Computational Imaging and Vision

Managing Editor

MAX VIERGEVER
Utrecht University, The Netherlands

Series Editors

GUNILLA BORGEFORS, Centre for Image Analysis, SLU, Uppsala, Sweden
RACHID DERICHE, INRIA, France
THOMAS S. HUANG, University of Illinois, Urbana, USA
KATSUSHI IKEUCHI, Tokyo University, Japan
TIANZI JIANG, Institute of Automation, CAS, Beijing
REINHARD KLETTE, University of Auckland, New Zealand
ALES LEONARDIS, ViCoS, University of Ljubljana, Slovenia
HEINZ-OTTO PEITGEN, CeVis, Bremen, Germany
JOHN K. TSOTSOS, York University, Canada

This comprehensive book series embraces state-of-the-art expository works and advanced research monographs on any aspect of this interdisciplinary field.

Topics covered by the series fall in the following four main categories:

- Imaging Systems and Image Processing
- Computer Vision and Image Understanding
- Visualization
- Applications of Imaging Technologies

Only monographs or multi-authored books that have a distinct subject area, that is where each chapter has been invited in order to fulfill this purpose, will be considered for the series.

Volume 38

For other titles published in this series, go to www.springer.com/series/5754
The Theory of the Moiré Phenomenon

Volume I: Periodic Layers

Second Edition

by

Isaac Amidror

Peripheral Systems Laboratory,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
To my parents
No one admires Fourier more than I do. It is the only entertaining mathematical work I ever saw. Its lucidity has always been admired. But it was more than lucid. It was luminous. Its light showed a crowd of followers the way to a heap of new physical problems.

Oliver Heaviside [Heaviside71 p. 32]

Front cover image: A heart-shaped moiré which is generated in the off-centered superposition of two circular gratings with slightly different radial periods. See Problem 11-8 and Fig. 11.4(c).

Back cover images: Interesting moiré effects in the superposition of two bell-shaped curvilinear gratings. See Figs. 10.34(c),(d).
Contents

Preface to the Second Edition .. xv

From the Preface to the First Edition .. xvii

Colour Plates .. xix

1. Introduction .. 1
 1.1 The moiré effect ... 1
 1.2 A brief historical background ... 2
 1.3 The scope of the present book ... 3
 1.4 Overview of the following chapters 5
 1.5 About the exercises and the moiré demonstration samples 7

2. Background and basic notions .. 9
 2.1 Introduction .. 9
 2.2 The spectral approach; images and their spectra 10
 2.3 Superposition of two cosinusoidal gratings 15
 2.4 Superposition of three or more cosinusoidal gratings 18
 2.5 Binary square waves and their spectra 21
 2.6 Superposition of binary gratings; higher order moirés 23
 2.7 The impulse indexing notation .. 30
 2.8 The notational system for superposition moirés 33
 2.9 Singular moiré states; stable vs. unstable moiré-free superpositions . 35
 2.10 The intensity profile of the moiré and its perceptual contrast .. 38
 2.11 Square grids and their superpositions 40
 2.12 Dot-screens and their superpositions 44
 2.13 Sampling moirés; moirés as aliasing phenomena 48
 2.14 Advantages of the spectral approach 51
 Problems .. 52

3. Moiré minimization ... 59
 3.1 Introduction .. 59
 3.2 Colour separation and halftoning .. 60
3.3 The challenge of moiré minimization in colour printing 62
3.4 Navigation in the moiré parameter space 64
 3.4.1 The case of two superposed screens 65
 3.4.2 The case of three superposed screens 68
3.5 Finding moiré-free screen combinations for colour printing 71
3.6 Results and discussion .. 75
Problems ... 77

4. The moiré profile form and intensity levels 81
 4.1 Introduction ... 81
 4.2 Extraction of the profile of a moiré between superposed line-gratings ... 82
 4.3 Extension of the moiré extraction to the 2D case of superposed screens ... 89
 4.4 The special case of the (1,0,-1,0)-moiré 96
 4.4.1 Shape of the intensity profile of the moiré cells 97
 4.4.2 Orientation and size of the moiré cells 101
 4.5 The case of more complex and higher order moirés 102
Problems ... 103

5. The algebraic foundation of the spectrum properties 109
 5.1 Introduction ... 109
 5.2 The support of a spectrum; lattices and modules 109
 5.2.1 Lattices and modules in \(\mathbb{R}^n\) 110
 5.2.2 Application to the frequency spectrum 113
 5.3 The mapping between the impulse indices and their geometric locations ... 114
 5.4 A short reminder from linear algebra 115
 5.4.1 The image and the kernel of a linear transformation 115
 5.4.2 Partition of a vector space into equivalence classes 116
 5.4.3 The partition of \(V\) into equivalence classes induced by \(\Phi\) 117
 5.4.4 The application of these results to our continuous case 118
 5.5 The discrete mapping \(\Psi\) vs. the continuous mapping \(\Phi\) 118
 5.6 The algebraic interpretation of the impulse locations in the spectrum support .. 121
 5.6.1 The global spectrum support 121
 5.6.2 The individual impulse-clusters 123
 5.6.3 The spread-out clusters slightly off the singular state 125
 5.7 Examples .. 126
 5.8 Concluding remarks ... 143
Problems ... 146
6. Fourier-based interpretation of the algebraic spectrum properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Image domain interpretation of the algebraic structure of the spectrum support</td>
</tr>
<tr>
<td>6.3</td>
<td>Image domain interpretation of the impulse-clusters in the spectrum</td>
</tr>
<tr>
<td>6.4</td>
<td>The amplitude of the collapsed impulse-clusters in a singular state</td>
</tr>
<tr>
<td>6.5</td>
<td>The exponential Fourier expression for two-grating superpositions</td>
</tr>
<tr>
<td>6.6</td>
<td>Two-grating superpositions and their singular states</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Two gratings with identical frequencies</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Two gratings with different frequencies</td>
</tr>
<tr>
<td>6.7</td>
<td>Two-screen superpositions and their singular states</td>
</tr>
<tr>
<td>6.8</td>
<td>The general superposition of m layers and its singular states</td>
</tr>
</tbody>
</table>

7. The superposition phase

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>The phase of a periodic function</td>
</tr>
<tr>
<td>7.3</td>
<td>The phase terminology for periodic functions in the 1D case</td>
</tr>
<tr>
<td>7.4</td>
<td>The phase terminology for 1-fold periodic functions in the 2D case</td>
</tr>
<tr>
<td>7.5</td>
<td>The phase terminology for the general 2D case: 2-fold periodic functions</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Using the period-vector notation</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Using the step-vector notation</td>
</tr>
<tr>
<td>7.6</td>
<td>Moiré phases in the superposition of periodic layers</td>
</tr>
<tr>
<td>7.7</td>
<td>The influence of layer shifts on the overall superposition</td>
</tr>
</tbody>
</table>

8. Macro- and microstructures in the superposition

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Rosettes in singular states</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Rosettes in periodic singular states</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Rosettes in almost-periodic singular states</td>
</tr>
<tr>
<td>8.3</td>
<td>The influence of layer shifts on the rosettes in singular states</td>
</tr>
<tr>
<td>8.4</td>
<td>The microstructure slightly off the singular state; the relationship between macro- and microstructures</td>
</tr>
<tr>
<td>8.5</td>
<td>The microstructure in stable moiré-free superpositions</td>
</tr>
<tr>
<td>8.6</td>
<td>Rational vs. irrational screen superpositions; rational approximants</td>
</tr>
<tr>
<td>8.7</td>
<td>Algebraic formalization</td>
</tr>
<tr>
<td>8.8</td>
<td>The microstructure of the conventional 3-screen superposition</td>
</tr>
</tbody>
</table>
8.9 Variance or invariance of the microstructure under layer shifts 223
8.10 Period-coordinates and period-shifts in the Fourier decomposition 226
Problems .. 231

9. Polychromatic moiré effects .. 233

9.1 Introduction ... 233
9.2 Some basic notions from colour theory 234
 9.2.1 Physical aspects of colour .. 234
 9.2.2 Physiological aspects of colour ... 235
9.3 Extension of the spectral approach to the polychromatic case 236
 9.3.1 The representation of images and image superpositions 236
 9.3.2 The influence of the human visual system 240
 9.3.3 The Fourier-spectrum convolution and the superposition moirés ... 241
9.4 Extraction of the moiré intensity profiles 241
9.5 The (1,-1)-moiré between two colour line-gratings 242
9.6 The (1,0,-1,0)-moiré between two colour dot-screens 245
9.7 The case of more complex and higher-order moirés 246
Problems .. 246

10. Moirés between repetitive, non-periodic layers 249

10.1 Introduction ... 249
10.2 Repetitive, non-periodic layers ... 250
10.3 The influence of a coordinate change on the spectrum 258
10.4 Curvilinear cosinusoidal gratings and their different types of spectra .. 264
 10.4.1 Gradual transitions between cosinusoidal gratings of different types ... 268
10.5 The Fourier decomposition of curved, repetitive structures 272
 10.5.1 The Fourier decomposition of curvilinear gratings 272
 10.5.2 The Fourier decomposition of curved line-grids and dot-screens ... 274
10.6 The spectrum of curved, repetitive structures 275
 10.6.1 The spectrum of curvilinear gratings 275
 10.6.2 The spectrum of curved line-grids and dot-screens 278
10.7 The superposition of curved, repetitive layers 279
 10.7.1 Moirés in the superposition of curved, repetitive layers 279
 10.7.2 Image domain vs. spectral domain investigation of the superposition ... 282
 10.7.3 The superposition of a parabolic grating and a periodic straight grating ... 283
10.7.4 The superposition of two parabolic gratings 290
10.7.5 The superposition of a circular grating and a periodic
straight grating .. 297
10.7.6 The superposition of two circular gratings 306
10.7.7 The superposition of a zone grating and a periodic
straight grating .. 311
10.7.8 The superposition of two circular zone gratings 319
10.8 Periodic moirés in the superposition of non-periodic layers 323
10.9 Moiré analysis and synthesis in the superposition of
curved, repetitive layers ... 329
10.9.1 The case of curvilinear gratings .. 329
10.9.2 The case of curved dot-screens ... 337
10.10 Local frequencies and singular states in curved, repetitive layers 343
10.11 Moirés in the superposition of screen gradations 347
10.12 Concluding remarks ... 348
Problems ... 349

11. Other possible approaches for moiré analysis 353
11.1 Introduction .. 353
11.2 The indicial equations method .. 353
11.2.1 Evaluation of the method ... 358
11.2.2 Comparison with the spectral approach 359
11.3 Approximation using the first harmonic 360
11.3.1 Evaluation of the method ... 362
11.4 The local frequency method .. 363
11.4.1 Evaluation of the method ... 368
11.4.2 Comparison with the spectral approach 369
11.5 Concluding remarks ... 369
Problems ... 370

Appendices

A. Periodic functions and their spectra .. 375
A.1 Introduction ... 375
A.2 Periodic functions, their Fourier series and their spectra in the 1D case . . . 375
A.3 Periodic functions, their Fourier series and their spectra in the 2D case 378
A.3.1 1-fold periodic functions in the x or y direction 378
A.3.2 2-fold periodic functions in the x and y directions 378
A.3.3 1-fold periodic functions in an arbitrary direction 380
A.3.4 2-fold periodic functions in arbitrary directions (skew-periodic functions) .. 381
A.4 The period-lattice and the frequency-lattice (=spectrum support) 386
A.5 The matrix notation, its appeal, and its limitations for our needs 389
A.6 The period-vectors \mathbf{P}_i vs. the step-vectors \mathbf{T}_i 392

B. Almost-periodic functions and their spectra .. 395
B.1 Introduction .. 395
B.2 A simple illustrative example ... 395
B.3 Definitions and main properties ... 396
B.4 The spectrum of almost-periodic functions ... 399
B.5 The different classes of almost-periodic functions and their spectra 401
B.6 Characterization of functions according to their spectrum support 404
B.7 Almost-periodic functions in two variables 406

C. Miscellaneous issues and derivations ... 409
C.1 Derivation of the classical moiré formula (2.9) of Sec. 2.4 409
C.2 Derivation of the first part of Proposition 2.1 of Sec. 2.5 410
C.3 Invariance of the impulse amplitudes under rotations and x,y scalings 411
C.3.1 Invariance of the 2D Fourier transform under rotations 411
C.3.2 Invariance of the impulse amplitudes under x,y scalings 411
C.4 Shift and phase .. 412
C.4.1 The shift theorem .. 412
C.4.2 The particular case of periodic functions 414
C.4.3 The phase of a periodic function: the ϕ and the ϕ notations 415
C.5 The function $R_v(u)$ converges to $\delta(u)$ as $a \to 0$ 417
C.6 The 2D spectrum of a cosinusoidal zone grating 418
C.7 The convolution of two orthogonal line-impulses 419
C.8 The compound line-impulse of the singular (k_1,k_2)-line-impulse cluster .. 420
C.9 The 1D Fourier transform of the chirp $\cos(ax^2 + b)$ 423
C.10 The 2D Fourier transform of the 2D chirp $\cos(ax^2 + by^2 + c)$ 424
C.11 The spectrum of screen gradations .. 425
C.12 Convergence issues related to Fourier series 429
C.12.1 On the convergence of Fourier series 429
C.12.2 Multiplication of infinite series 430
C.13 Moiré effects in image reproduction .. 432
C.14 Hybrid (1,-1)-moiré effects whose moiré bands have 2D intensity profiles . 433
C.14.1 Preliminary considerations ... 433
C.14.2 The Fourier-based approach .. 436
C.14.3 Generalization to curvilinear gratings 449
C.14.4 Synthesis of hybrid (1,-1)-moiré effects 453
C.15 Moiré effects between general 2-fold periodic layers 464
C.15.1 Examples of general 2-fold periodic layers 465
C.15.2 Adaptation of results from Chapter 10 to our particular case ... 469
C.15.3 The (1,0,-1,0)-moiré between two regular screens or grids 470
C.15.4 The (1,0,-1,0)-moiré between two hexagonal screens or grids ... 474
C.15.5 The (1,0,-1,0)-moiré between two general 2-fold periodic screens or grids ... 476
C.15.6 Allowing for layer shifts .. 476
C.15.7 The order of the superposed layers 480
C.16 Layer normalization issues ... 482

D. Glossary of the main terms ... 485
D.1 About the glossary ... 485
D.2 Terms in the image domain ... 486
D.3 Terms in the spectral domain 490
D.4 Terms related to moiré .. 494
D.5 Terms related to light and colour 496
D.6 Miscellaneous terms .. 498

List of notations and symbols .. 503

List of abbreviations ... 507

References ... 509

Index ... 519
Preface to the Second Edition

Since the first edition of this book was published several new developments have been made in the field of the moiré theory. The most important of these concern new results that have recently been obtained on moiré effects between correlated aperiodic (or random) structures, a subject that was completely absent in the first edition, and which appears now for the first time in a second, separate volume.

This also explains the change in the title of the present volume, which now includes the subtitle “Volume I: Periodic Layers”. This subtitle has been added to clearly distinguish the present volume from its new companion, which is subtitled “Volume II: Aperiodic Layers”. It should be noted, however, that the new subtitle of the present volume may be somewhat misleading, since this book also treats (in Chapters 10 and 11) moiré effects between repetitive layers, which are, in fact, geometric transformations of periodic layers, that are generally no longer periodic in themselves. The most suitable subtitle for the present volume would therefore have been “Periodic or Repetitive Layers”, but in the end we have decided on the shorter version.

Although this revised edition maintains the general structure of the original book, it also includes some important improvements. It provides additional topics that were not explicitly treated in the first edition, such as the hybrid (1,-1)-moire effects with 2D intensity profiles (now in Sec. C.14 of Appendix C), the moiré effects between hexagonal screens (now in Sec. C.15 of Appendix C) or the extension of the indicial equations method to the case of 2D screens (in Sec. 11.2). The present edition of the book also includes several new figures and some new or revised problems. New references have been added throughout the book, and all the Internet references have been verified and updated. And finally, cross-references have been added wherever appropriate to the second volume, and in particular to those of its appendices which may be of interest to readers of the present book. Note, however, that the two volumes are basically independent of each other. Each volume thus contains its own Glossary, List of notations and symbols, References and Index.

In preparing this second edition, we have also taken the opportunity to correct errors and typos that crept into the original edition of the book. However, some errors may have been
overlooked, and some may have been inadvertently added in this new edition. Such errors, when detected, will be listed along with their corrections in the Internet site of the book, and we therefore encourage readers to inform us of any errors they may find.

This work would not have been possible without the support and the excellent research environment provided by the EPFL. In particular, the author wishes to express his gratitude to Prof. Roger D. Hersch, the head of the Peripheral Systems Laboratory of the EPFL, for his encouragement throughout the different stages of this project. Many thanks are also due to the publishers for their helpfulness and availability throughout the publishing cycle.
From the Preface to the First Edition

Who has not noticed, on one occasion or another, those intriguing geometric patterns which appear at the intersection of repetitive structures such as two far picket fences on a hill, the railings on both sides of a bridge, superposed layers of fabric, or folds of a nylon curtain? This fascinating phenomenon, known as the moiré effect, has found useful applications in several fields of science and technology, such as metrology, strain analysis or even document authentication and anti-counterfeiting. However, in other situations moiré patterns may have an unwanted, adverse effect. This is the case in the printing world, and, in particular, in the field of colour reproduction: moiré patterns which may be caused by the dot-screens used for colour printing may severely deteriorate the image quality and turn into a real printer’s nightmare.

The starting point of the work on which this book is based was, indeed, in the research of moiré phenomena in the context of the colour printing process. The initial aim of this research was to understand the nature and the causes of the superposition moiré patterns between regular screens in order to find how to avoid, or at least minimize, their adverse effect on colour printing. This interesting research led us, after all, to a much more far-reaching mathematical understanding of the moiré phenomenon, whose interest stands in its own right, independently of any particular application. Based on these results, the present book offers a profound insight into the moiré phenomenon and a solid theoretical basis for its full understanding. In addition to the question of moiré minimization between regular screens, the book covers many interesting and important subjects such as the navigation in the moiré parameter space, the intensity profile forms of the moiré, its singular states, its periodic or almost-periodic properties, the phase of the superposed layers and of each of the eventual moirés, the relations between macro- and micro-structures in the superposition, polychromatic moirés between colour layers, etc. All this is done in the most general way for any number of superposed layers having any desired forms (line-gratings, dot-screens with any dot shape, etc.). The main aim of this book is, therefore, to present all this material in the form of a single, unified and coherent text, starting from the basics of the theory, but also going in depth into recent research results and showing the new insight they offer in the understanding of the moiré phenomenon.
Fourier-based tools are but a natural choice when dealing with periodic phenomena; and, indeed, our approach is largely based on the Fourier theory. We consider each of the superposed layers as a function (reflectance or transmittance function) having values in the range between 0 and 1. We study the original layers, their superpositions, and their moiré effects by analyzing their properties both in the image domain and in the spectral, frequency domain using the Fourier theory. Further results are obtained by investigating the spectrum using concepts from geometry of numbers and linear algebra, and by interpreting the corresponding image-domain properties by means of the theories of periodic and almost-periodic functions. However, no prior knowledge of these fields of mathematics is assumed, and the required background is fully introduced in the text (in Chapter 5 and in Appendices A and B, respectively). The only prerequisite mathematical background is limited to undergraduate mathematics and an elementary familiarity with the Fourier theory (Fourier series, Fourier transforms, convolutions, Dirac impulses, etc.).

This book presents a comprehensive approach that provides a full explanation of the various phenomena which occur in the superposition, both in the image and in the spectral domains. This includes not only a quantitative and qualitative analysis of the moiré effect, but also the synthesis of moiré effects having any desired geometric forms and intensity profiles. In the first chapters we present the basic theory which covers the most fundamental case, namely: the superposition of monochrome, periodic layers. In later chapters of the book we extend the theory to the even more fascinating cases of polychromatic moirés and moirés between repetitive, non-periodic layers. Throughout the whole text we favour a pictorial, intuitive approach supported by mathematics, and the discussion is accompanied by a large number of figures and illustrative examples, some of which are visually striking and even spectacular.

This book is intended for students, scientists, and engineers wishing to widen their knowledge of the moiré effect; on the other hand it also offers a beautiful demonstration of the Fourier theory and its relationship with other fields of mathematics and science. Teachers and students of imaging science will find moiré phenomena to be an excellent didactic tool for illustrating the Fourier theory and its practical applications in one or more dimensions (Fourier transforms, Fourier series, convolutions, etc.). People interested in the various moiré applications and moiré-based technologies will find in this book a theoretical explanation of the moiré phenomenon and its properties. Readers interested in mathematics will find in the book a novel approach combining Fourier theory and geometry of numbers; physicists and crystallographers may be interested in the intricate relationship between the macro- and microstructures in the superposition and their relation to the theories of periodic and almost-periodic functions; and colour scientists and students will find in the polychromatic moirés a vivid demonstration of the additive and subtractive principles of colour theory. Finally, the occasional reader will enjoy the beauty of the effects demonstrated throughout this book, and it is our hope may be tempted to learn more about their nature and their properties.