Advanced Information
and Knowledge Processing

Series Editors
Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au
Professor Xindong Wu
xwu@cems.uvm.edu

For other titles published in this series, go to
www.springer.com/series/4738
Preface

The success of the World Wide Web depends on the ability of users to store, process and retrieve digital information regardless of distance boundaries, languages and domains of knowledge. The universality and flexibility of the World Wide Web have also enabled the rapid growth of a variety of new services and applications based on human–machine interaction. The semantics of exchanged information and services should be useful not only for human to human communications, but also in that machines would be able to understand and automatically process web content. Semantics give well-defined meaning to web content and enable computers and people to work in cooperation. Today, the crucial challenge becomes the development of languages to express information in a machine processable format. Now more than ever, new advanced techniques and intelligent approaches are required to transform the Web into a universal reasoning and computing machine. Web intelligence attempts to deal with this challenge by exploiting information technologies and artificial intelligence approaches to design the next generation of web-empowered systems and services.

1 Introduction

The semantic Web plays a crucial role in the development of information technologies and services on the World Wide Web. It takes on new challenges in which the meaning of information enable computers to understand the Web content and imitate human intelligence in performing more of the tedious tasks involved in finding, sharing, and combining information on the web. Until now computers have not been able to fully accomplish these tasks without human intervention since web pages are designed to be understood by people, not machines. Tim Berners-Lee originally expressed his vision about the semantic Web. In his word, he wrote: “[I] have a dream for the Web [in which computers] become capable of analyzing all the data on the Web—the content, links, and transactions between people and computers. A ‘Semantic Web’, which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by
machines talking to machines. The ‘intelligent agents’ people have touted for ages will finally materialize.” Significant research efforts attempt to support this vision and propose a set of design principles, formal specifications, and languages specifically designed for a huge data space. Some of these include Resource Description Framework (RDF), Web Ontology languages (OWL), Semantic-based Query Languages and Logic Models to reason on the structure of knowledge embedded in Web-accessible databases and documents. Despite these initiatives, some of the challenges remain in a bottleneck due to the requirement for automating reasoning systems to deal with inconsistency, vastness, uncertainty, vagueness, and deceit in order to deliver on the promise of the Semantic Web. The discipline of Soft Computing has an evolving collection of methodologies, which aims to exploit tolerance for imprecision, uncertainty, and partial truth to study very complex phenomena: those for which more conventional methods have not yielded low cost and complete solutions. Today, Soft Computing provides an attractive opportunity for developing Web intelligence to represent the ambiguity in human thinking with real life uncertainty, reason on vagueness in ontologies, and makes possible the transition between the Web and its semantic successor. In this context, Semantic Web will enable the emergence of digital ecosystems of software and services delivered by the Internet. It will also extend the Internet with capabilities to reason on its resources and their relationships in order to develop the knowledge-based economy in the 21st century.

Why This Book is Interesting? Industrial and technological demands to develop semantic-driven applications in business, commerce, marketing, finance and education have persuaded academia and scholarly communities across the world to include Web intelligence disciplines in their computer science curriculum. Moreover, many research centers are extensively working on this research field which demonstrates an important interest in building the next Semantic World Wide Web. The number of journals in this area has increased and the number of related conferences organized in the last ten years is overwhelming. However, there are relatively few books about web intelligence and semantic web taking into consideration knowledge discovery, semantic network, ontologies and artificial intelligence techniques such as neural network, fuzzy logic and mining algorithms as a new paradigm. Consequently, the need for a new book meets the increasing demands of academia and research communities and provides advanced techniques and methodologies to help undergraduates, graduates and researchers. The primary target audience for the book includes researchers, scholars, postgraduate students and developers who are interested in exploring various areas and disciplines about how semantic techniques and technologies can bridge the gap between users and applications on the web.

2 Book Organization

This book aims to gather the latest advances and innovative solutions in web intelligence and reporting how future services and web-based applications can gain competitive opportunities by applying different emergent semantic techniques to
real-world problems. The main topics of this edited volume cover various advanced semantic technologies, use tools and software for collaboration and simulations of web intelligence, and finally provide case studies and applications in the field of semantic Web. It presents some of the latest advances of various topics in web intelligence and illustrates how organizations can gain competitive advantages by applying the different emergent techniques in the real-world scenarios. The book contains seventeen self-contained chapters which provide optimal reading flexibility. They are organized into four parts as follows:

- Web, Semantic and Intelligence
- Collaboration, Semantic and Intelligence
- Knowledge, Text, Semantic and Intelligence
- Applications and Case Studies

Part I deals with Web, Semantic and Intelligence and consists of four chapters.

In Chap. 1, “The Dilated Triple”, Rodriguez et al. present a simple model in which the meaning of a statement is defined in terms of other statements, much like the words of a dictionary are defined in terms of each other. This model serves to strengthen the association between concepts and the contexts in which they are to be understood. It provides a particularly simple means of contextualizing an RDF triple by associating it with related statements in the same graph. This approach, in combination with a notion of graph similarity, is sufficient to select only those statements from an RDF graph, which are subjectively most relevant to the context of the requesting process.

In Chap. 2, “Semantic Web Technologies and Artificial Neural Networks for Intelligent Web Knowledge Source Discovery”, Caliusco and Stegmayer present some basic concepts and foundations regarding the new Semantic Web and how it is populated with ontologies and why ontology-matching techniques are needed. The idea of software agents that travel the web carrying query request from users has also been addressed in this Chapter. The web knowledge source discovery task is been explained in detail and some motivating scenarios are introduced. To help users avoid irrelevant web search results and wrong decision making, efficient techniques and approaches for developing web intelligence with capabilities for discovering distributed knowledge source are presented.

Wang et al. in Chap. 3, titled “Computing Similarity of Semantic Web Services in Semantic Nets with Multiple Concept Relations” propose a novel approach based on application ontologies to improve the selection of semantic web services. After building application ontology by merging semantic service ontologies, the authors represent this application ontology as a fuzzy-weighted semantic net with multiple ontological concept relations, and calculate formal/compound concept similarity on it. The ontological concept similarity is finally used to calculate similarity of semantic services.

Chapter 4, “General-Purpose Computing on a Semantic Network Substrate” by Rodriguez presents a model of general-purpose computing on a semantic network substrate. The concepts presented are applicable to any semantic network representation. In the proposed model, the application programming interface, the run-time
program, and the state of the computing virtual machine are all represented in the Resource Description Framework (RDF). The implementations of the concepts presented provide a computing paradigm that leverages the distributed and standardized representational-layer of the Semantic Web.

Part II consists of four chapters and deals with Collaboration, Semantic and Intelligence.

In Chap. 5, “Agent Technology Meets the Semantic Web: Interoperability and Communication Issues”, Karanastasi and Matsatsini review the recent research on agent technologies and how this technology can serve the scopes of the Semantic Web project including web Agent and the Characteristics of Multi-Agent Systems, Agent Communication Languages, Knowledge and Query Manipulation Language, FIPA Agent Communication Language, and Ontologies.

In Chap. 6, “Mining of Semantic Image Content Using Collective Web Intelligence”, Leung et al. describe an indexing method, whereby the aggregate intelligence of different Web users is continuously transferred to the Web. Such intelligence is codified, reinforced, distilled and shared among users so as to enable the systematic mining and discovery of semantic image contents. The described method allows the collaborative creation of image indexes, which is able to instill and propagate deep knowledge and collective wisdom into the Web concerning the advanced semantic characteristics of Web images.

In Chap. 7, “Suited Support for Distributed Web Intelligence Cooperative Work”, Decouchant et al. present the PINAS platform, which provides means for supporting cooperative work on the Web. Using cooperative applications that are built employing the services of this infrastructure, several users can access and modify replicated shared entities in a consistent and controlled way. PINAS provides suited features, such as: user identification, multi-site user definition, user and entity naming, shared entity fragmentation and replication, storage, consistency, and automatic distributed updating. The authors propose seamless extensions to standard Web services that can be fully integrated within the Web environment.

In Chap. 8, “Web services and Software Agents for Tailorable Groupware Design”, Cheaib et al. present a new groupware architecture model called UD3 that explicitly introduces the notion of tailor ability in designing collaborative applications. This model is based on the integration of web services and software agent technologies, thus using protocols of each while reinforcing their individual strengths in the context of tailorable groupware design. Web services are dynamically invoked by software agents in order to bring new behaviors, and hence, enhancing the collaboration process by dynamically adapting the services offered in the system to the users’ preferences and not the other way around.

Part III consists of five chapters and focus on Knowledge, Text, Semantic and Intelligence.

In Chap. 9, “Toward Distributed Knowledge Discovery on Grid Systems”, Khac et al. present a distributed data mining (DDM) system based on Grid environments to execute new distributed data mining techniques on very large and distributed heterogeneous datasets. The architecture and motivation for the design are presented. The authors developed prototypes for each layer of the system to evaluate the system features, test each layer as well as whole framework and building simulation
and DDM test suites. Knowledge map layer, key layer of this system, is integrated in this framework.

In Chap. 10, “Metamodel of Ontology Learning from Text”, Wisniewski presents the metamodel of the ontology learning from text. The approach is based on the survey of the existing methods, while evaluation is provided in the form of a reference implementation of the introduced metamodel. The author has applied a qualitative evaluation by implementing some of the current state-of-the-art methods and illustrates how they can be described with a metamodel notation.

Ambiguity is a challenge faced by systems that handle natural language. To assuage the issue of linguistic ambiguities found in text classification, Chap. 11, “An Analysis of Constructed Categories for Textual Classification Using Fuzzy Similarity and Agglomerative Hierarchical Methods” by Guelpeli et al. proposes a text categorizer using the methodology of Fuzzy Similarity. The clustering algorithms Stars and Cliques are adopted in the Agglomerative Hierarchical method and they authors identify the groups of texts by specifying some type of relationship rule to create categories based on the similarity analysis of the textual terms.

In Chap. 12, “Emergent XML Mining: Discovering an Efficient Mapping from XML Instances to Relational Schemas”, Ishikawa proposes an adaptable approach to discovery of database schemas for well-formed XML data such as EDI, news, and digital libraries, which we interchange, filter, or download for future retrieval and analysis. The generated schemas usually consist of more than one table. Author’s approach controls the number of tables to be divided by use of statistics of XML so that the total cost of processing queries is reduced. To achieve this, three functions namely NULL expectation, Large Leaf Fields, and Large Child Fields are introduced for controlling the number of tables to be divided. The author also describes the concept of short paths contained by generated database schemas and their effects on the performance of query processing.

In Chap. 13, “XML Based Information Systems and Formal Semantics of Programming Languages”, Despeyroux illustrates how techniques used to define the formal semantics of programming languages can be used in the context of the Web. The author also explores how techniques used in this context can be used to enforce the quality of information systems.

Part IV consists of four chapters and deals with Applications and Case Studies.

In Chap. 14, “Modeling and Testing of Web Based Systems”, Cavalli et al. present two methodologies to attain automatic test cases generation: The first uses extended finite state machines to model Web services composition described in BPEL, while the other uses UML to model Web applications. Together with the formal models of the web systems, this chapter presents methods for conformance and non-regression test generation.

As web applications are becoming ever larger, more complex and thus more demanding for their users, there is a growing need for customer support. Very often, it is provided by support centers via phone. However, the media break between browser and phone hampers the common understanding of user and consultant. As a result, support becomes ineffective and expensive, and users get frustrated. Screen sharing solutions are one possible solution for this problem, but they have major
disadvantages like high bandwidth requirements, slow performance and, most importantly, the need for a client-side installation. These drawbacks are addressed by VCS, a concept and system for instant co-browsing, that runs directly within the users browser. It equally allows all participants of a support session to see and navigate the same web page on their screens, being aware of what the other person is currently doing on the page. People can directly interact with each other, jointly complete tasks and solve. The event-based nature of the synchronization approach to be presented further facilitates adaptation, so that users with heterogeneous end devices may collaborate. Niederhausen et al., in Chap. 15, “Web-Based Support by Thin-Client Co-Browsing”, present VCS and also discuss the special challenges that this approach entails.

In Chap. 16, “NetPay Micro-Payment Protocols for Three Networks”, Xiaoling and Grundy describe the NetPay micro-payment protocol that is actually extended from its original pay-per-click for web content to peer-to-peer networks and mobile device networks. The authors outline the key motivation for NetPay, the basic micro-payment protocol using e-coins and e-wallets, and the three variants of the protocol for different domains.

Chapter 17, “Enforcing Honesty in Fair Exchange Protocols” by Alaraj and Munro surveys the field of Fair Exchange Protocols and then presents a special type of protocol between a customer (C) and a merchant (M) that enforces one of them to be honest. It makes minimal use of a Trusted Third Party (TTP). The protocol has the features that it: (1) only comprises three messages to be exchanged between C and M; (2) guarantees strong fairness for both C and M; (3) allows both parties to be sure of the item that they will receive from the other party; and (4) resolves disputes automatically online.

3 Acknowledgments

We would like to thank the authors who provided excellent chapters and timely revisions. We are also grateful for their trust in us and patience during the review process. We would like to express our sincere thanks to the reviewers for their tremendous effort and challenging task of choosing high quality chapters, and their valuable criticism that greatly improved the quality of final chapter versions. The editors also would like to thank, Professor Lakhmi C. Jain, the editor-in-chief of the Advanced Information and Knowledge Processing (AI and KP) series of Springer for editorial assistance and excellent cooperative collaboration to produce this important scientific work. We hope this volume motivates its readers to take the next steps beyond building models to implementing, evaluating, comparing, and extending proposed approaches and applications. We finally hope that readers will share our excitement to present this volume on Web Intelligence: Advanced Semantic Technologies and find it useful.
4 About the Editors

Youakim Badr received his Ph.D. in Information Systems from the French National Institute for Applied Sciences in Lyon (INSA of Lyon). In 2004, he joined the faculty of the INSA of Lyon as Assistant Professor of Computer Science. Dr. Badr has worked extensively in the field of coupling XML documents and Object-Relational Databases. Through his research he has acquired skills in fields such as Interoperability, Modeling, System Architectures and Networking, and their application to various domains such as Business Processes, Supply Chains, Productions Systems and Virtual Enterprises. His current academic research interests include systems in both the service sector and ICT. In particular, he studies the ecosystem of services and the multidisciplinary modeling approach to design services through the integration of ICT, strategy and processes. He leads the Service-Oriented Enterprise research team which combines industrial and computer engineering approaches. Dr. Badr is vigorously involved in a series of international conferences. He served as General Co-Chair of ICDIM’07, CSTST’08, Programme Chair of INCOS’09, Track chair of IEEE DEST’10, AINA’10, ICETET’09, ICTIST’08 and International Program Member of IAS’08, SITIS’07, JFO’07, WCNC’08 and ECWS’06. He is a professional member of ACM, IEEE Services Computing Community, MILRLabs/France coordinator, IEEE-SMC Technical Committee on Soft Computing, Digital Ecosystems Community, a member of OW2 and the Service Sciences working group of the Networked European Software and Services Initiative (NESSI).

Richard Chbeir received his Ph.D. in Computer Science from the INSA of Lyon, France in 2001. He is member of IEEE and ACM since 1999. He is currently an Associate Professor in the Computer Science Department of the Bourgogne University, Dijon, France. His research interests are in the areas of distributed multimedia database management, XML similarity and rewriting, spatio-temporal applications, indexing methods, and multimedia access control models. Dr. Chbeir has published (more than 40 peer-reviewed publications) in international journals and books (IEEE Transactions on SMC, Information Systems, Journal on Data Semantics, Journal of Systems Architecture, etc.), conferences (ER, WISE, SOFSEM, EDBT, ACM SAC, Visual, IEEE CIT, FLAIRS, PDCS, etc.), and has served on the program committees of several international conferences (SOFSEM, AINA, IEEE SITIS, ACM SAC, IEEE ISSPIT, EuroPar, SBBD, etc.). He has been organizing many international conferences and workshops (ACM SAC, ICDIM, CSTST, SITIS, etc.). He is currently the Vice-Chair of the ACM SIGAPP and the Chair of its French Chapter.

Ajith Abraham received his Ph.D. degree in Computer Science from Monash University, Melbourne, Australia. His research and development experience includes over 18 years in the Industry and Academia. He works in a multidisciplinary environment involving machine intelligence, network security, sensor networks, e-commerce, Web intelligence, Web services, computational grids, data mining, and applications to various real-world problems. He has given more than 30 plenary lectures and conference tutorials in these areas. He authored or coauthored more than 500 publications. He works with the Norwegian University of Science and Technology, Norway and also coordinate the activities of the Machine Intelligence Research
Labs (MIR Labs), which has representation in 47 countries. He is the Co-Chair of the IEEE Systems Man and Cybernetics Society Technical Committee on Soft Computing. He is the founder of several conference series, which are now sponsored by IEEE and also serves the editorial board of over 30 international Journals.

Aboul Ella Hassanien received his B.Sc. with honours in 1986 and M.Sc. degree in 1993, both from Ain Shams University, Faculty of Science, Ain Sham University, Egypt. On September 1998, he received his doctoral degree from the Department of Computer Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan. He is currently a Professor at Cairo University, Faculty of Computer and Information. He has authored/coauthored over 120 research publications in peer-reviewed reputed journals and conference proceedings. He serves on the editorial board and reviewer of number of journals and on the program committee of several international conferences and he has editing/written more than 18 books. He has received the excellence younger researcher award from Kuwait University.

5 List of Reviewers

Ahmed El Oualkadi (Universit Catholique de Louvain, Belgium)
Akira Asano (Hiroshima University, Japan)
Alfredo Cuzzocrea (University of Calabria, Italy)
Andries Engelbrecht (University of Pretoria, South Africa)
Bernard Grabot (LGP–ENIT, France)
Carlos Alberto Reyes-Garcia (Instituto Nacional de Astrofisica Optica Y Electronica, Mexico)
Chi Shen (University of Kentucky, USA)
Chrisa Tsinaraki (Technical University of Crete, Greece)
Christine Verdier (University of Grenoble, France)
Danielle Boulanger (University of Jean Moulin–MODEME, France)
Deborah Dahl (Conversational Technologies, USA)
Elizabet Goldbarg (Federal University of Rio Grande do Norte, Brazil)
Estevam Hruschka Jr. (Federal University of Sao Carlos, Brazil)
Etienne Kerre (University of Gent, Belgium)
Gabriel Luque (University of Malaga, Spain)
Georgios Ch. Sirakoulis (Democritus University of Thrace, Greece)
Hiranmay Ghosh (Tata Consultancy Services, India)
Hiroshi Ishikawa (Shizuoka University, Japan)
Ignacio Ponzoni (Universidad Nacional del Sur, Argentina)
James Lu (Emory University, USA)
Jaroslaw Kozlak (University of Science and Technology Krakow, Poland)
Javier J. Sanchez-Medina (University of Las Palmas de Gran Canaria, Spain)
Kazushi Ohya (Tsurumi University, Japan)
Kubilay Ecerkale (Hava Harp Okulu, Turkey)
Mario Koeppen (Kyushu Institute of Technology, Japan)
Mario Ventresca (University of Waterloo, Canada)
Maytham Safar (Kuwait University, Kuwait)
Mei-Ling Shyu (University of Miami, USA)
Michael Blumenstein (Griffith University, Gold Coast, Australia)
Monica Chis (University of Cluj-Napoca, Romania)
Nadine Cullot (Bourgogne University, France)
Oscar Corcho (University of Manchester, UK)
Paolo Merialdo (Università’ degli Studi Roma Tre, Italy)
Patrick Siarry (Université Paris 12, LiSSi, France)
Patrizia Grifoni (National Research Council of Italy, Italy)
Raquel Barco (Universidad de Malaga, Spain)
Sadok Ben Yahia (University of Tunis, Tunisia)
Saravanan Muthaiyah (George Mason University, USA)
Sebastin Lozano (University of Seville, Spain)
Selma Ayse Ozel (Cukurova University, Turkey)
Siti Mariyam Shamsuddin (University Technology of Malaysia, Malaysia)
Thanasis Daradoumis (Open University of Catalonia, Spain)
Thierry Badard (Université Laval, Canada)
Thomas Hanne (Applied Sciences Northwestern Switzerland University, Switzerland)
Tianrui Li (Southwest Jiaotong University, China)
Tomasz Smolinski (Emory University, USA)
Urszula Markowska-Kaczmar (Wroclaw University of Technology, Poland)
Ying Ding (Indiana University, USA)
Yinghua Ma (Shanghai JiaoTong University, China)
Zhigang Zeng (Wuhan University of Technology, China)
Zhi-Hong Deng (Peking University, China)

Villeurbanne Cedex, France
Dijon Cedex, France
Trondheim, Norway
Safat, Kuwait

Youakim Badr
Richard Chbeir
Ajith Abraham
Aboul-Ella Hassanien
Part I Web, Semantic and Intelligence

1 The Dilated Triple .. 3
Marko A. Rodriguez, Alberto Pepe, and Joshua Shinavier
1.1 Introduction ... 3
1.2 The Dilated Triple Model 6
1.3 Contextualizing a Relationship 7
1.4 Comparing Contexts 10
1.5 Conclusion ... 13
References .. 13

2 Semantic Web Technologies and Artificial Neural Networks
for Intelligent Web Knowledge Source Discovery 17
M.L. Caliusco and G. Stegmayer
2.1 Introduction ... 17
2.2 Foundations .. 19
 2.2.1 Ontologies and Ontology-Matching 19
 2.2.2 Software Agents 20
 2.2.3 Artificial Neural Networks 21
2.3 ANNs and the Semantic Web: Literature Review 22
 2.3.1 Searching and Query Answering on the Semantic Web . 22
 2.3.2 Ontology-Matching and ANN Models 23
2.4 Web Knowledge Source Discovery 24
 2.4.1 A Knowledge Source Discovery Agent 26
2.5 The ANN-Based Ontology-Matching Model Inside the KSD
 Agent .. 29
 2.5.1 ANN-Based Ontology-Matching Model: Training Phase . 32
 2.5.2 ANN-Based Ontology-Matching Model: Matching Phase . 33
2.6 Conclusions ... 35
References .. 35
3 Computing Similarity of Semantic Web Services in Semantic Nets with Multiple Concept Relations ... 37
Xia Wang, Yi Zhao, and Wolfgang A. Halang
3.1 Introduction ... 37
3.2 Ontologies in the SWS Context 39
 3.2.1 Ontology Levels 39
 3.2.2 Ontologies in WSMO 40
3.3 An Ontology-Based Selection Framework of SWSs 41
 3.3.1 Building Application Ontologies 42
3.4 Semantic Net with Multiple Concept Relations 43
 3.4.1 Ontological Concept Similarity Algorithm (OCSA) 44
 3.4.2 Algorithm and Implementation 46
 3.4.3 Service Similarity 47
3.5 Experimental Evaluation and Discussion 49
3.6 Related Work .. 52
3.7 Conclusion ... 54
References ... 54

4 General-Purpose Computing on a Semantic Network Substrate ... 57
Marko A. Rodriguez
4.1 Introduction ... 57
 4.1.1 General-Purpose Computing and the Virtual Machine .. 58
 4.1.2 The Semantic Web and RDF 59
 4.1.3 Object-Oriented Programming and OWL 62
 4.1.4 Contributions 64
4.2 A High-Level Perspective 65
 4.2.1 The Ontological Level 67
 4.2.2 The Instance Level 68
 4.2.3 The Machine Level 68
4.3 The Neno Language 69
 4.3.1 The Universally Unique Identifier Address Space 70
 4.3.2 Class Declarations in Neno Source Code 71
 4.3.3 Starting a Program in Neno 84
 4.3.4 Typical Use Case 85
4.4 The Fhat Virtual Machine Architecture 86
 4.4.1 Fhat Components 86
 4.4.2 Migrating Fhat Across Different Host CPUs 91
 4.4.3 Fhat Reflection 93
 4.4.4 r-Fhat .. 93
4.5 The Fhat Instruction Set 94
 4.5.1 The Method 94
 4.5.2 A Method Instance 97
4.6 Conclusion .. 98
References ... 100
Part II Collaboration, Semantic and Intelligence

5 Agent Technology Meets the Semantic Web: Interoperability and Communication Issues
Anastasia Karanastasi and Nikolaos Matsatsinis
5.1 Introduction
5.2 Main Differences Between Web Services and Agents
5.3 Web Agents
5.4 Characteristics of Multi-Agent Systems
5.5 Agent Communication Languages
5.5.1 Knowledge and Query Manipulation Language (KQML)
5.5.2 FIPA ACL
5.5.3 Comparing KQML and FIPA ACL
5.6 Ontologies
5.6.1 OWL
5.7 Specifications for Open Multi-Agent Systems
5.8 Interoperability Issues
5.9 Conclusions
References

6 Mining of Semantic Image Content Using Collective Web Intelligence
C.H.C. Leung, J. Liu, A. Milani, and W.S. Chan
6.1 Cumulative Web Intelligence for Image Mining
6.2 Attaining Intelligence Through Adaptive Indexing
6.3 Reinforcing Collective Judgment
6.3.1 Incrementing the Score
6.3.2 Decrementing the Score
6.4 Expanding Intelligence Through Evolution
6.4.1 Augmentation of an Existing Index Term
6.4.2 Addition of New Index Terms
6.4.3 Maximal Indexing
6.4.4 Probability of Image Recovery
6.5 Collective Wisdom Indexing for Advanced Image Semantics
6.6 Index Convergence
6.6.1 Case A
6.6.2 Case B
6.7 Conclusions
References

7 Suited Support for Distributed Web Intelligence Cooperative Work
Dominique Decouchant, Sonia Mendoza, and José Rodríguez
7.1 Introduction to Web Cooperative Work
7.1.1 Some Efforts at Protocol Level
7.1.2 Requirements for a Suited Web Cooperative Infrastructure
7.2 What Architecture for What Groupware?
Contents

7.2.1 Classification Model .. 142
7.2.2 Centralized Architecture 145
7.2.3 Fully Distributed Architecture 148
7.2.4 Hybrid Architecture .. 150
7.2.5 Coordination Architectures 153
7.3 The PIÑAS Web Infrastructure 161
7.3.1 PIÑAS Naming Space ... 163
7.3.2 Web Document Replication 166
7.3.3 Multi-Site User Work Organization 168
7.3.4 Establishing the Cooperation 172
7.3.5 Disconnected and Nomadic Cooperative Work 176
7.4 Conclusions ... 181
References ... 182

8 Web Services and Software Agents for Tailorable Groupware Design 185
Nader Cheaib, Samir Otmane, and Malik Mallem
8.1 Introduction ... 185
8.2 Motivating Scenario ... 187
8.2.1 Tailorability and the Need of a New Architecture 187
8.3 Tailorability Approaches 188
8.3.1 Activity Theory ... 189
8.3.2 Component-Based Architecture 189
8.3.3 Service-Oriented Architecture (SOA) 191
8.4 Background ... 192
8.4.1 Ellis’s 3C Model ... 192
8.4.2 Web Services and the World Wide Web 192
8.4.3 Software Agents ... 193
8.4.4 JADE Platform .. 193
8.4.5 Related Work—Web Services and Agents’ Integration ... 194
8.4.6 Purpose of Integration 195
8.5 The UD^3 Theoretical Model 197
8.5.1 Description of the Functional Core (FC) 198
8.5.2 FC Decomposition ... 199
8.5.3 SOA Environment ... 199
8.5.4 JADE Agents’ Environment 200
8.5.5 Universal Directory for Description and Discovery 201
8.5.6 Dynamic Discovery and the Semantic Web 201
8.5.7 FC Implementation ... 202
8.6 Case Study—Oce@nyd ... 204
8.6.1 Physical Layer .. 205
8.6.2 Shared FC .. 206
8.6.3 Invocation of an External Web Service by an Agent 206
8.6.4 Properties and Discussion 207
8.7 Conclusion ... 208
References ... 208
Part III Knowledge, Text, Semantic and Intelligence

9 Toward Distributed Knowledge Discovery on Grid Systems 213
Nhien An Le Khac, Lamine M. Aouad, and M-Tahar Kechadi

9.1 Introduction 213

9.2 DDM Systems 215
9.2.1 DDM Issues 215
9.2.2 Toward an Efficient DDM System on Grid Platform 217

9.3 Architecture of a New DDM System 218
9.3.1 Core Layer 218
9.3.2 Data Grid Layer 219

9.4 Distributed Algorithms for Mining Large Datasets 220
9.4.1 Variance-Based Clustering 220
9.4.2 Distributed Frequency Itemsets Generation 223

9.5 Knowledge Map 227
9.5.1 From Knowledge Representation to Knowledge Maps 227
9.5.2 Knowledge Map Layer Structure 229
9.5.3 Evaluation 232

9.6 Exploitation 234
9.6.1 Interface 234
9.6.2 An Example of Exploiting the DDM System via Knowledge Map 236

9.7 Related Works of DDM Frameworks on Grid Platforms 238
9.7.1 Knowledge Grid 239
9.7.2 GridMiner 239
9.7.3 Discovery Net 240

9.8 Conclusion 240
References 241

10 Metamodel of Ontology Learning from Text 245
Marek Wisniewski

10.1 Motivation 245

10.2 A Survey of Ontology Learning Methods 249
10.2.1 Terms 250
10.2.2 Synonyms 252
10.2.3 Concepts 253
10.2.4 Taxonomic Relations 254
10.2.5 Non-taxonomic Relations 254
10.2.6 Rules 255
10.2.7 Ontology Learning Maps 255
10.2.8 Conclusions 259

10.3 Metamodel 260
10.3.1 Model Duality 261
10.3.2 Extraction Models 262
10.3.3 Reference Architecture 265
11 An Analysis of Constructed Categories for Textual Classification Using Fuzzy Similarity and Agglomerative Hierarchical Methods

Marcus V.C. Guelpeli, Ana Cristina Bicharra Garcia, and Flavia Cristina Bernardini

11.1 Introduction 277
11.2 Fuzzy Similarity 280
11.3 Agglomerative Hierarchical Methods 282
 11.3.1 Stars Algorithm 285
 11.3.2 Cliques Algorithm 286
11.4 An Approach to Text Categorization—A Proposal 286
11.5 Experiments 289
 11.5.1 Hypothesis 290
 11.5.2 Decision Rule for the F-Test 291
 11.5.3 Testing the Null Hypothesis 291
 11.5.4 Qualitative Analysis of the Constructed Categories . 294
11.6 Conclusion 301
 References 304

12 Emergent XML Mining: Discovering an Efficient Mapping from XML Instances to Relational Schemas

Hiroshi Ishikawa

12.1 Introduction 307
 12.1.1 Web Mining 308
 12.1.2 Emergent XML Mining 309
 12.1.3 Previous Works on Emergent XML Mining 310
12.2 Discovery of XML Structures 311
12.3 Concepts and Definitions 313
 12.3.1 Concepts 313
 12.3.2 Definitions 314
12.4 Our Approach 316
 12.4.1 Discovery of Complex Data 316
 12.4.2 Division of Tables 317
 12.4.3 Resultant Database Schema and Short Path 321
12.5 Evaluation 321
 12.5.1 Settings 322
 12.5.2 Queries 323
 12.5.3 Query Translation 324
 12.5.4 Results 325
13 XML Based Information Systems and Formal Semantics of Programming Languages ... 331
Thierry Despeyroux
13.1 Introduction ... 331
13.2 Syntax and Semantics of Programming Languages 333
 13.2.1 Syntax Versus Semantics 333
 13.2.2 Formal Semantics 335
13.3 XML Files Viewed as Programs 336
 13.3.1 Similarities and Differences 336
 13.3.2 Semantic Constraints in XML Documents 337
13.4 A Specification Language to Define the Semantics of XML Documents and Web Sites 339
 13.4.1 Formalizing Web Sites 339
 13.4.2 Definition of SeXML 340
 13.4.3 Dynamic Semantics 342
13.5 Ontologies as Types 343
13.6 Applications .. 346
 13.6.1 Verifying a Web Site 346
 13.6.2 Verifying a Document and Inferring New Data 347
 13.6.3 Implementation Notes 349
13.7 Conclusion .. 349
References ... 350

Part IV Applications and Case Studies

14 Modeling and Testing of Web-Based Systems 355
Ana Cavalli, Mounir Lallali, Stephane Maag, Gerardo Morales, and Fatiha Zaidi
14.1 Introduction ... 355
14.2 Preliminaries ... 358
 14.2.1 Definitions 358
 14.2.2 Testing Techniques 359
 14.2.3 Related Works 362
14.3 Web-Based System Modeling 364
 14.3.1 Modeling of Web Services 365
 14.3.2 Modeling of Web Applications 371
14.4 Web-Based System Testing 373
 14.4.1 Web Services Testing 373
 14.4.2 Test Generation for Web Applications 378
14.5 Case Study: DotLRN 380
 14.5.1 The DotLRN Framework 380
 14.5.2 Test Generation from the UML Model 381
14.5.3 Non-regression Testing for Web Applications 385
14.5.4 Alternative Method for the Test Generation of Web Applications ... 385
14.5.5 Migrating Web Applications Functionalities into Web Services ... 388
14.6 Conclusion ... 389
Appendix .. 390
References ... 392

15 Web-Based Support by Thin-Client Co-browsing 395
Matthias Niederhausen, Stefan Pietschmann, Tobias Ruch, and Klaus Meißner
15.1 Introduction ... 395
15.2 State of the Art in Co-browsing ... 396
15.2.1 Related Co-browsing Approaches 397
15.3 CoCAB: Collaborative Context-Aware Browsing 399
15.3.1 Basic Concepts ... 399
15.3.2 Architectural Overview ... 399
15.3.3 Event-Based Synchronization 401
15.3.4 Co-browsing Awareness ... 402
15.3.5 Context-Awareness ... 403
15.4 Fields of Application .. 411
15.4.1 Consulting ... 411
15.4.2 Co-shopping ... 412
15.4.3 Online Presentation ... 413
15.4.4 Communities ... 414
15.5 Implementation ... 414
15.5.1 Co-browsing Server ... 414
15.5.2 Content Processing and Delivery 417
15.5.3 Context Modeling and Adaptation 418
15.5.4 User Interface and Interaction Customization 420
15.5.5 Client Component Delivery ... 420
15.5.6 Synchronization Techniques ... 424
15.6 Discussion .. 424
15.6.1 Security Aspects ... 424
15.6.2 Adaptation Level ... 425
15.6.3 Enhanced Web Content ... 426
15.7 Conclusion and Future Work ... 426
References .. 427

16 NetPay Micro-Payment Protocols for Three Networks 429
Xiaoling Dai and John Grundy
16.1 Introduction ... 429
16.2 Motivation ... 430
16.3 NetPay Micro-Payment Protocol for E-commerce in Client–Server Networks ... 433
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1 NetPay Transactions</td>
<td>434</td>
</tr>
<tr>
<td>16.3.2 NetPay Architectures</td>
<td>437</td>
</tr>
<tr>
<td>16.4 P2P-NetPay for Content Sharing in Peer-to-Peer Networks</td>
<td>437</td>
</tr>
<tr>
<td>16.4.1 P2P-NetPay Transactions</td>
<td>439</td>
</tr>
<tr>
<td>16.4.2 P2P-NetPay Architecture</td>
<td>439</td>
</tr>
<tr>
<td>16.5 Mobile-NetPay for Mobile Commerce in Wireless Networks</td>
<td>440</td>
</tr>
<tr>
<td>16.5.1 Mobile-NetPay Transactions</td>
<td>442</td>
</tr>
<tr>
<td>16.5.2 Mobile-NetPay Architectures</td>
<td>443</td>
</tr>
<tr>
<td>16.6 Discussion</td>
<td>443</td>
</tr>
<tr>
<td>16.6.1 P2P Micro-Payment Systems Comparison</td>
<td>444</td>
</tr>
<tr>
<td>16.6.2 Mobile Micro-Payment Systems Comparison</td>
<td>446</td>
</tr>
<tr>
<td>16.7 Summary</td>
<td>448</td>
</tr>
<tr>
<td>References</td>
<td>448</td>
</tr>
</tbody>
</table>

17 Enforcing Honesty in Fair Exchange Protocols | 451 |
Abdullah M. Alaraj and Malcolm Munro | |
17.1 Introduction | 451 |
17.2 Review of Literature | 452 |
17.2.1 Protocols that Do Not Involve a TTP | 455 |
17.2.2 Protocols that Involve a TTP | 456 |
17.2.3 Examples of Fair Exchange Protocols | 459 |
17.2.4 Discussion | 463 |
17.3 Enforcing Merchant Honesty (EMH) Protocol | 464 |
17.3.1 Notations | 464 |
17.3.2 Protocol Description | 465 |
17.3.3 Pre-exchange Phase | 465 |
17.3.4 The Exchange Phase | 466 |
17.3.5 After Exchange (Dispute Resolution) | 469 |
17.4 Disputes Analysis | 471 |
17.5 All Possible Cases (Scenarios) of Executing EMH Protocol | 474 |
17.6 Comparisons | 475 |
17.7 Conclusion | 477 |
References | 478 |

Index | 481 |
Contributors

Abdullah M. Alaraj Department of Information Technology, College of Computer, Qassim University, Qassim, Saudi Arabia, arj@qu.edu.sa

Lamine M. Aouad School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland, lamine.aouad@ucd.ie

Flavia Cristina Bernardini Departamento de Ciência e Tecnologia—RCT, Pólo Universitário de Rio das Ostras—PURO, Universidade Federal Fluminense—UFF, Rua Recife, s/n, Jardim Bela Vista, Rio das Ostras, RJ CEP 28890-000, Brazil, fcbernardini@vm.uff.br

Ana Cristina Bicharra Garcia Departamento de Ciência da Computação, Instituto de Computação—IC, Universidade Federal Fluminense—UFF, Rua Passo da Pátria 156, Bloco E, 3º andar, São Domingos, Niterói, RJ CEP 24210-240, Brazil, bicharra@ic.uff.br

M.L. Caliusco CONICET, CIDISI-UTN-FRSF, Lavaise 610, Santa Fe, Argentina, mcaliusc@frsf.utn.edu.ar

Ana Cavalli SAMOVAR CNRS UMR 5157, Telecom & Management SudParis, 9 rue Charles Fourrier, 91011 Evry Cedex, France, Ana.Cavalli@it-sudparis.eu

W.S. Chan Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, wschan@comp.hkbu.edu.hk

Nader Cheaib IBISC CNRS FRE 3190, University of Evry, 91020 Evry Cedex, France, nader.cheaib@ibisc.fr

Xiaoling Dai The University of the South Pacific, Suva, Fiji Islands, dai_s@usp.ac.fj

Dominique Decouchant Laboratoire LIG de Grenoble, Grenoble, France; UAM-Cuajimalpa, México D.F., México, Dominique.Decouchant@imag.fr

Thierry Despeyroux INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, F-78153 Le Chesnay Cedex, France, thierry.despeyroux@inria.fr
John Grundy The University of Auckland, Auckland, New Zealand, john-g@cs.auckland.ac.nz

Marcus V.C. Guelpeli Departamento de Ciência da Computação, Instituto de Computação—IC, Universidade Federal Fluminense—UFF, Rua Passo da Pátria 156, Bloco E, 3º andar, São Domingos, Niterói, RJ CEP 24210-240, Brazil, mguelpeli@ic.uff.br

Wolfgang A. Halang Fernuniversität, 58084 Hagen, Germany, wagner.halang@fernuni-hagen.de

Hiroshi Ishikawa Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, Japan, ishikawah@acm.org

Anastasia Karanastasi Decision Support Systems Laboratory, Technical University of Crete, Chania, 73100, Greece, natasha@ergasya.tuc.gr

M-Tahar Kechadi School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland, tahar.kechadi@ucd.ie

Nhien An Khac School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland, an.lekhac@ucd.ie

Mounir Lallali SAMOVAR CNRS UMR 5157, Telecom & Management SudParis, 9 rue Charles Fourrier, 91011 Evry Cedex, France, Mounir.Lallali@it-sudparis.eu

C.H.C. Leung Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, clement@comp.hkbu.edu.hk

J. Liu Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, jiming@comp.hkbu.edu.hk

Stephane Maag SAMOVAR CNRS UMR 5157, Telecom & Management SudParis, 9 rue Charles Fourrier, 91011 Evry Cedex, France, Stephane.Maag@it-sudparis.eu

Malik Mallem IBISC CNRS FRE 3190, University of Evry, 91020 Evry Cedex, France, malik.mallem@ibisc.fr

Nikolaos Matsatsinis Decision Support Systems Laboratory, Technical University of Crete, Chania, 73100, Greece, nikos@ergasya.tuc.gr

Klaus Meißner Chair of Multimedia Technology, Technische Universität Dresden, Dresden, Germany, kmeiss@inf.tu-dresden.de

Sonia Mendoza Departamento de Computación, CINVESTAV-IPN, México D.F., México, smendoza@cs.cinvestav.mx

A. Milani Department of Mathematics & Computer Science, University of Perugia, Perugia, Italy, milani@unipg.it
Gerardo Morales SAMOVAR CNRS UMR 5157, Telecom & Management
SudParis, 9 rue Charles Fourrier, 91011 Evry Cedex, France,
Gerardo.Morales@it-sudparis.eu

Malcolm Munro Department of Computer Science, Durham University, Durham,
UK, malcolm.munro@durham.ac.uk

Matthias Niederhausen Chair of Multimedia Technology, Technische Universität
Dresden, Dresden, Germany, matthias.niederhausen@tu-dresden.de

Samir Otmane IBISC CNRS FRE 3190, University of Evry, 91020 Evry Cedex,
France, samir.otmane@ibisc.fr

Alberto Pepe Center for Embedded Networked Sensing, University of California
at Los Angeles, 3551 Boelter Hall, Los Angeles, CA 90095-1596, USA,
apepe@ucla.edu

Stefan Pietschmann Chair of Multimedia Technology, Technische Universität
Dresden, Dresden, Germany, stefan.pietschmann@tu-dresden.de

José Rodríguez Departamento de Computación, CINVESTAV-IPN, México D.F.,
México, rodriguez@cs.cinvestav.mx

Marko A. Rodriguez T-5, Center for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA, marko@lanl.gov

Tobias Ruch T-Systems Multimedia Solutions GmbH, Dresden, Germany,
tobias.ruch@t-systems.com

Joshua Shinavier Semantic Network Research Group, Knowledge Reef Systems
Inc., Santa Fe, NM 87501, USA, josh@fortytwo.net

G. Stegmayer CONICET, CIDISI-UTN-FRSF, Lavaihe 610, Santa Fe, Argentina,
gstegmayer@santafe-conicet.gov.ar

Xia Wang Fernuniversität, 58084 Hagen, Germany, xia.wang@fernuni-hagen.de

Marek Wisniewski Poznan University of Economics, Al. Niepodleglosci 10,
Poznan, Poland

Fatiha Zaidi LRI, Université Paris-Sud 11, 91405 Orsay Cedex, France,
Fatiha.Zaidi@lri.fr

Yi Zhao Fernuniversität, 58084 Hagen, Germany, yi.zhao@fernuni-hagen.de