design Systems, Inc., Pittsburgh, PA, USA

Hung-Yi Liu Intel Technology and Manufacturing Group, Hillsboro, OR, USA

Lingyi Liu Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA

Kangsheng Luo Cadence Design Systems, Inc., Pittsburgh, PA, USA

Yiorgos Makris The University of Texas at Dallas, Richardson, TX, USA

Maria Malik George Mason University, Fairfax, VA, USA

Amit Nahar Texas Instruments, Dallas, TX, USA
Ricardo Nigaglioni IBM Systems and Technology Group, Austin, TX, USA
Bob Orr Texas Instruments, Dallas, TX, USA
Bruce Owens IBM Systems and Technology Group, Rochester, MN, USA
David Z. Pan University of Texas at Austin, Austin, TX, USA
Michael Pass Texas Instruments, Dallas, TX, USA
Semeen Rehman Vienna University of Technology (TU Wien), Vienna, Austria
Rob A. Rutenbar Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Lama Shaer Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
Muhammad Shafique Vienna University of Technology (TU Wien), Vienna, Austria
J. P. Shiely Synopsys, Inc., Mountain View, CA, USA
Seongbo Shim Samsung Electronics, Hwasung, South Korea
Youngsoo Shin School of Electrical Engineering, KAIST, Daejeon, South Korea
Amith Singhee IBM Research, Bangalore, India
Shupeng Sun Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Madhavan Swaminathan Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, USA
Mehdi B. Tahoori Karlsruhe Institute of Technology, Karlsruhe, Germany
Jun Tao State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, China
Hakki M. Torun Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, USA
Shobha Vasudevan Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA
Arunkumar Vijayan Karlsruhe Institute of Technology, Karlsruhe, Germany
Fa Wang Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Li-C. Wang Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
Constantinos Xanthopoulos The University of Texas at Dallas, Richardson, TX, USA
Jinjun Xiong IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Xuan Zeng State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, China

Wangyang Zhang Cadence Design Systems, Inc., Pittsburgh, PA, USA

Yada Zhu IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Matthew M. Ziegler IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
About the Editors

Ibrahim (Abe) M. Elfadel is Professor of Electrical and Computer Engineering at Khalifa University, Abu Dhabi, UAE. He is also affiliated with Khalifa University Center for Cyber Physical Systems. Since May 2014, he has been the Program Manager of TwinLab MEMS, a joint collaboration with GLOBALFOUNDRIES and the Singapore Institute of Microelectronics on micro-electromechanical systems. Between May 2013 and May 2018, he was the founding co-director of the Abu Dhabi Center of Excellence on Energy-Efficient Electronic Systems (ACE4S). Between November 2012 and October 2015, he was the founding co-director of Mubadala’s TwinLab 3DSC, a joint research center on 3D integrated circuits with the Technical University of Dresden, Germany. He also headed the Masdar Institute Center for Microsystems (iMicro) from November 2013 until March 2016. From 1996 to 2010, he was with the corporate CAD organizations at IBM Research and the IBM Systems and Technology Group, Yorktown Heights, NY, where he was involved in the research, development, and deployment of CAD tools and methodologies for IBM’s high-end microprocessors. His current research interests include IoT platform prototyping; IoT communications; energy-efficient edge and cloud computing; power and thermal management of multicore processors; low-power, embedded digital signal processing; 3D integration; and CAD for VLSI, MEMS, and silicon photonics. Dr. Elfadel is the recipient of six Invention Achievement Awards, one Outstanding Technical Achievement Award, and one Research Division Award, all from IBM, for his contributions in the area of VLSI CAD. He is the inventor or co-inventor of 50 issued US patents with several more pending. In 2014, he was the co-recipient of the D. O. Pederson Best Paper Award from the IEEE Transactions on Computer-Aided Design for Integrated Circuits and Systems. Most recently, he received (with Prof. Mohammed Ismail) the SRC Board of Director Special Award for “pioneering semiconductor research in Abu Dhabi.”

Dr. Elfadel is the co-editor of two Springer books: 3D Stacked Chips: From Emerging Processes to Heterogeneous Systems, 2016, and The IoT Physical Layer: Design and Implementation, 2019. From 2009 to 2013, Dr. Elfadel served as an Associate Editor of the IEEE Transactions on Computer-Aided Design. He is currently serving as Associate Editor of the IEEE Transactions on VLSI Systems and on the editorial
board of the *Microelectronics Journal* (Elsevier). Dr. Elfadel has also served on the Technical Program Committees of several leading conferences, including DAC, ICCAD, ASPDAC, DATE, ICCD, ICECS, and MWSCAS. Most recently, he was the General Co-chair of the IFIP/IEEE 25th International Conference on Very Large Scale Integration (VLSI-SoC 2017), Abu Dhabi, UAE. He received his Ph.D. from MIT in 1993.

Duane S. Boning is the Clarence J. LeBel Professor in Electrical Engineering and Professor of Electrical Engineering and Computer Science in the EECS Department at MIT. He is affiliated with the MIT Microsystems Technology Laboratories and serves as MTL Associate Director for Computation and CAD. From 2004 to 2011, he served as Associate Head of the EECS Department at MIT, from 2011 through 2013 as Director/Faculty Lead of the MIT Skoltech Initiative, and from 2011 to 2018 as Director of the MIT/Masdar Institute Cooperative Program. He is currently the Engineering Faculty Co-Director of the MIT Leaders for Global Operations (LGO) program. Dr. Boning received his S.B. degrees in electrical engineering and in computer science in 1984, and his S.M. and Ph.D. degrees in electrical engineering in 1986 and 1991, respectively, all from the Massachusetts Institute of Technology. He was an NSF Fellow from 1984 to 1989 and an Intel Graduate Fellow in 1990. From 1991 to 1993 he was a Member Technical Staff at the Texas Instruments Semiconductor Process and Design Center in Dallas, Texas, where he worked on semiconductor process representation, process/device simulation tool integration, and statistical modeling and optimization. Dr. Boning is a Fellow of the IEEE and has served as Editor-in-Chief for the *IEEE Transactions on Semiconductor Manufacturing*. He is a member of the IEEE, Electrochemical Society, Eta Kappa Nu, Tau Beta Pi, Materials Research Society, Sigma Xi, and the Association of Computing Machinery.

Xin Li received his Ph.D. degree in Electrical and Computer Engineering from Carnegie Mellon University in 2005. He is currently a Professor in the ECE Department at Duke University and is leading the Institute of Applied Physical Sciences and Engineering and the Data Science Research Center at Duke Kunshan University. His research interests include integrated circuit, signal processing, and data analytics. Dr. Li is the Deputy Editor-in-Chief of *IEEE TCAD*. He was an Associate Editor of *IEEE TCAD, IEEE TBME, ACM TODAES, IEEE D& T*, and *IET CPS*. He was the General Chair of ISVLSI and FAC. He received the NSF CAREER Award in 2012 and six Best Paper Awards from IEEE TCAD, DAC, ICCAD, and ISIC. He is a Fellow of IEEE.